Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = plume impact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4347 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 - 1 Aug 2025
Viewed by 135
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
Show Figures

Figure 1

32 pages, 7179 KiB  
Article
Effects of an Integrated Infrared Suppressor on the Infrared and Acoustic Characteristics of Helicopters
by Zongyao Yang, Xinqian Zheng and Jingzhou Zhang
Aerospace 2025, 12(8), 665; https://doi.org/10.3390/aerospace12080665 - 26 Jul 2025
Viewed by 212
Abstract
To enhance the survivability of armed helicopters in high-threat environments, integrated infrared (IR) suppressors are increasingly adopted to reduce thermal signatures. However, such integration significantly alters the exhaust flow field, which may in turn affect both the infrared and acoustic characteristics of the [...] Read more.
To enhance the survivability of armed helicopters in high-threat environments, integrated infrared (IR) suppressors are increasingly adopted to reduce thermal signatures. However, such integration significantly alters the exhaust flow field, which may in turn affect both the infrared and acoustic characteristics of the helicopter. This study investigates the aerodynamic, infrared, and acoustic impacts of an integrated IR suppressor through the comparative analysis of two helicopter configurations: a conventional design and a design equipped with an integrated IR suppressor. Full-scale models are used to analyze flow field and IR radiation characteristics, while scaled models are employed for aeroacoustic simulations. The results show that although the integrated IR suppressor increases flow resistance and reduces entrainment performance within the exhaust mixing duct, it significantly improves the thermal dissipation efficiency of the exhaust plume. The infrared radiation analysis reveals that the integrated suppressor effectively reduces radiation intensity in both the 3~5 μm and 8~14 μm bands, especially under cruise conditions where the exhaust is more efficiently cooled by ambient airflow. Equivalent radiation temperatures calculated along principal axes confirm lower IR signatures for the integrated configuration. Preliminary acoustic analyses suggest that the slit-type nozzle and integrated suppressor layout may also offer potential benefits in jet noise reduction. Overall, the integrated IR suppressor provides a clear advantage in lowering the infrared observability of armed helicopters, with acceptable aerodynamic and acoustic trade-offs. These findings offer valuable guidance for the future development of low-observable helicopter platforms. Full article
Show Figures

Figure 1

15 pages, 2004 KiB  
Article
Impact of Aquifer Heterogeneity on the Migration and Natural Attenuation of Multicomponent Heavy Dense Nonaqueous Phase Liquids (DNAPLs) in a Retired Chemically Polluted Site
by Wenyi Xie, Mei Li, Dengdeng Jiang, Lingya Kong, Mengjie Wang, Shaopo Deng and Xuwei Li
Processes 2025, 13(8), 2338; https://doi.org/10.3390/pr13082338 - 23 Jul 2025
Viewed by 269
Abstract
Retired chemically polluted sites in southern Jiangsu Province, China, are characterized by dense nonaqueous phase liquids (DNAPLs) and extremely thick aquifers (>30 m), which pose substantial challenges for determining investigation and remediation depths during redevelopment and exploitation. This study constructed a 2D groundwater [...] Read more.
Retired chemically polluted sites in southern Jiangsu Province, China, are characterized by dense nonaqueous phase liquids (DNAPLs) and extremely thick aquifers (>30 m), which pose substantial challenges for determining investigation and remediation depths during redevelopment and exploitation. This study constructed a 2D groundwater transport model using TMVOC to systematically investigate the migration, diffusion, and natural attenuation processes of two typical DNAPLs—1,2-dichloroethane (DCE) and carbon tetrachloride (CTC)—under three scenarios: individual transport, mixed transport, and heterogeneous aquifer conditions, with a simulation period of 35 years. In individual transport scenarios, DCE and CTC showed distinct migration behaviors. DCE achieved a maximum vertical transport distance of 14.01 m and a downstream migration distance of 459.58 m, while CTC reached 13.57 m vertically and 453.51 m downstream. When transported as a mixture, their migration was inhibited: DCE’s vertical and downstream distances decreased to 13.76 m and 440.46 m, respectively; and CTC’s to 13.23 m and 420.32 m, likely due to mutual solvent effects that altered their physicochemical properties such as viscosity and solubility. Under natural attenuation conditions, both DNAPLs ceased downstream transport by the end of the 6th year. DCE concentrations dropped below its risk control value (0.81 mg/L) by the 14th year, and CTC (with a risk control value of 0.23 mg/L) by the 11th year. By the 10th year, DCE’s downstream plume had retreated to 48.65 m, and CTC’s to 0.95 m. In heterogeneous aquifers, vertical upward transport of DCE and CTC increased to 14.82 m and 14.22 m, respectively, due to the partial absence of low-conductivity silt layers, while their downstream distances decreased to 397.99 m and 354.11 m, constrained by low-permeability lenses in the migration path. These quantitative results clarify the dynamic differences in DNAPL transport under varying conditions, highlighting the impacts of multicomponent interactions, natural attenuation, and aquifer heterogeneity. They provide critical references for risk management, scientific determination of remediation depths, and safe exploitation of retired chemically polluted sites with similar hydrogeological characteristics. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

