Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (236)

Search Parameters:
Keywords = platelet-derived growth factor receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2572 KB  
Review
Molecular Mechanisms and Clinical Implications of Fibroblast Growth Factor Receptor 2 Signaling in Gastrointestinal Stromal Tumors
by Yanyun Hong, Xiaodong Wang, Chunhui Shou and Xiaosun Liu
Curr. Issues Mol. Biol. 2025, 47(10), 822; https://doi.org/10.3390/cimb47100822 - 5 Oct 2025
Viewed by 204
Abstract
Introduction: Gastrointestinal stromal tumors (GISTs) are primarily driven by mutations in KIT (KIT proto-oncogene receptor tyrosine kinase) or PDGFRA (platelet-derived growth factor receptor alpha), but resistance to tyrosine kinase inhibitors (TKIs) such as imatinib remains a major clinical challenge. Alterations [...] Read more.
Introduction: Gastrointestinal stromal tumors (GISTs) are primarily driven by mutations in KIT (KIT proto-oncogene receptor tyrosine kinase) or PDGFRA (platelet-derived growth factor receptor alpha), but resistance to tyrosine kinase inhibitors (TKIs) such as imatinib remains a major clinical challenge. Alterations in fibroblast growth factor receptor 2 (FGFR2), although rare, are emerging as important contributors to tumor progression and drug resistance. This review evaluates the molecular mechanisms, expression profiles, detection methods, and therapeutic implications of FGFR2 in GIST. Methods: We searched PubMed, Web of Science, Google Scholar, and ClinicalTrials.gov for studies published between January 2010 and June 2025, using combinations of keywords related to FGFR2, gastrointestinal stromal tumor, resistance mechanisms, gene fusion, amplification, polymorphisms, and targeted therapy. Eligible studies were critically assessed to distinguish GIST-specific data from evidence extrapolated from other cancers. Results:FGFR2 is expressed in multiple normal tissues and at variable levels in mesenchymal-derived tumors, including GIST. Its alterations occur in approximately 1–2% of GIST cases, most commonly as gene fusions (e.g., FGFR2::TACC2, <1%) or amplifications (1–2%); point mutations and clinically significant polymorphisms are extremely rare. These alterations activate the MAPK/ERK and PI3K/AKT pathways, contribute to bypass signaling, and enhance DNA damage repair, thereby promoting TKI resistance. Beyond mutations, mechanisms such as amplification, ligand overexpression, and microenvironmental interactions also play roles. FGFR2 alterations appear mutually exclusive with KIT/PDGFRA mutations but occasional co-occurrence has been reported. Current clinical evidence is largely limited to small cohorts, basket trials, or case reports. Conclusions:FGFR2 is an emerging oncogenic driver and biomarker of resistance in a rare subset of GISTs. Although direct evidence remains limited, particularly regarding DNA repair and polymorphisms, FGFR2-targeted therapies (e.g., erdafitinib, pemigatinib) show potential, especially in combination with TKIs or DNA-damaging agents. Future research should prioritize GIST-specific clinical trials, the development of FGFR2-driven models, and standardized molecular diagnostics to validate FGFR2 as a therapeutic target. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

14 pages, 1200 KB  
Article
Mutational Characterization of Astrocytoma, IDH-Mutant, CNS WHO Grade III in the AACR GENIE Database
by Elijah Torbenson, Beau Hsia, Nigel Lang and Peter Silberstein
DNA 2025, 5(3), 43; https://doi.org/10.3390/dna5030043 - 4 Sep 2025
Viewed by 705
Abstract
Background/Objectives: Astrocytoma, IDH-mutant, CNS WHO grade 3, is a diffuse glioma with poor prognosis, molecularly defined by IDH mutations and frequently co-occurring TP53 and ATRX alterations. This study aimed to delineate the genomic landscape and identify clinically relevant molecular features of astrocytoma, IDH-mutant, [...] Read more.
Background/Objectives: Astrocytoma, IDH-mutant, CNS WHO grade 3, is a diffuse glioma with poor prognosis, molecularly defined by IDH mutations and frequently co-occurring TP53 and ATRX alterations. This study aimed to delineate the genomic landscape and identify clinically relevant molecular features of astrocytoma, IDH-mutant, CNS WHO grade 3 using this resource. Methods: Patients in the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (AACR Project GENIE) database were selected based on histological diagnosis of “anaplastic astrocytoma”, confirmed IDH1/2 mutation, and exclusion of CDKN2A/B homozygous deletions. We analyzed frequencies of somatic mutations, copy number alterations (CNAs), structural variants (SVs), assessed co-occurrence/exclusivity patterns, and explored associations with available demographic and limited survival data. Results: The most common somatic mutations were in IDH1 (98.0%), TP53 (94.8%), and ATRX (55.2%). The observed ATRX mutation frequency was lower than some historical reports (e.g., ~86%). Other recurrent alterations included phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) (6.9%), Notch receptor 1 (NOTCH1) (6.9%), and platelet-derived growth factor receptor alpha (PDGFRA) (mutations 4.3%; CNAs also observed). Conclusions: This study provides a comprehensive genomic characterization of astrocytoma, IDH-mutant, CNS WHO grade 3 using the AACR GENIE database, confirming core mutational signatures while also highlighting potential variations in alteration frequencies, such as for ATRX. The findings establish a valuable real-world genomic benchmark for this tumor type, while promoting the need for continued data integration with robust clinical outcomes to identify actionable prognostic and therapeutic targets. Full article
Show Figures

