Multispectral and Thermal Imaging for Assessing Tequila Vinasse Evaporation: Unmanned Aerial Vehicles and Satellite-Based Observations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Droplet Evaporation Equipment
2.3. Experimental Design
2.4. Images Acquisition and Calibration
2.5. Generation of Orthomosaics
2.6. Spectral and Statistical Analysis
3. Results and Discussion
3.1. Thermal Analysis
3.2. Spectral Analysis of UAV Orthophotos
3.3. Spectral Analysis of Satellite Images
4. Conclusions
5. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | Unmanned Aerial Vehicle |
VOCs | Volatile Organic Compounds |
VIS/NIR | Visible and Near-Infrared |
TIR | Thermal infrared |
DEM | Digital Elevation Model |
NIR | Near Infrared |
References
- Hobbs, C.E. The Chemistry of Tequila. In Chemistry of Alcoholic Beverages; Flynn, N., Ed.; ACS Symposium Series: Washington, DC, USA, 2023; Volume 1455, pp. 37–61. [Google Scholar] [CrossRef]
- Ramírez-Ramírez, A.A.; Lozano-Álvarez, J.A.; Gutiérrez-Lomelí, M.; Zurita, F. Tequila Vinasse Treatment in Two Types of Vertical Downflow Treatment Wetlands (with Emergent Vegetation and Ligninolytic Fungi). Water 2024, 16, 1778. [Google Scholar] [CrossRef]
- Contreras-Ramos, S.M.; Owens, X. Thermal Treatment to Obtain 5-Hydroxymethyl Furfural (5-HMF), Furfural and Phenolic Compounds from Vinasse Waste from Agave. Molecules 2023, 28, 1063. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Félix, E.; Contreras-Ramos, S.M.; Davila-Vazquez, G.; Rodríguez-Campos, J.; Marino-Marmolejo, E.N. Identification and Quantification of Volatile Compounds Found in Vinasses from Two Different Processes of Tequila Production. Energies 2018, 11, 490. [Google Scholar] [CrossRef]
- López-López, A.; Davila-Vazquez, G.; León-Becerril, E.; Villegas-García, E.; Gallardo-Valdez, J. Tequila vinasses: Generation and full scale treatment processes. Rev. Environ. Sci. Bio/Technol. 2010, 9, 109–116. [Google Scholar] [CrossRef]
- Zurita, F.; Vymazal, J. Opportunities and challenges of using constructed wetlands for the treatment of high-strength distillery effluents: A review. Ecol. Eng. 2023, 196, 107097. [Google Scholar] [CrossRef]
- Arreola-Vargas, J.; Snell-Castro, R.; Rojo-Liera, N.M.; González-Álvarez, V.; Méndez-Acosta, H.O. Effect of the organic loading rate on the performance and microbial populations during the anaerobic treatment of tequila vinasses in a pilot-scale packed bed reactor. J. Chem. Technol. Biotechnol. 2018, 93, 591–599. [Google Scholar] [CrossRef]
- Ojeda-Armaignac, E.; Hing Cortón, R. Tratamiento por electrocoagulación y coagulación–floculación de la vinaza de destilerías. Tecnol. Química 2009, XXIX, 153–161. [Google Scholar]
- Collana, J.T.M.; Ormeño, M.A.; Meza, C.J.; Cuadros, G.M.; Venegas, L.A.C.; Dextre, C.A.A.; Taranco, O.J.R.; Carhuaricra, C.A.; Bravo, P.D.; Pisfil, J.A.M. Processes Coupled to Electrocoagulation for the Treatment of Distillery Wastewaters. Sustainability 2024, 16, 6383. [Google Scholar] [CrossRef]
- Ferral-Pérez, H.; Torres Bustillos, L.G.; Méndez, H.; Rodríguez-Santillan, J.L.; Chairez, I. Sequential Treatment of Tequila Industry Vinasses by Biopolymer-based Coagulation/Flocculation and Catalytic Ozonation. Ozone-Sci. Eng. 2016, 38, 279–290. [Google Scholar] [CrossRef]
