Toward Aerosol-Aware Thermal Infrared Radiance Data Assimilation
Abstract
1. Introduction
2. Methods
2.1. Global Data Assimilation System (GDAS)
2.2. Datasets
3. Aerosol-Aware Framework
- The identification of hazy-sky (i.e., hazy-sky) observations: In addition to the existing quality control (QC) for clear-sky radiances from IR sounders in the GSI system, we introduce the aerosol detection method (described in Section 3.1) as the first check of the quality control. The aerosol detection method is based on BTDs to identify hazy-sky observations. As a result, only the observations not identified as not being hazy-sky are passed to the clear-sky QC checks.
- The incorporation of aerosol mass mixing ratios: For those hazy-sky observations, we incorporate the 4-dimensional information of the aerosol mass mixing ratios from the MERRA-2 reanalysis as a part of the first-guess fields into the radiance observation operator (i.e., CRTM). Because only meteorological fields are adjusted through the analysis processes, this configuration can confine the impacts of aerosols on the identified hazy-sky observations.
- The quantification of the aerosol effects: An aerosol effect parameter (Ae) is introduced as the proxy to symmetrically quantify the aerosol impacts on each observation (described in Section 3.2) that is contributed by both the model and observations.
- The inflation of the observation errors: Define the observation error as a function of Ae. The observation error increases with Ae linearly from the value used for clear-sky DA.
3.1. Aerosol Detection Method
3.2. Aerosol Effect Parameters
- Baer ~ Bclr and |O − Bclr| > 3 K: The Ae is dominated by the observation term when MERRA-2 only provides a low aerosol loading. It implies the aerosol loading is too low or the observation is contaminated by clouds but misidentified as hazy-sky data.
- O ~ Bclr and |Baer − Bclr| > 3 K: This indicates that MERRA-2 provides a considerable aerosol loading at this observation that cools the Baer down, so the Ae is mainly contributed to by model term. It implies that the aerosol loading is over-estimated, or the ADM identifies clear-sky data as hazy-sky data.
3.3. Observation Error Model
4. Experimental Design
5. Results
5.1. Aerosol Impacts on Assimilated Dataset
5.2. Against Conventional Dataset
5.3. Evaluation of Analysis
5.4. Evaluation of Forecast
6. Discussions and Conclusions
- Updating the IASI and the other IR data to be full-spectrum around the four key channels used in the ADM;
- Evaluating the ADM’s performance over different surfaces and for different aerosol types by comparing it with independent AOD observations;
- Adding bias correction predictors based on the Ae or the modeled AOD into the VarBC;
- Exploring the use of machine learning methods in aerosol detection and dynamic error estimation;
- Optimizing the framework.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4DENVar | four-dimensional ensemble–variational |
ADM | aerosol detection method |
AERONET | Aerosol Robotic Network |
AOD | aerosol optical depth |
AVHRR | Advanced Very-High-Resolution Radiometer |
BC | bias correction |
BT | brightness temperature |
BTD | brightness temperature differences |
CADS | Clouds and Aerosols Detection Software |
CAMS | Copernicus Atmosphere Monitoring Service |
CrIS | Cross-track Infrared Sounder |
CRTM | Community Radiative Transfer Model |
DA | data assimilation |
DAAC | Distribution System Distributed Active Archive Center |
ECMWF | European Centre for Medium-range Weather Forecasts |
ERA5 | ECMWF Reanalysis v5 |