Figure 1

24 pages, 3945 KB  
Article
Eupatorium lindleyanum DC Ameliorates Carbon Tetrachloride-Induced Hepatic Inflammation and Fibrotic Response in Mice
by Jinbao Yang, Yufei Wang, Lijuan Zhuo, Guijun Lu, Meiting Zhang, Jiabin Huang, Yehaomin Li, Wenwen Liu, Jing Qi, An Zhu and Zixiong Zhou
Pharmaceuticals 2025, 18(8), 1228; https://doi.org/10.3390/ph18081228 - 20 Aug 2025
Viewed by 687
Abstract
Background/Objectives: Eupatorium lindleyanum DC (Eup), a traditional Chinese medicinal herb, is widely used for treating inflammation-mediated diseases, including pneumonia. However, its potential therapeutic effects on inflammation-driven liver fibrosis remain to be elucidated. This study aimed to investigate the effects of Eup on [...] Read more.
Background/Objectives: Eupatorium lindleyanum DC (Eup), a traditional Chinese medicinal herb, is widely used for treating inflammation-mediated diseases, including pneumonia. However, its potential therapeutic effects on inflammation-driven liver fibrosis remain to be elucidated. This study aimed to investigate the effects of Eup on carbon tetrachloride (CCl4)-induced liver fibrosis and elucidate its underlying mechanisms. Methods: The chemical constituents of Eup were analyzed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-LC/MS). A CCl4-induced liver fibrosis murine model and LX-2 cells were used in study. Serum biochemical assays, histological analysis, qRT-PCR, ELISA, and Western blot were used to assess Eup’s anti-inflammatory and anti-fibrotic properties. RNA sequencing (RNA-seq) was employed to identify potential mechanisms, with validation by Western blot. Results: 89 and 49 compounds were identified in Eup under positive and negative ion modes, respectively. In vivo, Eup treatment decreased collagen deposition and expression levels of fibrosis-related genes, including collagen I and α-smooth muscle actin. Additionally, Eup alleviated hepatic inflammation. In vitro, Eup inhibited FBS-induced hepatic stellate cell (HSCs) activation. Gene set enrichment analysis (GSEA) indicated that Eup significantly downregulated the platelet-derived growth factor (PDGF)/platelet-derived growth factor receptor-beta (PDGFR-β) signaling pathway, which was further validated in both CCl4-induced fibrotic livers and PDGF-BB-activated HSCs using western blot. Conclusions: Eup attenuated liver fibrosis by inhibiting inflammation and suppressing HSCs activation via downregulating PDGF/PDGFR-β signaling pathway. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