29 pages, 4545 KiB  
Article
Characterization of Fresh and Aged Smoke Particles Simultaneously Observed with an ACTRIS Multi-Wavelength Raman Lidar in Potenza, Italy
by Benedetto De Rosa, Aldo Amodeo, Giuseppe D’Amico, Nikolaos Papagiannopoulos, Marco Rosoldi, Igor Veselovskii, Francesco Cardellicchio, Alfredo Falconieri, Pilar Gumà-Claramunt, Teresa Laurita, Michail Mytilinaios, Christina-Anna Papanikolaou, Davide Amodio, Canio Colangelo, Paolo Di Girolamo, Ilaria Gandolfi, Aldo Giunta, Emilio Lapenna, Fabrizio Marra, Rosa Maria Petracca Altieri, Ermann Ripepi, Donato Summa, Michele Volini, Alberto Arienzo and Lucia Monaadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(15), 2538; https://doi.org/10.3390/rs17152538 - 22 Jul 2025
Viewed by 353
Abstract
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case [...] Read more.
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case for the evaluation of the impact of aging and transport mechanisms on both the optical and microphysical properties of biomass burning aerosol. The fresh smoke was originated by a local wildfire about 2 km from the measurement site and observed about one hour after its ignition. The other smoke layer was due to a wide wildfire occurring in Canada that, according to backward trajectory analysis, traveled for about 5–6 days before reaching the observatory. Synergetic use of lidar, ceilometer, radar, and microwave radiometer measurements revealed that particles from the local wildfire, located at about 3 km a.s.l., acted as condensation nuclei for cloud formation as a result of high humidity concentrations at this altitude range. Optical characterization of the fresh smoke layer based on Raman lidar measurements provided lidar ratio (LR) values of 46 ± 4 sr and 34 ± 3 sr, at 355 and 532 nm, respectively. The particle linear depolarization ratio (PLDR) at 532 nm was 0.067 ± 0.002, while backscatter-related Ångström exponent (AEβ) values were 1.21 ± 0.03, 1.23 ± 0.03, and 1.22 ± 0.04 in the spectral ranges of 355–532 nm, 355–1064 nm and 532–1064 nm, respectively. Microphysical inversion caused by these intensive optical parameters indicates a low contribution of black carbon (BC) and, despite their small size, particles remained outside the ultrafine range. Moreover, a combined use of CIAO remote sensing and in situ instrumentation shows that the particle properties are affected by humidity variations, thus suggesting a marked particle hygroscopic behavior. In contrast, the smoke plume from the Canadian wildfire traveled at altitudes between 6 and 8 km a.s.l., remaining unaffected by local humidity. Absorption in this case was higher, and, as observed in other aged wildfires, the LR at 532 nm was larger than that at 355 nm. Specifically, the LR at 355 nm was 55 ± 2 sr, while at 532 nm it was 82 ± 3 sr. The AEβ values were 1.77 ± 0.13 and 1.41 ± 0.07 at 355–532 nm and 532–1064 nm, respectively and the PLDR at 532 nm was 0.040 ± 0.003. Microphysical analysis suggests the presence of larger, yet much more absorbent particles. This analysis indicates that both optical and microphysical properties of smoke can vary significantly depending on its origin, persistence, and transport in the atmosphere. These factors that must be carefully incorporated into future climate models, especially considering the frequent occurrences of fire events worldwide. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