EUMETSAT | European Organisation for the Exploitation of Meteorological Satellites |
FV3 | Finite-Volume Cubed Sphere |
GDAS | Global Data Assimilation System |
GEOS5 | Goddard Earth-Observing System, version 5 |
GFS | Global Forecast System |
GMAO | Global Modeling and Assimilation Office |
GOCART | Goddard Chemistry Aerosol Radiation and Transport model |
GSI | Gridpoint Statistical Interpolation |
LMD | Laboratoire de Météorologie Dynamique |
IASI | Infrared Atmospheric Sounder Interferometer |
IR | infrared |
JCSDA | Joint Center for Satellite Data Assimilation |
MERRA-2 | Modern-Era Retrospective analysis for Research and Applications, Version 2 |
MISR | Multiangle Imaging Spectro Radiometer |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NCEP | National Centers for Environmental Prediction |
NESDIS | National Environmental Satellite, Data, and Information Service |
NWP | numerical weather prediction |
OMF | observation minus forecast/first-guess |
OPAC | Optical Properties of Aerosols and Clouds |
QC | quality control |
RGB | Red, Green, Blue |
RMS | root mean square |
RMSE | root mean square error |
RTM | radiative transfer model |
SAF | Satellite Application Facility |
SAMUM-2 | Saharan Mineral Dust Experiment |
SD | standard deviation |
SHADE | Saharan Dust Experiments |
SST | sea surface temperature |
VarBC | variational bias correction |
VIIRS | Visible Infrared Imaging Radiometer Suite |
References
- Matricardi, M. The Inclusion of Aerosols and Clouds in RTIASI, the ECMWF Fast Radiative Transfer Model for the Infrared Atmospheric Sounding Interferometer. In ECMWF Technical Memoranda; European Centre for Medium Range Weather Forecasts: Reading, UK, 2005; Volume 474, pp. 1–53. [Google Scholar]
- Meloni, D.; di Sarra, A.; Brogniez, G.; Denjean, C.; de Silvestri, L.; di Iorio, T.; Formenti, P.; Gómez-Amo, J.L.; Gröbner, J.; Kouremeti, N.; et al. Determining the infrared radiative effects of Saharan dust: A radiative transfer modelling study based on vertically resolved measurements at Lampedusa. Atmos. Chem. Phys. 2018, 18, 4377–4401. [Google Scholar] [CrossRef]
- Pierangelo, C.; Chedin, A.; Heilliette, S.; Jacquinet-Husson, N.; Armante, R. Dust altitude and infrared optical depth from AIRS. Atmos. Chem. Phys. 2004, 4, 1813–1822. [Google Scholar] [CrossRef]
- Sokolik, I.N. The spectral radiative signature of wind-blown mineral dust: Implications for remote sensing in the thermal IR region. Geophys. Res. Lett. 2002, 29, 7-1–7-4. [Google Scholar] [CrossRef]
- Wei, S.-W.; Lu, C.-H.; Johnson, B.T.; Dang, C.; Stegmann, P.; Grogan, D.; Ge, G.; Hu, M. The Influence of Aerosols on Satellite Infrared Radiance Simulations and Jacobians: Numerical Experiments of CRTM and GSI. Remote Sens. 2022, 14, 683. [Google Scholar] [CrossRef]
- Highwood, E.J.; Haywood, J.M.; Silverstone, M.D.; Newman, S.M.; Taylor, J.P. Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Köhler, C.H.; Trautmann, T.; Lindermeir, E.; Vreeling, W.; Lieke, K.; Kandler, K.; Weinzierl, B.; Groß, S.; Tesche, M.; Wendisch, M. Thermal IR Radiative Properties of Mixed Mineral Dust and Biomass Aerosol during SAMUM-2. Tellus B Chem. Phys. Meteorol. 2011, 63, 751–769. [Google Scholar] [CrossRef]
- Andersson, E.; Pailleux, J.; Thepaut, J.-N.; Eyre, J.R.; McNally, A.P.; Kelly, G.A.; Courtier, P. Use of cloud-cleared radiances in three/four-dimensional variational data assimilation. Q. J. R. Meteorol. Soc. 1994, 120, 627–653. [Google Scholar]
- Derber, J.C.; Wu, W.-S. The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System. Mon. Weather Rev. 1998, 126, 2287–2299. [Google Scholar] [CrossRef]