- Rodriguez Arreola, A.; Sanchez Tizapa, M.; Zurita, F.; Morán-Lázaro, J.P.; Castañeda Valderrama, R.; Rodríguez-López, J.L.; Carreon-Alvarez, A. Treatment of tequila vinasse and elimination of phenol by coagulation–flocculation process coupled with heterogeneous photocatalysis using titanium dioxide nanoparticles. Environ. Technol. 2020, 41, 1023–1033. [Google Scholar] [CrossRef]
- Zurita, F.; Tejeda, A.; Montoya, A.; Carrillo, I.; Sulbarán-Rangel, B.; Carreón-Álvarez, A. Generation of Tequila Vinasses, Characterization, Current Disposal Practices and Study Cases of Disposal Methods. Water 2022, 14, 1395. [Google Scholar] [CrossRef]
- Ramos-Reyes, M.F.; González-López, M.E.; Barajas-Álvarez, P.; Garcia-Garcia, C.E.; Tuesta-Popolizio, D.A.; Mussatto, S.I.; Gradilla-Hernández, M.S. Exploring the Potential of Distillery Vinasses through Upcycling: Pathways to a Circular Economy. Environ. Technol. Innov. 2025, 38, 104072. [Google Scholar] [CrossRef]
- Günay, A.A.; Kim, M.K.; Yan, X.; Miljkovic, N.; Sett, S. Droplet evaporation dynamics on microstructured biphilic, hydrophobic, and smooth surfaces. Exp. Fluids 2021, 62, 1–14. [Google Scholar] [CrossRef]
- Tan, H.; Diddens, C.; Lv, P.; Kuerten, J.G.; Zhang, X.; Lohse, D. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop. Proc. Natl. Acad. Sci. USA 2016, 113, 8642–8647. [Google Scholar] [CrossRef] [PubMed]
- Druetta, P.; Aguirre, P.; Mussati, S. Minimizing the total cost of multi effect evaporation systems for seawater desalination. Desalination 2014, 344, 431–445. [Google Scholar] [CrossRef]
- Mabrouk, A.A.; Nafey, A.S.; Fath, H.E.S. Thermoeconomic analysis of some existing desalination processes. Desalination 2007, 205, 354–373. [Google Scholar] [CrossRef]
- Chen, Q.; Thu, K.; Bui, T.D.; Li, Y.; Ng, K.C.; Chua, K.J. Development of a model for spray evaporation based on droplet analysis. Desalination 2016, 399, 69–77. [Google Scholar] [CrossRef]
- Shihong, T.; Ravindra, A.; Shaohua, J.; Jinhui, P.; Lihua, Z.; Lei, G.; Ling, L.X. Flash evaporation intensified by microwave energy and performance analysis. Appl. Therm. Eng. 2020, 165, 114471. [Google Scholar] [CrossRef]
- Zhou, L.; Liang, Z.; Qin, Y.M.; Chan, C.K. Evaporation-Induced Transformations in Volatile Chemical Product-Derived Secondary Organic Aerosols: Browning Effects and Alterations in Oxidative Reactivity. Environ. Sci. Technol. 2024, 58, 10881–11204. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Zhan, L.; Zheng, S.; Wu, H.; Yang, L. Review of Migration, Transformation, and Control of Volatile Components during Desulfurization Wastewater Evaporation: Advances and Perspectives. Energy Fuels 2023, 37, 15248–15266. [Google Scholar] [CrossRef]
- Gregson, F.K.A.; Sheikh, S.; Archer, J.; Symons, H.E.; Walker, J.S.; Haddrell, A.E.; Orton, C.M.; Hamilton, F.W.; Brown, J.M.; Bzdek, B.R.; et al. Analytical challenges when sampling and characterising exhaled aerosol. Aerosol Sci. Technol. 2022, 56, 160–175. [Google Scholar] [CrossRef]
- Guo, B. Enriching absorption features for hyperspectral materials identification. Opt. Express 2020, 28, 4127–4144. [Google Scholar] [CrossRef]
- Chandramohan, A.; Weibel, J.A.; Garimella, S.V. Spatiotemporal infrared measurement of interface temperatures during water droplet evaporation on a nonwetting substrate. Appl. Phys. Lett. 2017, 110, 041605. [Google Scholar] [CrossRef]
- Knight, M.F.; Knight, C. System and Method for Wastewater Vaporization. 2016. Available online: https://www.freepatentsonline.com/y2016/0376167.html (accessed on 4 March 2025).