18 pages, 10314 KiB  
Article
Multispectral and Thermal Imaging for Assessing Tequila Vinasse Evaporation: Unmanned Aerial Vehicles and Satellite-Based Observations
by Jesús Gabriel Rangel-Peraza, Sergio Alberto Monjardin-Armenta, Osiris Chávez-Martínez and José de Anda
Processes 2025, 13(7), 2281; https://doi.org/10.3390/pr13072281 - 17 Jul 2025
Viewed by 210
Abstract
This work aims to assess the droplets produced by a novel evaporation process, proposed as an alternative for managing tequila vinasses, using a spectral camera with three spectral bands and a thermal camera mounted on an unmanned aerial vehicle (UAV). High-resolution satellite images [...] Read more.
This work aims to assess the droplets produced by a novel evaporation process, proposed as an alternative for managing tequila vinasses, using a spectral camera with three spectral bands and a thermal camera mounted on an unmanned aerial vehicle (UAV). High-resolution satellite images with seven spectral bands complemented this characterization. The spectral characterization was conducted by comparing three experimental conditions: the background of the study area without droplets, the droplets generated from purified water, and the droplets produced from tequila vinasses. Two monitoring campaigns, conducted in November 2024 and January 2025, revealed that the tequila vinasse droplets exhibited a maximum influence radius of 16 m, primarily regulated by wind speed conditions (6–16 km/h). Thermal analysis identified the droplet plume as a zone with a lower temperature, creating a thermal contrast of up to 6.6 °C against the average background temperature of 36.6 °C. No significant difference was observed in the influence radius between the droplets generated from vinasse and those from potable water. Spectral analysis of the UAV and satellite images showed significant (p < 0.05) differences in reflectance when the droplets were present (e.g., the coastal blue band increased from an average of 14.43 to 95.59 when vinasse droplets were present). This suggests that the presence of chemical compounds altered light absorption and reflection. However, the instrument’s sensitivity limited the detection of organic compounds at concentrations below its detection limit. The monitoring data presented in this manuscript is crucial for developing strategies to mitigate the potential environmental impacts of the droplets emitted by this novel process. Full article
Show Figures

Figure 1

28 pages, 5586 KiB  
Article
Vertical Equilibrium Model Analysis for CO2 Storage
by Mohammadsajjad Zeynolabedini and Ashkan Jahanbani Ghahfarokhi
Gases 2025, 5(3), 16; https://doi.org/10.3390/gases5030016 - 16 Jul 2025
Viewed by 235
Abstract
This work uses the MATLAB Reservoir Simulation Toolbox (MRST) to reduce the 3D reservoir model into a 2D version in order to investigate CO2 storage in the Aurora model using the vertical equilibrium (VE) model. For this purpose, we used an open-source [...] Read more.
This work uses the MATLAB Reservoir Simulation Toolbox (MRST) to reduce the 3D reservoir model into a 2D version in order to investigate CO2 storage in the Aurora model using the vertical equilibrium (VE) model. For this purpose, we used an open-source reservoir simulator, MATLAB Reservoir Simulation Toolbox (MRST). MRST is an open-source reservoir simulator, with supplementary modules added to enhance its versatility in addition to a core set of procedures. A fully implicit discretization is used in the numerical formulation of MRST-co2lab enabling the integration of simulators with vertical equilibrium (VE) models to create hybrid models. This model is then compared with the Eclipse model in terms of properties and simulation results. The relative permeability of water and gas can be compared to verify that the model fits the original Eclipse model. Comparing the fluid viscosities used in MRST and Eclipse also reveals comparable tendencies. However, reservoir heterogeneity is the reason for variations in CO2 plume morphologies. The upper layers of the Eclipse model have lower permeability than the averaged MRST model, which has a substantial impact on CO2 transport. According to the study, after 530 years, about 17 MT of CO2 might be stored, whereas 28 MT might escape the reservoir, since after 530 years CO2 plume reaches completely the open northern boundary. Additionally, a sensitivity analysis study has been conducted on permeability, porosity, residual gas saturation, rock compressibility, and relative permeability curves which are the five uncertain factors in this model. Although plume migration is highly sensitive to permeability, porosity, and rock compressibility variation, it shows a slight change with residual gas saturation and relative permeability curve in this study. Full article
Show Figures