- Eyre, J.R.; Kelly, G.A.; McNally, A.P.; Andersson, E.; Persson, A. Assimilation of TOVS radiance information through one-dimensional variational analysis. Q. J. R. Meteorol. Soc. 1993, 119, 1427–2463. [Google Scholar]
- Weng, F.; Liu, Q. Satellite Data Assimilation in Numerical Weather Prediction Models. Part I: Forward Radiative Transfer and Jacobian Modeling in Cloudy Atmospheres. J. Atmos. Sci. 2003, 60, 2633–2646. [Google Scholar] [CrossRef]
- Bauer, P.; Geer, A.J.; Lopez, P.; Salmond, D. Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Q. J. R. Meteorol. Soc. 2010, 136, 1868–1885. [Google Scholar] [CrossRef]
- Geer, A.J.; Bauer, P.; Lopez, P. Direct 4D-Var assimilation of all-sky radiances. Part II: Assessment. Q. J. R. Meteorol. Soc. 2010, 136, 1886–1905. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, E.; Mahajan, R.; Thomas, C.; Groff, D.; Van Delst, P.; Collard, A.; Kleist, D.; Treadon, R.; Derber, J.C. All-sky microwave radiance assimilation in NCEP’s GSI analysis system. Mon. Weather Rev. 2016, 144, 4709–4735. [Google Scholar] [CrossRef]
- Geer, A.J.; Migliorini, S.; Matricardi, M. All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud. Atmos. Meas. Technol. 2019, 12, 4903–4929. [Google Scholar] [CrossRef]
- Okamoto, K. Evaluation of IR radiance simulation for all-sky assimilation of Himawari-8/AHI in a mesoscale NWP system. Q. J. R. Meteorol. Soc. 2017, 143, 1517–1527. [Google Scholar] [CrossRef]
- Okamoto, K.; McNally, A.P.; Bell, W. Progress towards the assimilation of all-sky infrared radiances: An evaluation of cloud effects. Q. J. R. Meteorol. Soc. 2014, 140, 1603–1614. [Google Scholar] [CrossRef]
- Weaver, C.J.; Joiner, J.; Ginoux, P. Mineral aerosol contamination of TIROS Operational Vertical Sounder (TOVS) temperature and moisture retrievals. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Kim, J.; Akella, S.; da Silva, A.M.; Todling, R.; McCarty, W. GMAO_Aerosol_MetDA_Impact_2018Kim. In Technical Report Series on Global Modeling and Data Assimilation; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2018; Volume 49. [Google Scholar]
- Wei, S.W.; Lu, C.-H.; Liu, Q.; Collard, A.; Zhu, T.; Grogan, D.; Li, X.; Wang, J.; Grumbine, R.; Bhattacharjee, P.S. The impact of aerosols on satellite radiance data assimilation using NCEP global data assimilation system. Atmosphere 2021, 12, 432. [Google Scholar] [CrossRef]
- Sun, H.; Wang, D.; Han, W.; Yang, Y. Quantifying the Impact of Aerosols on Geostationary Satellite Infrared Radiance Simulations: A Study with Himawari-8 AHI. Remote Sens. 2024, 16, 2226. [Google Scholar] [CrossRef]
- Peng, W.; Weng, F.; Ye, C. The Impact of MERRA-2 and CAMS Aerosol Reanalysis Data on FengYun-4B Geostationary Interferometric Infrared Sounder Simulations. Remote Sens. 2025, 17, 761. [Google Scholar] [CrossRef]
- Ackerman, S.A. Remote sensing aerosols using satellite infrared observations. J. Geophys. Res. Atmos. 1997, 102, 17069–17079. [Google Scholar] [CrossRef]
- DeSouza-Machado, S.G.; Strow, L.L.; Hannon, S.E.; Motteler, H.E. Infrared dust spectral signatures from AIRS. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, N.-M.; Hu, X.-Q.; Dong, C.-H. Identification and physical retrieval of dust storm using three MODIS thermal IR channels. Glob. Planet. Change 2006, 52, 197–206. [Google Scholar] [CrossRef]
- Letertre-Danczak, J. The Use of Geostationary Radiance Observations at ECMWF and Aerosol Detection for Hyper-Spectral Infrared Sounders: 1st and 2nd Years Report; EUMETSAT/ECMWF Fellowship Programme Research Report; ECMWF: Reading, UK, 2016; Volume 40, pp. 1–18.