- Shiner, S.M.; Hanebuth, C. Containerized System and Method for Spray Evaporation of Water. 2016. Available online: https://patents.google.com/patent/US20160362307A1/ja (accessed on 4 March 2025).
- Mcbride, W. Solar-Powered Buoyant Evaporation System. 2020. Available online: https://patents.justia.com/patent/11834349 (accessed on 4 March 2025).
- MAPIR, Inc. Mapir Survey3 Datasheet. Available online: https://www.mapir.camera/en-gb/pages/survey3-cameras (accessed on 1 July 2025).
- FLIR Systems, Inc. FLIR Vue Pro and Vue Pro R User Guide. Available online: https://www.termocam.it/pdf/termocamere/flir-vue-pro/flir-vue-pro-manuale.pdf (accessed on 1 July 2025).
- Chávez-Martínez, O.; Monjardin-Armenta, S.A.; Rangel-Peraza, J.G.; Sanhouse-García, A.J.; Mora-Felix, Z.D.; Plata-Rocha, W. Use of different vegetation indices for the evaluation of the kinetics of the cherry tomato (Solanum lycopersicum var. cerasiforme) growth based on multispectral images by UAV. Open Agric. 2024, 9, 20220357. [Google Scholar] [CrossRef]
- Sagan, V.; Maimaitijiang, M.; Sidike, P.; Eblimit, K.; Peterson, K.T.; Hartling, S.; Esposito, F.; Khanal, K.; Newcomb, M.; Pauli, D.; et al. UAV-Based High Resolution Thermal Imaging for Vegetation Monitoring, and Plant Phenotyping Using ICI 8640 P, FLIR Vue Pro R 640, and thermoMap Cameras. Remote Sens. 2019, 11, 330. [Google Scholar] [CrossRef]
- Planet Team. Planet Team. Planet Application Program Interface. In Space for Life on Earth; Planet Labs PBC: San Francisco, CA, USA, 2017; Available online: https://api.planet.com (accessed on 4 March 2025).
- Chávez-Martínez, O.; Monjardin-Armenta, S.A.; Rangel-Peraza, J.G.; Mora-Felix, Z.D.; Sanhouse-García, A.J. Dataset of aerial photographs acquired with UAV using a multispectral (green, red and near-infrared) camera for cherry tomato (Solanum lycopersicum var. cerasiforme) monitoring. Data Brief 2025, 58, 111256. [Google Scholar] [CrossRef]
- Henn, K.A.; Peduzzi, A. Surface Heat Monitoring with High-Resolution UAV Thermal Imaging: Assessing Accuracy and Applications in Urban Environments. Remote Sens 2024, 16, 930. [Google Scholar] [CrossRef]
- Yeom, J.; Jung, J.; Chang, A.; Ashapure, A.; Maeda, M.; Maeda, A.; Landivar, J. Comparison of Vegetation Indices Derived from UAV Data for Differentiation of Tillage Effects in Agriculture. Remote Sens. 2019, 11, 1548. [Google Scholar] [CrossRef]
- Lee, Y.; Han, S.H. Feasibility of nondestructive sugar content analysis of Korean pears by using near-infrared diffuse-reflectance spectroscopy. Bull. Korean Chem. Soc. 2016, 37, 166–173. [Google Scholar] [CrossRef]
- Loaiza, J.G.; Rangel-Peraza, J.G.; Monjardín-Armenta, S.A.; Bustos-Terrones, Y.A.; Bandala, E.R.; Sanhouse-García, A.J.; Rentería-Guevara, S.A. Surface Water Quality Assessment through Remote Sensing Based on the Box–Cox Transformation and Linear Regression. Water 2023, 15, 2606. [Google Scholar] [CrossRef]
Camera Features | MAPIR Survey 3W | FLIR Vue Pro R |
---|---|---|
Sensor Resolution | 4000 × 3000 px | 640 × 512 px |