Figure 1

16 pages, 19476 KiB  
Article
Photochemical Ozone Production Along Flight Trajectories in the Upper Troposphere and Lower Stratosphere and Route Optimisation
by Allan W. Foster, Richard G. Derwent, M. Anwar H. Khan, Dudley E. Shallcross, Mark H. Lowenberg and Rukshan Navaratne
Atmosphere 2025, 16(7), 858; https://doi.org/10.3390/atmos16070858 - 14 Jul 2025
Viewed by 243
Abstract
Aviation is widely recognised to have global-scale climate impacts through the formation of ozone (O3) in the upper troposphere and lower stratosphere (UTLS), driven by emissions of nitrogen oxides (NOX). Ozone is known to be one of the most [...] Read more.
Aviation is widely recognised to have global-scale climate impacts through the formation of ozone (O3) in the upper troposphere and lower stratosphere (UTLS), driven by emissions of nitrogen oxides (NOX). Ozone is known to be one of the most potent greenhouse gases formed from the interaction of aircraft emission plumes with atmospheric species. This paper follows up on previous research, where a Photochemical Trajectory Model was shown to be a robust measure of ozone formation along flight trajectories post-flight. We use a combination of a global Lagrangian chemistry-transport model and a box model to quantify the impacts of aircraft NOX on UTLS ozone over a five-day timescale. This work expands on the spatial and temporal range, as well as the chemical accuracy reported previously, with a greater range of NOX chemistry relevant chemical species. Based on these models, route optimisation has been investigated, through the use of network theory and algorithms. This is to show the potential inclusion of an understanding of climate-sensitive regions of the atmosphere on route planning can have on aviation’s impact on Earth’s Thermal Radiation balance with existing resources and technology. Optimised flight trajectories indicated reductions in O3 formation per unit NOX are in the range 1–40% depending on the spatial aspect of the flight. Temporally, local winter times and equatorial regions are generally found to have the most significant O3 formation per unit NOX; moreover, hotspots were found over the Pacific and Indian Ocean. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

19 pages, 3047 KiB  
Article
Identifying the Combined Impacts of Sensor Quantity and Location Distribution on Source Inversion Optimization
by Shushuai Mao, Jianlei Lang, Feng Hu, Xiaoqi Wang, Kai Wang, Guiqin Zhang, Feiyong Chen, Tian Chen and Shuiyuan Cheng
Atmosphere 2025, 16(7), 850; https://doi.org/10.3390/atmos16070850 - 12 Jul 2025
Viewed by 173
Abstract
Source inversion optimization using sensor observations is a key method for rapidly and accurately identifying unknown source parameters (source strength and location) in abrupt hazardous gas leaks. Sensor number and location distribution both play important roles in source inversion; however, their combined impacts [...] Read more.
Source inversion optimization using sensor observations is a key method for rapidly and accurately identifying unknown source parameters (source strength and location) in abrupt hazardous gas leaks. Sensor number and location distribution both play important roles in source inversion; however, their combined impacts on source inversion optimization remain poorly understood. In our study, the optimization inversion method is established based on the Gaussian plume model and the generation algorithm. A research strategy combining random sampling and coefficient of variation methods was proposed to simultaneously quantify their combined impacts in the case of a single emission source. The sensor layout impact difference was analyzed under varying atmospheric conditions (unstable, neutral, and stable) and source location information (known or unknown) using the Prairie Grass experiments. The results indicated that adding sensors improved the source strength estimation accuracy more when the source location was known than when it was unknown. The impacts of sensor location distribution were strongly negatively correlated (r ≤ −0.985) with the number of sensors across scenarios. For source strength estimation, the impacts of the sensor location distribution difference decreased non-linearly with more sensors for known locations but linearly for unknown ones. The impacts of sensor number and location distribution on source strength estimation were amplified under stable atmospheric conditions compared to unstable and neutral conditions. The minimum number of randomly scattered sensors required for stable source strength inversion accuracy was 11, 12, and 17 for known locations under unstable, neutral, and stable atmospheric conditions, respectively, and 24, 9, and 21 for unknown locations. The multi-layer arc distribution outperformed rectangular, single-layer arc, and downwind-axis distributions in source strength estimation. This study enhances the understanding of factors influencing source inversion optimization and provides valuable insights for optimizing sensor layouts. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

