Advanced Oxidation of Dexamethasone by Activated Peroxo Compounds in Water Matrices: A Comparative Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Experimental Procedure
2.3. Analytical Methods
3. Results and Discussion
3.1. Direct Oxidation of DXM
3.2. Iron-Activated Oxidation of DXM
3.2.1. The Effect of pH
3.2.2. The Effect of Oxidant Dose
3.3. Photochemical Oxidation of DXM
The Effect of pH
3.4. Photochemical Oxidation of DXM in SW
3.5. Identification of DXM Transformation Products
3.6. Operational Costs of the Applied Processes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopex López-Pacheco, I.Y.; Silva-Núñez, A.; Salinas-Salazar, C.; Arévalo-Gallegos, A.; Lizarazo-Holguin, L.A.; Barceló, D.; Iqbal, H.M.N.; Parra-Saldívar, R. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. Sci. Total Environ. 2019, 690, 1068–1088. [Google Scholar] [CrossRef]
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. Ecotox. Environ. Safe. 2024, 278, 116420. [Google Scholar] [CrossRef]
- World Health Organization. WHO Model List of Essential Medicines, 23rd ed.; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2023.02 (accessed on 3 February 2025).
- Musee, N.; Kebaabetswe, L.P.; Tichapondwa, S.; Tubatsi, G.; Mahaye, N.; Leareng, S.K.; Nomngongo, P.N. Occurrence, fate, effects, and risks of dexamethasone: Ecological implications post-COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 11291. [Google Scholar] [CrossRef]
- Wilk, J.; Sowik, P.; Stando, K.; Grabowska, A.; Felis, E.; Bajkacz, S. Effect of sunlight-initiated processes on dexamethasone degradation in liquid samples. Desalin. Water Treat. 2025, 321, 101042. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Ioannidi, A.A.; Politi, A.; Miserli, K.; Konstantinou, I.; Mantzavinos, D.; Frontistis, Z. Dexamethasone degradation in aqueous medium by a thermally activated persulfate system: Kinetics and transformation products. J. Water Process Eng. 2022, 10, 103134. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Liu, D.; Yi, M.; Chang, F.; Li, H.; Du, Y. A review of sulfate radical-based and singlet oxygen-based advanced oxidation technologies: Recent advances and prospects. Catalysts 2022, 12, 109. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Benigna, I.; Sorlini, S.; Torretta, V. Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability 2018, 10, 86. [Google Scholar] [CrossRef]
- Zahmatkesh, S.; Karimian, M.; Chen, Z.; Ni, B.-J. Combination of coagulation and adsorption technologies for advanced wastewater treatment for potable water reuse: By ANN, NSGA-II, and RSM. J. Environ. Manag. 2024, 349, 119429. [Google Scholar] [CrossRef]
- Kooijman, G.; de Kreuk, M.K.; Houtman, C.; van Lier, J.B. Perspectives of coagulation/flocculation for the removal of pharmaceuticals from domestic wastewater: A critical view at experimental procedures. J. Water Process Eng. 2020, 34, 101161. [Google Scholar] [CrossRef]
- Mahmoudian, M.H.; Azari, A.; Jahantigh, A.; Sarkhosh, M.; Yousefi, M.; Razavinasab, S.A.; Afsharizadeh, M.; Shahraji, F.M.; Pasandi, A.P.; Zeidabadi, A.; et al. Statistical modeling and optimization of dexamethasone adsorption from aqueous solution by Fe3O4@NH2-MIL88B nanorods: Isotherm, kinetics, and thermodynamic. Environ. Res. 2023, 236, 116773. [Google Scholar] [CrossRef]
- You, X.; Liu, M.; Chen, X.; Li, Y.; Yang, Y. Mechanistic insight into the simultaneous removal of Cr(VI) and phosphate by a novel versatile bimetallic material. J. Environ. Chem. Eng. 2024, 12, 114446. [Google Scholar] [CrossRef]
- Kulišťáková, A. Removal of pharmaceutical micropollutants from real wastewater matrices by means of photochemical advanced oxidation processes—A review. J. Water Process Eng. 2023, 53, 103727. [Google Scholar] [CrossRef]