29 pages, 47768 KB  
Article
A High-Fat Diet Increases Kidney Fibrosis Through Regulating TGF-β and PDGF-β Signaling Pathways in Normotensive and Hypertensive Rat Models
by Fatema Binte Abdullah, Abdullah Md. Sheikh, Shatera Tabassum, Atsushi Nagai, Jun Yoshino, Takeshi Kanda, Toru Nabika and Shozo Yano
Int. J. Mol. Sci. 2025, 26(16), 8031; https://doi.org/10.3390/ijms26168031 - 20 Aug 2025
Viewed by 711
Abstract
Hypertension and obesity are well-established risk factors for chronic kidney disease (CKD). This study investigates the interaction between these two factors in CKD using animal models. Twelve-week-old normotensive Wistar Kyoto (WKY), spontaneously hypertensive (SHR), and stroke-prone spontaneously hypertensive (SHR-SP) rats were fed either [...] Read more.
Hypertension and obesity are well-established risk factors for chronic kidney disease (CKD). This study investigates the interaction between these two factors in CKD using animal models. Twelve-week-old normotensive Wistar Kyoto (WKY), spontaneously hypertensive (SHR), and stroke-prone spontaneously hypertensive (SHR-SP) rats were fed either a normal diet (control) or a high-fat diet (HFD) for eight weeks. Kidney pathology and molecular mechanisms were assessed via immunostaining, real-time PCR, and Western blotting. In the control-fed groups, SHR-SP showed the most severe glomerular and tubular fibrosis, followed by SHR. The HFD exacerbated fibrosis in both the WKY and SHR rats but not in the SHR-SP rats. The levels of the mesangial marker smooth muscle α-actin (SMA) in the glomeruli were highest in the control-fed SHR-SP rats. HFD feeding increased glomerular SMA levels in WKY and SHR but not in SHR-SP. The levels of the mesenchymal marker vimentin were elevated in the control-fed SHR-SP rats compared to the other control-fed animals. The HFD increased the vimentin levels in WKY but decreased them in SHR-SP. The HFD increased senescence and inflammatory markers in the kidneys of the WKY and SHR rats. The HFD-fed WKY and SHR rats also showed upregulation of platelet-derived growth factor β (PDGFβ) signaling molecules. Among the control-fed animals, the transforming growth factor β (TGFβ) and TGFβ receptor 2 (TGFβR2) levels were elevated in SHR-SP. HFD feeding increased the TGFβR2 levels in WKY and the SHR and TGFβ levels in WKY. Similarly, SMAD2/3 activation was the highest in the SHR-SP control group. HFD feeding increased the SMAD2/3 activation in the kidneys of the WKY and SHR rats. Thus, our findings demonstrate that a high-fat diet can intensify renal fibrosis independent of hypertension through TGFβ and PDGFβ signaling within a two-month timeframe. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 1533 KB  
Article
Co-Expression of TWIK-Related Acid-Sensitive K+ Channel 1 (TASK-1/KCNK3) and Platelet-Derived Growth Factor Receptor Alpha (PDGFRα/Pdgfra) in Adult Mouse Ovary
by Byeonggyu Ahn, Eun-Jin Kim, Jin-Mok Kim, Sohi Kang, Sumi Hwang, Chang-Woon Kim, In Ae Cho, Jeong Kyu Shin, Eun-A Ko, Dong-Kun Lee and Dawon Kang
Biomedicines 2025, 13(8), 1941; https://doi.org/10.3390/biomedicines13081941 - 8 Aug 2025
Viewed by 519
Abstract
Background/Objectives: Platelet-derived growth factor receptor alpha (PDGFRα) is a receptor involved in cell growth and differentiation, with unclear roles in ovarian tissues and potential interactions with KCNK3 (potassium two-pore domain channel subfamily K member 3), a member of the two-pore domain K [...] Read more.
Background/Objectives: Platelet-derived growth factor receptor alpha (PDGFRα) is a receptor involved in cell growth and differentiation, with unclear roles in ovarian tissues and potential interactions with KCNK3 (potassium two-pore domain channel subfamily K member 3), a member of the two-pore domain K+ channel involved in cellular homeostasis. This study aims to map PDGFRα expression across mouse tissues and to explore its co-expression with KCNK3 in the ovary. Methods: We visualized PDGFRα expression using RNA-seq data from the genotype-tissue expression (GTEx) BodyMAP across 54 human tissues and Cap Analysis of Gene Expression (CAGE) data for various mouse tissues. In PDGFRαEGFP mice expressing EGFP in PDGFRα+ cells, histological and fluorescence imaging were used to assess ovarian expression. Immunohistochemistry determined the co-localization of PDGFRα and KCNK3, and qPCR quantified their mRNA levels in the ovary, oviduct, and uterus. Results: PDGFRα showed high expression in human and mouse female reproductive tissues, particularly the ovary. In the PDGFRαEGFP mouse model, PDGFRα was primarily found in the thecal layer and stromal cells, not in granulosa cells or oocytes. Immunohistochemistry indicated that 90.2 ± 8.7% of PDGFRα+ cells expressed KCNK3 in the ovarian stroma. qPCR revealed lower PDGFRα and KCNK3 expression in the ovary compared to the oviduct and uterus. Conclusions: This study shows that PDGFRα is predominantly expressed in ovarian stromal and theca cells and is highly co-localized with KCNK3, suggesting a potential role for PDGFRα+ cells in ionic regulation and their possible involvement in follicular development and ovarian physiology. Full article
(This article belongs to the Special Issue Ovarian Physiology and Reproduction)
Show Figures