- Eresmaa, R.; Letertre-Danczak, J.; Lupu, C.; Bormann, N.; McNally, A.P. The assimilation of Cross-track Infrared Sounder radiances at ECMWF. Q. J. R. Meteorol. Soc. 2017, 143, 3177–3188. [Google Scholar] [CrossRef]
- Eresmaa, R.; Letertre-Danczak, J.; Mcnally, T. Screening routines for aerosol-and trace-gas-affected infrared radiances. In Proceedings of the 22nd International TOVS Study Conference, Saint-Sauveur, QC, Canada, 31 October–6 November 2019. [Google Scholar]
- Kleist, D.T.; Ide, K. An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Weather Rev. 2015, 143, 452–470. [Google Scholar] [CrossRef]
- Wang, X.; Lei, T. GSI-based four-dimensional ensemble-variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP global forecast system. Mon. Weather Rev. 2014, 142, 3303–3325. [Google Scholar] [CrossRef]
- Weng, F.; Han, Y.; van Delst, P.; Liu, Q.; Kleespies, T.; Yan, B.; Marshall, J.L. JCSDA Community Radiative Transfer Model (CRTM). In Proceedings of the 14th International TOVS Study Conference, Beijing, China, 25–31 May 2005. [Google Scholar]
- Han, Y.; van Delst, P.; Liu, Q.; Weng, F.; Yan, B.; Treadon, R.; Derber, J. JCSDA Community Radiative Transfer Model (CRTM)—Version 1. In NOAA Technical Report NESDIS; National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service: Washington, WA, USA, 2006; Volume 122, pp. 1–40. [Google Scholar]
- Chin, M.; Rood, R.B.; Lin, S.-J.; Müller, J.-F.; Thompson, A.M. Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res. Atmos. 2000, 105, 24671–24687. [Google Scholar] [CrossRef]
- Colarco, P.; da Silva, A.; Chin, M.; Diehl, T. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. Atmos. 2010, 115, D14207. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Johnson, B.; Dang, C.; Stegmann, P.; Liu, Q.; Moradi, I.; Auligne, T. The Community Radiative Transfer Model (CRTM): Community-Focused Collaborative Model Development Accelerating Research to Operations. Bull. Am. Meteorol. Soc. 2023, 104, E1817–E1830. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, C.-H. Community Radiative Transfer Model for Air Quality Studies. In Light Scattering Reviews; Kokhanovsky, A., Ed.; Springer Praxis Books; Springer: Berlin/Heidelberg, Germany, 2016; Volume 11, pp. 67–115. [Google Scholar]
- Lu, C.-H.; Liu, Q.; Wei, S.-W.; Johnson, B.T.; Dang, C.; Stegmann, P.G.; Grogan, D.; Ge, G.; Hu, M. The Aerosol Module in the Community Radiative Transfer Model (v2.2 and v2.3): Accounting for Aerosol Transmittance Effects on the Radiance Observation Operator. Geosci. Model. Dev. 2021, 15, 1317–1329. [Google Scholar] [CrossRef]
- Buchard, V.; Randles, C.A.; Da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6871. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef] [PubMed]
- Capelle, V.; Chédin, A.; Pondrom, M.; Crevoisier, C.; Armante, R.; Crepeau, L.; Scott, N.A. Infrared dust aerosol optical depth retrieved daily from IASI and comparison with AERONET over the period 2007–2016. Remote Sens. Environ. 2018, 206, 15–32. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wei, S.-H. State University of New York at Albany. Enhancing the Impact of Infrared Satellite Observations on Data Assimilation through Aerosol-Aware Framework. Ph.D. Thesis, The University at Albany, Albany, NY, USA, 2023. [Google Scholar]