Radiometric Resolution | 12 bit | 14 bit |
Focal Length | 19 mm | 13 mm |
Spectral Band | 0.85–0.66–0.55 μm (Near Infrared, Red and Green) | 7.5–13.5 μm |
Image Capture Interval | 1.0 s | 1.0 s |
Sensor Type | Image Name | Date | |
---|---|---|---|
SuperDove | 20241010_164732_22_24b3_3B_AnalyticMS_SR_8b_clip | 10/10/2024 | |
20241011_164757_31_24b9_3B_AnalyticMS_SR_8b_clip | 11/10/2024 | ||
20241014_173435_98_24e1_3B_AnalyticMS_SR_8b_clip | 14/10/2024 | ||
20250129_174403_72_24f2_3B_AnalyticMS_SR_8b_clip | 29/01/2025 | ||
20250130_170236_81_24c7_3B_AnalyticMS_SR_8b_clip | 30/01/2025 | ||
Spectral Bands | Resolutions | Orbit Characteristics | Frame Size |
Coastal Blue: 431–452 nm | Temporal: Daily; Spatial: 3.8 m; Spectral: 8 bands; Radiometric: 12 bits | Orbit Altitude: 475–525 km; Orbit Type: Sun-Synchronous; Orbit Inclination: 98°; Maximum Image Strip per orbit: 20,000 km2 | 32.5 km × 19.6 km (approximate) |
Blue: 465–515 nm | |||
Green I: 513–549 nm | |||
Green: 547–583 nm | |||
Yellow: 600–620 nm | |||
Red: 650–680 nm | |||
RedEdge: 697–713 nm | |||
NIR: 845–885 nm |
Reflectance | ||||||
January 2025 | November 2024 | |||||
Treatment comparison | X1–X2 | z | p-value | X1–X2 | z | p-value |
Turned off vs. Water | 0.090 | 138.07 | 0.0000 | 0.136 | −66.24 | 0.00000 |
Turned off vs. Vinasses | 0.087 | 4.83 | 0.0000 | 0.142 | −34.33 | 0.00000 |
Water vs. Vinasses | 0.0943 | −127.32 | 0.0000 | 0.128 | 32.37 | 0.00000 |
Temperature | ||||||
January 2025 | November 2024 | |||||
Treatment comparison | X1–X2 | z | p-value | X1–X2 | z | p-value |
Turned off vs. Water | 0.006 | 75.57 | 0.0000 | 0.010 | 1280.12 | 0.0000 |
Turned off vs. Vinasses | 0.013 | 31.87 | 0.0000 | 0.013 | 1110.75 | 0.0000 |
Water vs. Vinasses | 0.013 | −4.06 | 0.0000 | 0.013 | 138.95 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rangel-Peraza, J.G.; Monjardin-Armenta, S.A.; Chávez-Martínez, O.; de Anda, J. Multispectral and Thermal Imaging for Assessing Tequila Vinasse Evaporation: Unmanned Aerial Vehicles and Satellite-Based Observations. Processes 2025, 13, 2281. https://doi.org/10.3390/pr13072281
Rangel-Peraza JG, Monjardin-Armenta SA, Chávez-Martínez O, de Anda J. Multispectral and Thermal Imaging for Assessing Tequila Vinasse Evaporation: Unmanned Aerial Vehicles and Satellite-Based Observations. Processes. 2025; 13(7):2281. https://doi.org/10.3390/pr13072281
Chicago/Turabian StyleRangel-Peraza, Jesús Gabriel, Sergio Alberto Monjardin-Armenta, Osiris Chávez-Martínez, and José de Anda. 2025. "Multispectral and Thermal Imaging for Assessing Tequila Vinasse Evaporation: Unmanned Aerial Vehicles and Satellite-Based Observations" Processes 13, no. 7: 2281. https://doi.org/10.3390/pr13072281
APA StyleRangel-Peraza, J. G., Monjardin-Armenta, S. A., Chávez-Martínez, O., & de Anda, J. (2025). Multispectral and Thermal Imaging for Assessing Tequila Vinasse Evaporation: Unmanned Aerial Vehicles and Satellite-Based Observations. Processes, 13(7), 2281. https://doi.org/10.3390/pr13072281