Graphical abstract

32 pages, 10235 KB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Anti-Mitogenic Actions on Human Coronary Artery Smooth Muscle Cell Growth
by Lisa Rigassi, Marinella Rosselli, Brigitte Leeners, Mirel Adrian Popa and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1132; https://doi.org/10.3390/cells14151132 - 23 Jul 2025
Viewed by 727
Abstract
The abnormal growth of smooth muscle cells (SMCs) contributes to the vascular remodeling associated with coronary artery disease, a leading cause of death in women. Estradiol (E2) mediates cardiovascular protective actions, in part, by inhibiting the abnormal growth (proliferation and migration) of SMCs [...] Read more.
The abnormal growth of smooth muscle cells (SMCs) contributes to the vascular remodeling associated with coronary artery disease, a leading cause of death in women. Estradiol (E2) mediates cardiovascular protective actions, in part, by inhibiting the abnormal growth (proliferation and migration) of SMCs through various mechanism. Since microRNAs (miRNAs) play a major role in regulating cell growth and vascular remodeling, we hypothesize that miRNAs may mediate the protective actions of E2. Following preliminary leads from E2-regulated miRNAs, we found that platelet-derived growth factor (PDGF)-BB-induced miR-193a in SMCs is downregulated by E2 via estrogen receptor (ER)α, but not the ERβ or G-protein-coupled estrogen receptor (GPER). Importantly, miR-193a is actively involved in regulating SMC functions. The ectopic expression of miR-193a induced vascular SMC proliferation and migration, while its suppression with antimir abrogated PDGF-BB-induced growth, effects that were similar to E2. Importantly, the restoration of miR-193a abrogated the anti-mitogenic actions of E2 on PDGF-BB-induced growth, suggesting a key role of miR-193a in mediating the growth inhibitory actions of E2 in vascular SMCs. E2-abrogated PDGF-BB, but not miR-193a, induced SMC growth, suggesting that E2 blocks the PDGF-BB-induced miR-193a formation to mediate its anti-mitogenic actions. Interestingly, the PDGF-BB-induced miR-193a formation in SMCs was also abrogated by 2-methoxyestradiol (2ME), an endogenous E2 metabolite that inhibits SMC growth via an ER-independent mechanism. Furthermore, we found that miR-193a induces SMC growth by activating the phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway and promoting the G1 to S phase progression of the cell cycle, by inducing Cyclin D1, Cyclin Dependent Kinase 4 (CDK4), Cyclin E, and proliferating-cell-nuclear-antigen (PCNA) expression and Retinoblastoma-protein (RB) phosphorylation. Importantly, in mice, treatment with miR-193a antimir, but not its control, prevented cuff-induced vascular remodeling and significantly reducing the vessel-wall-to-lumen ratio in animal models. Taken together, our findings provide the first evidence that miR-193a promotes SMC proliferation and migration and may play a key role in PDGF-BB-induced vascular remodeling/occlusion. Importantly, E2 prevents PDGF-BB-induced SMC growth by downregulating miR-193a formation in SMCs. Since, miR-193a antimir prevents SMC growth as well as cuff-induced vascular remodeling, it may represent a promising therapeutic molecule against cardiovascular disease. Full article
Show Figures

Graphical abstract

29 pages, 1610 KB  
Review
Tyrosine Kinase Inhibitors for Gastrointestinal Stromal Tumor After Imatinib Resistance
by Xian-Hao Xiao, Qian-Shi Zhang, Ji-Yuan Hu, Yin-Xu Zhang and He Song
Pharmaceutics 2025, 17(7), 923; https://doi.org/10.3390/pharmaceutics17070923 - 17 Jul 2025
Viewed by 1198
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract, primarily driven by activating mutations in KIT (CD117) and platelet-derived growth factor receptor alpha (PDGFRA). The introduction of tyrosine kinase inhibitors (TKIs), especially imatinib, has significantly transformed GIST treatment. [...] Read more.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract, primarily driven by activating mutations in KIT (CD117) and platelet-derived growth factor receptor alpha (PDGFRA). The introduction of tyrosine kinase inhibitors (TKIs), especially imatinib, has significantly transformed GIST treatment. However, the emergence of both primary and secondary resistance to imatinib presents ongoing therapeutic challenges. This review comprehensively explores the mechanisms underlying imatinib resistance and evaluates subsequent TKI therapies. Sunitinib, regorafenib, and ripretinib are currently approved as standard second-, third-, and fourth-line therapies, each demonstrating efficacy against distinct mutational profiles. Avapritinib, notably effective against PDGFRA D842V mutations, represents a milestone for previously untreatable subgroups. Several alternative agents—such as nilotinib, masitinib, sorafenib, dovitinib, pazopanib, and ponatinib—have shown varying degrees of success in refractory cases or specific genotypes. Investigational compounds, including crenolanib, bezuclastinib, famitinib, motesanib, midostaurin, IDRX-42, and olverembatinib, are under development to address resistant or wild-type GISTs. Despite progress, long-term efficacy remains limited due to evolving resistance. Future strategies include precision medicine approaches such as ctDNA-guided therapy, rational drug combinations, and novel drug delivery systems to optimize bioavailability and reduce toxicity. Ongoing research will be crucial for refining treatment sequencing and expanding therapeutic options, especially for rare GIST subtypes. Full article
(This article belongs to the Special Issue Kinase Inhibitor for Cancer Therapy, 2nd Edition)
Show Figures

Figure 1

28 pages, 1100 KB  
Review
Application of Gene Therapy to Oral Diseases
by Seiichi Yamano, Kenji Inoue and Yoichiro Taguchi
Pharmaceutics 2025, 17(7), 859; https://doi.org/10.3390/pharmaceutics17070859 - 30 Jun 2025
Viewed by 1115
Abstract
Gene therapy has emerged as a promising therapeutic approach across various oral diseases. This review examines current applications and future prospects of gene therapy in dentistry, focusing on five key areas: oral cancer, cancer-related pain, xerostomia (dry mouth), dental caries, and periodontal disease. [...] Read more.
Gene therapy has emerged as a promising therapeutic approach across various oral diseases. This review examines current applications and future prospects of gene therapy in dentistry, focusing on five key areas: oral cancer, cancer-related pain, xerostomia (dry mouth), dental caries, and periodontal disease. Recent advances in viral and non-viral vectors have enabled more efficient gene delivery systems, with particular success in cancer pain management through µ-opioid receptor gene transfer and xerostomia treatment using aquaporin-1 gene therapy. For periodontal applications, gene therapy strategies include both immunomodulation and tissue regeneration approaches using growth factors like platelet-derived growth factor and bone morphogenetic proteins. While significant progress has been made, particularly in treating radiation-induced xerostomia and oral cancer pain, challenges remain in vector optimization and delivery methods. Clinical trials, predominantly in Phase I, indicate both the potential and current limitations of gene therapy in oral healthcare. This review synthesizes current evidence and outlines future directions for gene therapy applications in oral medicine and dentistry. Full article
Show Figures