22 pages, 11262 KiB  
Article
Toward Aerosol-Aware Thermal Infrared Radiance Data Assimilation
by Shih-Wei Wei, Cheng-Hsuan (Sarah) Lu, Emily Liu, Andrew Collard, Benjamin Johnson, Cheng Dang and Patrick Stegmann
Atmosphere 2025, 16(7), 766; https://doi.org/10.3390/atmos16070766 - 22 Jun 2025
Viewed by 361
Abstract
Aerosols considerably reduce the upwelling radiance in the thermal infrared (IR) window; thus, it is worthwhile to understand the effects and challenges of assimilating aerosol-affected (i.e., hazy-sky) IR observations for all-sky data assimilation (DA). This study introduces an aerosol-aware DA framework for the [...] Read more.
Aerosols considerably reduce the upwelling radiance in the thermal infrared (IR) window; thus, it is worthwhile to understand the effects and challenges of assimilating aerosol-affected (i.e., hazy-sky) IR observations for all-sky data assimilation (DA). This study introduces an aerosol-aware DA framework for the Infrared Atmospheric Sounder Interferometer (IASI) to exploit hazy-sky IR observations and investigate the impact of assimilating hazy-sky IR observations on analyses and subsequent forecasts. The DA framework consists of the detection of hazy-sky pixels and an observation error model as the function of the aerosol effect. Compared to the baseline experiment, the experiment utilized an aerosol-aware framework that reduces biases in the sea surface temperature in the tropical region, particularly over the areas affected by heavy dust plumes. There are no significant differences in the evaluation of the analyses and the 7-day forecasts between the experiments. To further improve the aerosol-aware framework, the enhancements in quality control (e.g., aerosol detection) and bias correction need to be addressed in the future. Full article
Show Figures

Figure 1

38 pages, 6595 KiB  
Article
Optimized CO2 Modeling in Saline Aquifers: Evaluating Fluid Models and Grid Resolution for Enhanced CCS Performance
by Ismail Ismail, Sofianos Panagiotis Fotias, Spyridon Pissas and Vassilis Gaganis
Processes 2025, 13(6), 1901; https://doi.org/10.3390/pr13061901 - 16 Jun 2025
Viewed by 619
Abstract
Carbon Capture and Storage (CCS) is a critical strategy for reducing CO2 emissions from hard-to-abate sectors. Reliable and efficient reservoir simulation tools are essential for supporting the safe and effective deployment of CCS projects. This study presents a twofold contribution to CCS [...] Read more.
Carbon Capture and Storage (CCS) is a critical strategy for reducing CO2 emissions from hard-to-abate sectors. Reliable and efficient reservoir simulation tools are essential for supporting the safe and effective deployment of CCS projects. This study presents a twofold contribution to CCS modeling in saline aquifers: (1) the validation of the Black Oil Model (BoM) as a computationally efficient alternative to compositional simulators, and (2) a systematic assessment of the impact of grid resolution on plume prediction accuracy. The BoM was benchmarked against three commercial compositional simulators—Eclipse E300, CMG-GEM, and TNavigator. The comparison focused on key aspects of CO2 storage operations, including plume evolution to assess containment and storage security, as well as injection safety and efficiency through pressure and saturation profile analysis, evaluated across both the injection and the post-closure monitoring phases. The BoM successfully reproduced plume extent and CO2 saturation distributions, with mean deviations of 3% during injection, 5% during post-closure, and an overall average of 4% across the entire project duration. Additionally, simulation times were reduced by a factor of four compared to compositional models. These results confirm the BoM’s practical utility as a robust and efficient tool for CO2 storage simulation. In parallel, the study investigated the influence of vertical and lateral grid resolutions/coarsening on the accuracy of CO2 modeling. Seven models were developed and evaluated using a hybrid qualitative–quantitative framework, consistent with the BoM validation methodology. Vertical resolution was found to be particularly critical during the monitoring phase. While a 5 m resolution proved adequate during injection, deviations in plume shape and magnitude during post-injection increased to an average of 15% compared to a fine 2 m vertical resolution model, highlighting the necessity of fine vertical discretization (≤2 m) to capture gravity-driven plume dynamics during the monitoring phase. Conversely, lateral grid resolution had a stronger effect during the injection phase. A lateral cell size of 150 m was required for accurate plume prediction, with 200 m remaining moderately acceptable for early-phase assessment and prospect ranking, whereas coarser lateral grids led to significant underestimation of plume spread and dissolution extent. These findings demonstrate that the BoM, when combined with informed grid resolution strategies, enables accurate and computationally efficient simulation of CO2 storage in saline aquifers. The study provides practical guidelines for fluid model selection and spatial discretization, offering critical input to subsurface experts involved in CCS project development, monitoring design, and regulatory compliance. Full article
Show Figures

Figure 1

58 pages, 949 KiB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Viewed by 1597
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