- Li, X.; Jie, B.; Lin, H.; Deng, Z.; Qian, J.; Yang, Y.; Zhang, X. Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOCs): Recent advances and prospects. J. Environ. Manag. 2022, 308, 114644. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, S.; Chen, K.; Huang, B.; Jin, R. A review of persulfate-based advanced oxidation system for decontaminating organic wastewater via non-radical regime. Front. Environ. Sci. Eng. 2024, 18, 134. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 2020, 401, 126158. [Google Scholar] [CrossRef]
- Lee, J.; von Gunten, U.; Kim, J.-H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef]
- Ushani, U.; Lu, X.; Wang, J.; Zhang, Z.; Dai, J.; Tan, Y.; Wang, S.; Li, W.; Niu, C.; Cai, T.; et al. Sulfate radicals-based advanced oxidation technology in various environmental remediation: A state-of-the–art review. Chem. Eng. J. 2020, 402, 126232. [Google Scholar] [CrossRef]
- Wacławek, S.; Lutze, H.V.; Grübel, K.; Padil, V.V.T.; Černík, M.; Dionysiou, D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–61. [Google Scholar] [CrossRef]
- Esen, V.; Sağlam, Ş.; Oral, B. Light sources of solar simulators for photovoltaic devices: A review. Renew. Sust. Energ. Rev. 2017, 77, 1240–1250. [Google Scholar] [CrossRef]
- Shankar, R.; Shim, W.J.; An, J.G.; Yim, U.H. A practical review on photooxidation of crude oil: Laboratory lamp setup and factors affecting it. Water Res. 2015, 68, 304–315. [Google Scholar] [CrossRef]
- Quaresma, A.V.; Rubio, K.T.S.; Taylor, J.G.; Sousa, B.A.; Silva, S.Q.; Werle, A.A.; Afonso, R.J.C.F. Removal of dexamethasone by oxidative processes: Structural characterization of degradation products and estimation of the toxicity. J. Environ. Chem. Eng. 2021, 9, 106884. [Google Scholar] [CrossRef]
- Ahmed, M.J. Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons. J. Environ. Manag. 2017, 190, 274–282. [Google Scholar] [CrossRef]
- Arsand, D.R.; Kümmerer, K.; Martins, A.F. Removal of dexamethasone from aqueous solution and hospital wastewater by electrocoagulation. Sci. Total Environ. 2013, 443, 351–357. [Google Scholar] [CrossRef]
- Grilla, E.; Taheris, M.E.; Miserli, K.; Venieri, D.; Konstantinou, I.; Mantzavinos, D. Degradation of dexamethasone in water using BDD anodic oxidation and persulfate: Reaction kinetics and pathways. J. Chem. Technol. Biotechnol. 2021, 96, 2451–2460. [Google Scholar] [CrossRef]
- Rahmani, H.; Rahmani, K.; Rahmani, A.; Zare, M.-R. Removal of dexamethasone from aqueous solutions using sono-nanocatalysis process. Res. J. Environ. Sci. 2015, 9, 320–331. [Google Scholar] [CrossRef]
- Ioannidi, A.A.; Arvaniti, O.S.; Miserli, K.; Konstantinou, I.; Frontistis, Z.; Mantzavinos, D. Removal of drug dexamethasone from aqueous matrices using low frequency ultrasound: Kinetics, transformation products, and effect of microplastics. J. Environ. Manag. 2023, 328, 117007. [Google Scholar] [CrossRef]
- Pazoki, M.; Parsa, M.; Farhadpour, R. Removal of the hormones dexamethasone (DXM) by Ag doped on TiO2 photocatalysis. J. Environ. Chem. Eng. 2016, 4, 4426–4434. [Google Scholar] [CrossRef]
- Ghenaatgar, A.; Tehrani, R.M.A.; Khadir, A. Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: Optimization of operational parameters and kinetic studies. J. Water Process Eng. 2019, 32, 100969. [Google Scholar] [CrossRef]
- Pretali, L.; Albini, A.; Canatlupi, A.; Maraschi, F.; Nicolis, S.; Sturini, M. TiO2-Photocatalyzed water depollution, a strong, yet selective depollution method: New evidence from the solar light induced degradation of glucocorticoids in freshwaters. Appl. Sci. 2021, 11, 2486. [Google Scholar] [CrossRef]