Figure 1

21 pages, 1799 KB  
Review
Novel Roles and Therapeutic Approaches Linking Platelets and Megakaryocytes to Non-Hemostatic and Thrombotic Disease
by Ana Kasirer-Friede
Int. J. Transl. Med. 2025, 5(3), 25; https://doi.org/10.3390/ijtm5030025 - 22 Jun 2025
Cited by 1 | Viewed by 1229
Abstract
Historically, pharmacological interventions aimed at platelets have targeted their canonical hemostatic and thrombotic roles. The therapeutic vision, however, has minimally embraced alternate mechanisms by which anucleate platelets, their parent cells, megakaryocytes, and cellular derivatives may be utilized to yield novel and effective therapies. [...] Read more.
Historically, pharmacological interventions aimed at platelets have targeted their canonical hemostatic and thrombotic roles. The therapeutic vision, however, has minimally embraced alternate mechanisms by which anucleate platelets, their parent cells, megakaryocytes, and cellular derivatives may be utilized to yield novel and effective therapies. Platelets contain storage granules rich in a wide variety of proteins, chemicals, growth factors, and lipid particles that can modulate the fate and activity of diverse cell types, and impact diseases not previously thought to have a platelet component. In this article, we will address unconventional platelet contributions to health and disease development. Recent studies indicate extensive platelet roles in neurodegeneration, insulin secretion, and bone marrow fibrosis, along with a recognition of platelets as immune cells in their own right, partially based on the presence of surface MHC, Toll-like receptors, and stored immunomodulatory molecules. Recent technological advances have produced iPS-derived gene-editable megakaryocytes (MKs) that have been differentiated to clinical-grade platelets for transfusion; however, such successes are still rare. Continued improvements in the standardization of cell isolation, iPS differentiation protocols, technology for the utilization of platelet derivatives, and platelet Omics will expand our understanding of underlying platelet and MK heterogeneity and direct novel therapeutic applications. Furthermore, additional roles for these cells as microniche sensors that monitor systemic pathology by endocytosing shed particles as they circulate through the vasculature will be explored. Taken together, novel insights into the many exciting potential uses of platelets outside of their canonical roles are on the horizon, and continued amelioration of existing protocols and enhanced understanding of communication pathways between platelets and specific cells will help expand opportunities for platelet-related clinical trials to yield improved health outcomes. Full article
Show Figures

Figure 1

43 pages, 4992 KB  
Article
Restorative Effects of Synbiotics on Colonic Ultrastructure and Oxidative Stress in Dogs with Chronic Enteropathy
by Dipak Kumar Sahoo, Tracey Stewart, Emily M. Lindgreen, Bhakti Patel, Ashish Patel, Jigneshkumar N. Trivedi, Valerie Parker, Adam J. Rudinsky, Jenessa A. Winston, Agnes Bourgois-Mochel, Jonathan P. Mochel, Karin Allenspach, Romy M. Heilmann and Albert E. Jergens
Antioxidants 2025, 14(6), 727; https://doi.org/10.3390/antiox14060727 - 13 Jun 2025
Cited by 1 | Viewed by 3061
Abstract
Synbiotics can be used to reduce intestinal inflammation and mitigate dysbiosis in dogs with chronic inflammatory enteropathy (CIE). Prior research has not assessed the colonic mucosal ultrastructure of dogs with active CIE treated with synbiotics, nor has it determined a possible association between [...] Read more.
Synbiotics can be used to reduce intestinal inflammation and mitigate dysbiosis in dogs with chronic inflammatory enteropathy (CIE). Prior research has not assessed the colonic mucosal ultrastructure of dogs with active CIE treated with synbiotics, nor has it determined a possible association between morphologic injury and signaling pathways. Twenty client-owned dogs diagnosed with CIE were randomized to receive either a hydrolyzed diet (placebo; PL) or a hydrolyzed diet supplemented with synbiotic-IgY (SYN) for 6 weeks. Endoscopic biopsies of the colon were obtained for histopathologic, ultrastructural, and molecular analyses and were compared before and after treatment. Using transmission electron microscopy (TEM), an analysis of the ultrastructural alterations in microvilli length (MVL), mitochondria (MITO), and rough endoplasmic reticulum (ER) was compared between treatment groups. To explore potential signaling pathways that might modulate MITO and ER stress, a transcriptomic analysis was also performed. The degree of mucosal ultrastructural pathology differed among individual dogs before and after treatment. Morphologic alterations in enterocytes, MVL, MITO, and ER were detected without significant differences between PL and SYN dogs prior to treatment. Notable changes in ultrastructural alterations were identified post-treatment, with SYN-treated dogs exhibiting significant improvement in MVL, MITO, and ER injury scores compared to PL-treated dogs. Transcriptomic profiling showed many pathways and key genes to be associated with MITO and ER injury. Multiple signaling pathways and their associated genes with protective effects, including fibroblast growth factor 2 (FGF2), fibroblast growth factor 7 (FGF7), fibroblast growth factor 10 (FGF10), synaptic Ras GTPase activating protein 1 (SynGAP1), RAS guanyl releasing protein 2 (RASGRP2), RAS guanyl releasing protein 3 (RASGRP3), thrombospondin 1 (THBS1), colony stimulating factor 1 (CSF1), colony stimulating factor 3 (CSF3), interleukin 21 receptor (IL21R), collagen type VI alpha 6 chain (COL6A6), ectodysplasin A receptor (EDAR), forkhead box P3 (FoxP3), follistatin (FST), gremlin 1 (GREM1), myocyte enhancer factor 2B (MEF2B), neuregulin 1 (NRG1), collagen type I alpha 1 chain (COL1A1), hepatocyte growth factor (HGF), 5-hydroxytryptamine receptor 7 (HTR7), and platelet derived growth factor receptor beta (PDGFR-β), were upregulated with SYN treatment. Differential gene expression was associated with improved MITO and ER ultrastructural integrity and a reduction in oxidative stress. Conversely, other genes, such as protein kinase cAMP-activated catalytic subunit beta (PRKACB), phospholipase A2 group XIIB (PLA2G12B), calmodulin 1 (CALM1), calmodulin 2 (CALM2), and interleukin-18 (IL18), which have harmful effects, were downregulated following SYN treatment. In dogs treated with PL, genes including PRKACB and CALM2 were upregulated, while other genes, such as FGF2, FGF10, SynGAP1, RASGRP2, RASGRP3, and IL21R, were downregulated. Dogs with CIE have colonic ultrastructural pathology at diagnosis, which improves following synbiotic treatment. Ultrastructural improvement is associated with an upregulation of protective genes and a downregulation of harmful genes that mediate their effects through multiple signaling pathways. Full article
Show Figures