32 pages, 1666 KiB  
Article
Dimension-Adaptive Machine Learning for Efficient Uncertainty Quantification in Geological Carbon Storage Models
by Seyed Kourosh Mahjour, Ali Saleh and Seyed Saman Mahjour
Processes 2025, 13(6), 1834; https://doi.org/10.3390/pr13061834 - 10 Jun 2025
Viewed by 892
Abstract
Carbon capture and storage (CCS) plays a role in mitigating climate change, but effective implementation requires accurate prediction of CO2 behavior in geological formations. This study introduces a novel machine learning framework for quantifying uncertainty across 2D and 3D carbon storage models. [...] Read more.
Carbon capture and storage (CCS) plays a role in mitigating climate change, but effective implementation requires accurate prediction of CO2 behavior in geological formations. This study introduces a novel machine learning framework for quantifying uncertainty across 2D and 3D carbon storage models. We develop a dimension-adaptive Bayesian neural network architecture that enables efficient knowledge transfer between dimensional representations while maintaining physical consistency. The framework incorporates aleatoric uncertainty from inherent geological variability and epistemic uncertainty from model limitations. Trained on over 5000 high-fidelity simulations across multiple geological scenarios, our approach demonstrates superior computational efficiency, reducing analysis time for 3D models by 87% while maintaining prediction accuracy within 5% of full simulations. The framework effectively captures complex uncertainty patterns in spatiotemporal CO2 plume evolution. It identifies previously unrecognized parameter interdependencies, particularly between vertical permeability anisotropy and capillary entry pressure, which significantly impact plume migration in 3D models but are often overlooked in 2D representations. Compared with traditional Monte Carlo methods, our approach provides more accurate uncertainty bounds and enhanced identification of high-risk scenarios. This multidimensional framework enables rapid assessment of storage capacity and leakage risk under uncertainty, providing a practical tool for CCS site selection and operational decision-making across dimensional scales. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

15 pages, 3869 KiB  
Article
Correlation Between Plume Emission and Material Modifications in Fiber Laser Processing of Titanium
by Antaryami Mohanta and Marc Leparoux
Processes 2025, 13(6), 1761; https://doi.org/10.3390/pr13061761 - 3 Jun 2025
Viewed by 543
Abstract
The plume emission generated during the interaction of a fiber laser with titanium is spectrally analyzed to investigate the thermal effect-based spectral signature with a focus on surface impact and penetration depth. A wobble head coupled with the fiber laser forms circular patterns [...] Read more.
The plume emission generated during the interaction of a fiber laser with titanium is spectrally analyzed to investigate the thermal effect-based spectral signature with a focus on surface impact and penetration depth. A wobble head coupled with the fiber laser forms circular patterns on the surface during the interaction. The effects of wobble speed and laser peak power on the track width of the circular pattern, penetration depth, and plume emission characteristics were studied. Decreasing the wobble speed and increasing the laser peak power led to wider tracks and a deeper penetration. The variation in track width, penetration depth, and line emission intensities follows a similar pattern, indicating a correlation between plume emission and material modifications. A transition point at approximately 400 W of laser peak power was observed in track width, penetration depth, line emission intensities, and plume temperature variations. The increase in track width and line emission intensities with laser peak power shows growth at a slower rate below the transition point and at a higher rate above it. By contrast, the penetration depth and plume temperature increase at a higher rate below the transition compared to above it. This indicates that the increasing laser peak power leads to a more pronounced surface impact, resulting in an increase in track width and to a greater plume formation, causing enhanced line emission intensities and laser beam shielding that reduces the rate of increase in penetration depth above the transition point. Full article
(This article belongs to the Special Issue Progress in Laser-Assisted Manufacturing and Materials Processing)
Show Figures