- Asgari, G.; Salari, M.; Mahnmoudi, M.M.; Jamshidi, R.; Dehdar, A.; Faraji, H.; Zabihollahi, S.; Alizadeh, S. Kinetic studies of dexamethasone degradation in aqueous solution via a photocatalytic UV/H2O2/MgO process. Sci. Rep. 2022, 12, 21360. [Google Scholar] [CrossRef]
- Zou, C.; Zhao, C.; Zhang, S.; Qi, Y.; Xu, Z.; Wang, S.; Zhang, J.; Guan, R. Efficient photocatalytic hydrogen evolution synergistic dexamethasone degradation by Zn0.5Cd0.5S/BiFeO3 z-scheme heterojunction. Sep. Purif. Technol. 2025, 365, 132680. [Google Scholar] [CrossRef]
- Markic, M.; Cvetnic, M.; Ukic, S.; Kusic, H.; Bolanca, T.; Bozic, A.L. Influence of process parameters on the effectiveness of photooxidative treatment of pharmaceuticals. J. Environ. Sci. Heal. A. 2018, 53, 338–351. [Google Scholar] [CrossRef]
- Shookohi, R.; Faraji, H.; Arabkohsar, A.; Salari, M.; Mahmoudi, M.M. The efficiency of UV/S2O82− photo-oxidation process in the presence of Al2O3 for the removal of dexamethasone from aqueous solution: Kinetic studies. Water Sci. Technol. 2019, 79, 938–946. [Google Scholar] [CrossRef]
- Xiang, Y.; Yuan, D.; Zhu, E.; Zhao, T.; Jiao, T.; Zhang, Q.; Tang, S. Efficacious Reduction of Ferric Ions by Molybdenum Carbide in the Peroxydisulfate Fenton-Like Reaction for Dexamethasone Degradation. ACS EST Water 2023, 3, 857–865. [Google Scholar] [CrossRef]
- Kattel, E.; Trapido, M.; Dulova, N. Oxidative degradation of emerging micropollutant acesulfame in aqueous matrices by UVA-induced H2O2/Fe2+ and S2O82−/Fe2+ processes. Chemosphere 2017, 171, 528–536. [Google Scholar] [CrossRef]
- Kattel, E.; Kaur, B.; Trapido, M.; Dulova, N. Persulfate-based photodegradation of a beta-lactam antibiotic amoxicillin in various water matrices. Environ. Technol. 2018, 41, 202–210. [Google Scholar] [CrossRef]
- Eisenberg, G.M. Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem. Anal. Ed. 1943, 15, 327–328. [Google Scholar] [CrossRef]
- Liang, C.; Huang, C.-F.; Mohanty, N.; Kurakalva, R.M. A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 2008, 73, 1540–1543. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, X.; Fu, L.; Peng, X.; Pan, C.; Mao, Q.; Wang, C.; Yan, J. Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective. Sci. Total Environ. 2021, 765, 142794. [Google Scholar] [CrossRef]
- Berruti, I.; Oller, I.; Polo-López, M.I. Direct oxidation of peroxymonosulfate under natural solar radiation: Accelerating the simultaneous removal of organic contaminants and pathogens from water. Chemosphere 2021, 279, 130555. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, D.; Deng, Y.; Zhang, T.; Shih, K. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: Synergistic effects and mechanisms. Environ. Sci. Technol. 2016, 50, 3119–3127. [Google Scholar] [CrossRef]
- Targhan, H.; Evans, P.; Bahrami, K. A review of the role of hydrogen peroxide in organic transformations. J. Ind. Eng. Chem. 2021, 104, 295–332. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Gao, J.; Champagne, P.; Blair, D.; He, O.; Song, T. Activated persulfate by iron-based materials used for refractory organics degradation: A review. Water Sci. Technol. 2020, 81, 853–875. [Google Scholar] [CrossRef]
- Nie, M.; Yan, C.; Xiong, X.; Wen, X.; Yang, X.; Iv, Z.; Dong, W. Degradation of chloramphenicol using a combination system of simulated solar light, Fe2+ and persulfate. Chem. Eng. J. 2018, 348, 455–463. [Google Scholar] [CrossRef]
- Wacławek, S.; Lutze, H.V.; Sharma, V.K.; Xiao, R.; Dionysiou, D.D. Revisit the alkaline activation of peroxydisulfate and peroxymonosulfate. Curr. Opin. Chem. Eng. 2022, 37, 100854. [Google Scholar] [CrossRef]