Figure 1

21 pages, 1511 KB  
Review
Bone Modelling and Remodelling in Cold Environment
by Leyi Xue, Qiao Guan and Lingli Zhang
Biomolecules 2025, 15(4), 564; https://doi.org/10.3390/biom15040564 - 11 Apr 2025
Viewed by 1311
Abstract
People engaged in various activities in cold environments—such as those living in cold climates, polar workers, cold storage workers, and athletes engaged in winter sports—are frequently affected by cold environments. Therefore, it is of great significance to explore the modelling and remodelling of [...] Read more.
People engaged in various activities in cold environments—such as those living in cold climates, polar workers, cold storage workers, and athletes engaged in winter sports—are frequently affected by cold environments. Therefore, it is of great significance to explore the modelling and remodelling of bones in cold environments. Cold environments can shorten the length of bones, thin the thickness of bones, decrease bone mineral density (BMD), change the biomechanical properties of bones, and lead to bone loss. In addition, cold directly affects the bone microenvironment. Exposure to cold causes spindle-like and fibroblast-like changes in bone marrow mesenchymal stem cells (BMSCs) and decreases their proliferation, and cold exposure promotes the osteogenic differentiation of BMSCs partly through the p38 MAPK pathway. Cold also alters the dendritic differentiation of OBs by reducing the transmembrane glycoprotein E11/podoplanin and damages endothelial cells (ECs) by elevating levels of VEGF, resulting in a reduced blood supply and thus fewer OBs. In addition, cold promotes lipolysis of marrow adipose tissue (MAT), but in combination with exercise, it can promote the differentiation of BMSCs into MAT. Cold environments interfere with angiogenesis and inhibit bone growth by affecting factors such as platelet-derived growth factor type BB (PDGF-BB), slit guidance ligand 3 (SLIT3), Notch, and VEGF. In addition, cold environments may promote bone resorption by activating sympathetic nerves to activate β-adrenergic receptors and regulating leptin secretion, and regulate bone metabolism by activating the p38 MAPK signalling pathway and increasing the synthesis of brown fat, which ultimately inhibit bone formation and enhance bone resorption. In this paper, we describe the effects of cold environments on bones in the locomotor system in terms of bone structure, bone mass, biomechanical properties, and various skeletal cells, bone blood vessels, and bone fat systems in the bone microenvironment. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