Figure 1

12 pages, 1295 KiB  
Article
Risk Assessment and Management Strategies for Odor Release During the Emergency Excavation of VOC-Contaminated Wastes
by Xiaowei Xu, Jun Zhang, Yi Wang, Haifeng Tu, Yang Lv, Zehua Zhao, Dapeng Zhang and Qi Yu
Toxics 2025, 13(6), 457; https://doi.org/10.3390/toxics13060457 - 30 May 2025
Viewed by 351
Abstract
This study examines the assessment and management strategies for odor risks during emergency cleanup of VOC-contaminated waste. By analyzing illegally dumped VOC waste, the impact on odor intensity levels and exceedance probabilities in nearby residential areas was evaluated. Utilizing a VOC source emission [...] Read more.
This study examines the assessment and management strategies for odor risks during emergency cleanup of VOC-contaminated waste. By analyzing illegally dumped VOC waste, the impact on odor intensity levels and exceedance probabilities in nearby residential areas was evaluated. Utilizing a VOC source emission model, a Gaussian plume dispersion model, and Monte Carlo simulations under various meteorological conditions, the effectiveness of the control measures was assessed. Key pollutants included ethylbenzene, toluene, styrene, and m/p-xylene, which, despite posing minimal short-term health risks (PHI: 0.17–0.64), exhibited significant odor risks (Odor PHI: 127–1156). At 20 m from the source, the probability of the odor intensity exceeding Level 2.5 approached 100%, decreasing to 85% at 50 m and further declining with distance. Atmospheric stability shifts—from very unstable (Class A) to stable (Class F)—increased the odor intensity from 0.5 to 2.5. Under moderately stable conditions (Class E), m/p-xylene had a 44.2% probability of exceeding an odor intensity level of 2.5. Even at 250 m, the odor intensity levels ranged between 1.2 and 1.7, remaining perceptible. Effective mitigation strategies include establishing appropriate buffer distances and using adsorption materials like activated carbon. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

19 pages, 4006 KiB  
Article
An Assessment of TROPESS CrIS and TROPOMI CO Retrievals and Their Synergies for the 2020 Western U.S. Wildfires
by Oscar A. Neyra-Nazarrett, Kazuyuki Miyazaki, Kevin W. Bowman and Pablo E. Saide
Remote Sens. 2025, 17(11), 1854; https://doi.org/10.3390/rs17111854 - 26 May 2025
Viewed by 528
Abstract
The 2020 wildfire season in the Western U.S. was historic in its intensity and impact on the land and atmosphere. This study aims to characterize satellite retrievals of carbon monoxide (CO), a tracer of combustion and signature of those fires, from two key [...] Read more.
The 2020 wildfire season in the Western U.S. was historic in its intensity and impact on the land and atmosphere. This study aims to characterize satellite retrievals of carbon monoxide (CO), a tracer of combustion and signature of those fires, from two key satellite instruments: the Cross-track Infrared Sounder (CrIS) and the Tropospheric Monitoring Instrument (TROPOMI). We evaluate them during this event and assess their synergies. These two retrievals are matched temporally, as the host satellites are in tandem orbit and spatially by aggregating TROPOMI to the CrIS resolution. Both instruments show that the Western U.S. displayed significantly higher daily average CO columns compared to the Central and Eastern U.S. during the wildfires. TROPOMI showed up to a factor of two larger daily averages than CrIS during the most intense fire period, likely due to differences in the vertical sensitivity of the two instruments and representative of near-surface CO abundance near the fires. On the other hand, there was excellent agreement between the instruments in downwind free tropospheric plumes (scatter plot slopes of 0.96–0.99), consistent with their vertical sensitivities and indicative of mostly lofted smoke. Temporally, TROPOMI CO column peaks were delayed relative to the Fire Radiative Power (FRP), and CrIS peaks were delayed with respect to TROPOMI, particularly during the intense initial weeks of September, suggesting boundary layer buildup and ventilation. Satellite retrievals were evaluated using ground-based CO column estimates from the Network for the Detection of Atmospheric Composition Change (NDACC) and the Total Carbon Column Observing Network (TCCON), showing Normalized Mean Errors (NMEs) for CrIS and TROPOMI below 32% and 24%, respectively, when compared to all stations studied. While Normalized Mean Bias (NMB) was typically low (absolute value below 15%), there were larger negative biases at Pasadena, likely associated with sharp spatial gradients due to topography and proximity to a large city, which is consistent with previous research. In situ CO profiles from AirCore showed an elevated smoke plume for 15 September 2020, highlighted consistency between TROPOMI and CrIS CO columns for lofted plumes. This study demonstrates that both CrIS and TROPOMI provide complementary information on CO distribution. CrIS’s sensitivity in the middle and lower free troposphere, coupled with TROPOMI’s effectiveness at capturing total columns, offers a more comprehensive view of CO distribution during the wildfires than either retrieval alone. By combining data from both satellites as a ratio, more detailed information about the vertical location of the plumes can potentially be extracted. This approach can enhance air quality models, improve vertical estimation accuracy, and establish a new method for assessing lower tropospheric CO concentrations during significant wildfire events. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

Back to TopTop