- Honarmandrad, Z.; Sun, X.; Wang, Z.; Naushad, M.; Boczkaj, G. Activated persulfate and peroxymonosulfate based advanced oxidation processes (AOPs) for antibiotics degradation—A review. Water Resour. Ind. 2023, 29, 100194. [Google Scholar] [CrossRef]
- Dulov, A.; Dulova, N.; Trapido, M. Photochemical degradation of nonylphenol in aqueous solution: The impact of pH and hydroxyl radical promoters. J. Environ. Sci. 2013, 25, 1326–1330. [Google Scholar] [CrossRef]
- DellaGreca, M.; Fiorentino, A.; Isidori, M.; Lavorgna, M.; Previtera, L.; Rubino, M.; Temussi, F. Toxicity of prednisolone, dexamethasone and their photochemical derivatives on aquatic organisms. Chemosphere 2004, 54, 629–637. [Google Scholar] [CrossRef]
- Cantalupi, A.; Maraschi, F.; Pretali, L.; Albini, A.; Nicolis, S.; Ferri, E.N.; Profumo, A.; Speltini, A.; Sturini, M. Glucocorticoids in freshwaters: Degradation by solar light and environmental toxicity of the photoproducts. Int. J. Environ. Res. Public Health. 2020, 17, 8717. [Google Scholar] [CrossRef]
- Litter, M.I.; Quici, N. Photochemical advanced oxidation processes for water and wastewater treatment. Recent Pat. Eng. 2010, 4, 217–241. [Google Scholar] [CrossRef]
- Arman, K.; Baghdadi, M.; Pardakhti, A. Photochemical degradation of dexamethasone by UV/Persulphate, UV/Hydrogen peroxide and UV/free chlorine processes in aqueous solution using response surface methodology (RSM). Int. J. Environ. Anal. Chem. 2022, 104, 2056–2074. [Google Scholar] [CrossRef]
- Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. J. Haz. Mat. 2010, 179, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Onga, L.; Kattel-Salusoo, E.; Trapido, M.; Preis, S. Oxidation of aqueous dexamethasone solution by gas-phase pulsed corona discharge. Water 2022, 14, 467. [Google Scholar] [CrossRef]
- European Commission Eurostat. Electricity Prices for Household Consumers-Bi-Annual Data (From 2007 Onwards). Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_205/default/table?lang=en&category=nrg.nrg_price.nrg_pc (accessed on 4 June 2025).
- Mousset, E.; Loh, W.H.; Lim, W.S.; Jarry, L.; Wang, Z.; Lefebvre, O. Cost comparison of advanced oxidation processes for wastewater treatment using accumulated oxygen-equivalent criteria. Water Res. 2021, 200, 117234. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
pH | - | 7.3 |
Alkalinity | mg CaCO3 L−1 | 308 |
Conductivity | µS cm−1 | 621 |
Total organic carbon (TOC) | mg L−1 | 31.3 |
Fe2+ | 0.08 | |
Total Fe | 0.11 | |
Cl− | 15.0 | |
NO3− | 8.30 | |
SO42− | 9.81 | |
Na+ | 8.18 | |
K+ | 8.06 | |
Ca2+ | 77.1 | |
Mg2+ | 14.0 |
PDS | PMS | H2O2 | ||||
---|---|---|---|---|---|---|
pH | TOC Removal, % | kobs, min−1 | TOC Removal, % | kobs, min−1 | TOC Removal, % | kobs, min−1 |
3 | 38.2 | 0.137 | 27.1 | 0.121 | 35.1 | 0.154 |
unadjusted | 6.3 | 0.023 | 3.7 | 0.014 | 3.1 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onga, L.; Dulova, N.; Kattel-Salusoo, E. Advanced Oxidation of Dexamethasone by Activated Peroxo Compounds in Water Matrices: A Comparative Study. Water 2025, 17, 2303. https://doi.org/10.3390/w17152303
Onga L, Dulova N, Kattel-Salusoo E. Advanced Oxidation of Dexamethasone by Activated Peroxo Compounds in Water Matrices: A Comparative Study. Water. 2025; 17(15):2303. https://doi.org/10.3390/w17152303
Chicago/Turabian StyleOnga, Liina, Niina Dulova, and Eneliis Kattel-Salusoo. 2025. "Advanced Oxidation of Dexamethasone by Activated Peroxo Compounds in Water Matrices: A Comparative Study" Water 17, no. 15: 2303. https://doi.org/10.3390/w17152303
APA StyleOnga, L., Dulova, N., & Kattel-Salusoo, E. (2025). Advanced Oxidation of Dexamethasone by Activated Peroxo Compounds in Water Matrices: A Comparative Study. Water, 17(15), 2303. https://doi.org/10.3390/w17152303