15 pages, 2163 KB  
Article
Electroporation Induces Unexpected Alterations in Gene Expression: A Tip for Selection of Optimal Transfection Method
by Taiji Hamada, Seiya Yokoyama, Toshiaki Akahane, Kei Matsuo, Ikumi Kitazono, Tatsuhiko Furukawa and Akihide Tanimoto
Curr. Issues Mol. Biol. 2025, 47(2), 91; https://doi.org/10.3390/cimb47020091 - 31 Jan 2025
Cited by 1 | Viewed by 1661
Abstract
Electroporation is an efficient method for nucleotide and protein transfer, and is used for clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-mediated genome editing. In this study, we investigated the effects of electroporation on platelet-derived growth factor receptor alpha (PDGFRA [...] Read more.
Electroporation is an efficient method for nucleotide and protein transfer, and is used for clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-mediated genome editing. In this study, we investigated the effects of electroporation on platelet-derived growth factor receptor alpha (PDGFRA) and receptor tyrosine kinase (RTK) expression in U-251 and U-87 MG cells. PDGFRA mRNA and protein expression decreased 2 days after electroporation in both cell lines, with recovery observed after 13 days in U-87 MG cells. However, in U-251 MG cells, PDGFRα expression remained suppressed, despite mRNA recovery after 13 days. Similar expression profiles were observed for lipofection in the U-251 MG cells. Comprehensive RNA sequencing confirmed electroporation-induced up- and down-regulation of RTK mRNA in U-251 MG cells 2 days post-electroporation. In contrast, recombinant adeno-associated virus (rAAV) transfected with mNeonGreen fluorescent protein or Cas9 did not affect PDGFRA, RTKs, or inflammatory cytokine expression, suggesting fewer adverse effects of rAAV on U-251 MG cells. These findings emphasize the need for adequate recovery periods following electroporation or the adoption of alternative methods, such as rAAV transfection, to ensure the accurate assessment of CRISPR-mediated gene editing outcomes. Full article
Show Figures

Figure 1

19 pages, 491 KB  
Review
Significance of Biogenetic Markers in Giant Cell Tumor Differentiation and Prognosis: A Narrative Review
by Muhammad Taqi, Haseeb ul Rasool, Mobeen Zaka Haider and Munjed Al Muderis
Diagnostics 2025, 15(1), 39; https://doi.org/10.3390/diagnostics15010039 - 27 Dec 2024
Viewed by 2230
Abstract
Background: Giant cell tumor of bone (GCTB) is a locally aggressive tumor. It accounts for only 5% of all bony tumors. Early diagnosis, and follow-up for recurrence is often difficult due to a lack of biogenetic markers. Giant cells are multinucleated epithelioid [...] Read more.
Background: Giant cell tumor of bone (GCTB) is a locally aggressive tumor. It accounts for only 5% of all bony tumors. Early diagnosis, and follow-up for recurrence is often difficult due to a lack of biogenetic markers. Giant cells are multinucleated epithelioid cells derived from macrophages. Histologically, giant cells are also present in other pathologies of bone, e.g., aneurysmal bone cyst, chondroblastoma, giant cell granuloma, and malignant giant cell tumor, etc. Similarly, radiographic findings overlap with other osteolytic lesions, making the diagnosis and prognosis of giant cell tumor very challenging. Aims and Objectives: The purpose of this study was to explore biological and genetic markers which can be used for detection, differentiation, recurrence, and prognosis of GCTB. This will help to better understand the clinical outcome of GCTB and minimize the need for interventions. Methods: We conducted a literature search using Google, Google Scholar, PubMed, Wiley Library, Medline, Clinical trials.org, and Web of Science. Our search strategy included MeSH terms and key words for giant cell tumor and biogenetic markers from date of inception to September 2020. After excluding review articles, 246 duplicates, and non-relevant articles, we included 24 articles out of 1568 articles, summarizing the role of biogenetic markers in the prognosis of GCT. Results: P63 is 98.6% sensitive and relatively specific for GCT as compared to other multinucleated giant cells containing neoplasms. MDM2 (mouse double minute 2 homolog), IGF1 (insulin-like growth factor 1), STAT1 (signal transducer and activator of transcription 1), and RAC1 (Ras-related C3 botulinum toxin substrate 1) are associated with GCTB recurrence, and might serve as biomarkers for it. Increased expression of the proteins STAT5B, GRB2, and OXSR1 was related to a higher probability of metastasis. H3F3A and H3F3B mutation analysis appears to be a highly specific, although less sensitive, diagnostic tool for the distinction of giant cell tumor of bone (GCTB) and chondroblastoma from other giant cell-containing tumors. A neutrophil to lymphocyte ratio (NLR) > 2.70, platelet to lymphocyte ratio (PLR) > 215.80, lymphocyte to monocyte ratio (LMR) ≤ 2.80, and albumin to globulin ratio (AGR) < 1.50 were significantly associated with decreased disease-free survival (DFS) (p < 0.05). Large amounts of osteoclast-related mRNA (cathepsin K, tartrate-resistant acid phosphatase, and matrix metalloproteinase9) in GCTs (p < 0.05) are associated with the grade of bone resorption. We propose that subarticular primary malignant bone sarcomas with H3.3 mutations represent true malignant GCTB, even in the absence of a benign GCTB component. IMP3 and IGF2 might be potential biomarkers for GCT of the spine in regulating the angiogenesis of giant cell tumor of bone and predicting patients’ prognosis. Conclusions: This review study shows serological markers, genetic factors, cell membrane receptor markers, predictive markers for malignancy, and prognostic protein markers which are highly sensitive for GCT and relatively specific for giant cell tumor. MDM2, IGF1, STAT1, RAC1 are important makers in determining recurrence, while P63 and H3F3A differentiate GCT from other giant cell-containing tumors. STAT5B, GRB2, and OXSR1 are significant in determining the prognosis of GCT. Apart from using radiological and histological parameters, we can add them to tumor work-up for definitive diagnosis and prognosis. Full article
(This article belongs to the Special Issue Biomarkers: Diagnostic Indicators for Human Ailments)
Show Figures