- Chalon, G.; Cayla, F.; Diebel, D. IASI: An Advance Sounder for Operational Meteorology. In Proceedings of the IAF 2001, International Astronautical Congress, 52nd, Toulouse, France, 1–5 October 2001. [Google Scholar]
- Gangale, G.; Prata, A.J.; Clarisse, L. The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements. Remote Sens. Environ. 2010, 114, 414–425. [Google Scholar] [CrossRef]
- Vandenbussche, S.; Kochenova, S.; Vandaele, A.C.; Kumps, N.; De Mazière, M. Retrieval of desert dust aerosol vertical profiles from IASI measurements in the TIR atmospheric window. Atmos. Meas. Technol. 2013, 6, 2577–2591. [Google Scholar] [CrossRef]
- Yu, H.; Tan, Q.; Zhou, L.; Zhou, Y.; Bian, H.; Chin, M.; Ryder, C.L.; Levy, R.C.; Pradhan, Y.; Shi, Y.; et al. Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020. Atmos. Chem. Phys. 2021, 21, 12359–12383. [Google Scholar] [CrossRef]
- Vidot, J. CADS Version 2.3 Aerosol Validation. In EUMETSAT NWP SAF Technical Report; NWP-MF-TV-001; Met Office: Exeter, UK, 2017; pp. 1–10. [Google Scholar]
- Geer, A.J.; Bauer, P. Observation errors in all-sky data assimilation. Q. J. R. Meteorol. Soc. 2011, 137, 2024–2037. [Google Scholar] [CrossRef]
- Liang, D.; Weng, F. Evaluation of the impact of a new quality control method on assimilation of CrIS data in HWRF-GSI. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13–18 July 2014; pp. 3778–3781. [Google Scholar]
- Bathmann, K.; Collard, A. Surface-dependent correlated infrared observation errors and quality control in the FV3 framework. Q. J. R. Meteorol. Soc. 2021, 147, 408–424. [Google Scholar] [CrossRef]
LMD AOD at 10 µm >0 Counts = 48,615 | NCEPIASI | Full Spectrum |
---|---|---|
Matched | 12,779 (26.29%) | 6478 (13.33%) |
Missed | 35,836 (73.71%) | 42,137 (86.67%) |
Zero AOD or not retrieved | 55,676 (81.33%) 1 | 8897 (57.8%) 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.-W.; Lu, C.-H.; Liu, E.; Collard, A.; Johnson, B.; Dang, C.; Stegmann, P. Toward Aerosol-Aware Thermal Infrared Radiance Data Assimilation. Atmosphere 2025, 16, 766. https://doi.org/10.3390/atmos16070766
Wei S-W, Lu C-H, Liu E, Collard A, Johnson B, Dang C, Stegmann P. Toward Aerosol-Aware Thermal Infrared Radiance Data Assimilation. Atmosphere. 2025; 16(7):766. https://doi.org/10.3390/atmos16070766
Chicago/Turabian StyleWei, Shih-Wei, Cheng-Hsuan (Sarah) Lu, Emily Liu, Andrew Collard, Benjamin Johnson, Cheng Dang, and Patrick Stegmann. 2025. "Toward Aerosol-Aware Thermal Infrared Radiance Data Assimilation" Atmosphere 16, no. 7: 766. https://doi.org/10.3390/atmos16070766
APA StyleWei, S.-W., Lu, C.-H., Liu, E., Collard, A., Johnson, B., Dang, C., & Stegmann, P. (2025). Toward Aerosol-Aware Thermal Infrared Radiance Data Assimilation. Atmosphere, 16(7), 766. https://doi.org/10.3390/atmos16070766