Figure 1

31 pages, 5457 KB  
Article
Anandamide Inhibits Vascular Smooth Muscle Migration, Endothelial Adhesion Protein Expression and Monocyte Adhesion of Human Coronary Artery Cells
by Elane Blessing, Elisa Teichmann and Burkhard Hinz
Cells 2024, 13(24), 2108; https://doi.org/10.3390/cells13242108 - 19 Dec 2024
Cited by 1 | Viewed by 1682
Abstract
Endocannabinoids have been shown to play a complex role in the pathophysiology of a number of cardiovascular disorders. In the present study, the effects of the two major endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were investigated in human coronary artery smooth muscle cells [...] Read more.
Endocannabinoids have been shown to play a complex role in the pathophysiology of a number of cardiovascular disorders. In the present study, the effects of the two major endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were investigated in human coronary artery smooth muscle cells (HCASMC) and human coronary artery endothelial cells (HCAEC) with regard to potential atheroprotective and anti-inflammatory effects. In HCASMC, AEA showed an inhibitory effect on platelet-derived growth factor-induced migration, but not proliferation, independent of major cannabinoid-activatable receptors (CB1, CB2, TRPV1), while 2-AG left both responses unaffected. In HCAEC, AEA at concentrations of 6 and 10 µM significantly inhibited the interleukin (IL)-1β- and lipopolysaccharide (LPS)-stimulated expression of vascular cell adhesion molecule-1 (VCAM-1) and LPS-induced intercellular adhesion molecule-1 (ICAM-1), again independently of the abovementioned receptors. Corresponding effects were observed to a lesser extent in the presence of 2-AG, in most cases not significantly. The detection of activated phosphoproteins as well as experiments with inhibitors of corresponding signaling pathways suggest that AEA interferes with IL-1β-induced VCAM-1 expression via inhibition of protein kinase B/Akt and Src kinase activation and attenuates LPS-induced VCAM-1 and ICAM-1 expression via inhibition of signal transducer and activator of transcription 3 (STAT3) phosphorylation. As expected, AEA also led to a significant inhibition of monocyte adhesion to IL-1β- and LPS-stimulated HCAEC, with siRNA experiments confirming the functional role of VCAM-1 and ICAM-1 in this assay. 2-AG showed a comparatively weaker but, in the case of LPS stimulation, still significant inhibition of adhesion. In summary, the results emphasize the potential of AEA as a protective regulator of atherosclerotic and inflammation-related changes in HCASMC and HCAEC and encourage further corresponding preclinical studies with this endocannabinoid. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

28 pages, 2627 KB  
Review
Targeting PDGF/PDGFR Signaling Pathway by microRNA, lncRNA, and circRNA for Therapy of Vascular Diseases: A Narrow Review
by Chao-Nan Ma, Shan-Rui Shi, Xue-Ying Zhang, Guo-Song Xin, Xiang Zou, Wen-Lan Li and Shou-Dong Guo
Biomolecules 2024, 14(11), 1446; https://doi.org/10.3390/biom14111446 - 14 Nov 2024
Cited by 8 | Viewed by 3509
Abstract
Despite the significant progress in diagnostic and therapeutic strategies, vascular diseases, such as cardiovascular diseases (CVDs) and respiratory diseases, still cannot be successfully eliminated. Vascular cells play a key role in maintaining vascular homeostasis. Notably, a variety of cells produce and secrete platelet-derived [...] Read more.
Despite the significant progress in diagnostic and therapeutic strategies, vascular diseases, such as cardiovascular diseases (CVDs) and respiratory diseases, still cannot be successfully eliminated. Vascular cells play a key role in maintaining vascular homeostasis. Notably, a variety of cells produce and secrete platelet-derived growth factors (PDGFs), which promote mitosis and induce the division, proliferation, and migration of vascular cells including vascular smooth muscle cells (SMCs), aortic SMCs, endothelial cells, and airway SMCs. Therefore, PDGF/PDGR receptor signaling pathways play vital roles in regulating the homeostasis of blood vessels and the onset and development of CVDs, such as atherosclerosis, and respiratory diseases including asthma and pulmonary arterial hypertension. Recently, accumulating evidence has demonstrated that microRNA, long-chain non-coding RNA, and circular RNA are involved in the regulation of PDGF/PDGFR signaling pathways through competitive interactions with target mRNAs, contributing to the occurrence and development of the above-mentioned diseases. These novel findings are useful for laboratory research and clinical studies. The aim of this article is to conclude the recent progresses in this field, particular the mechanisms of action of these non-coding RNAs in regulating vascular remodeling, providing potential strategies for the diagnosis, prevention, and treatment of vascular-dysfunction-related diseases, particularly CVDs and respiratory diseases. Full article
Show Figures

Figure 1

Back to TopTop