Bone Modelling and Remodelling in Cold Environment
Abstract
:1. Introduction
2. Effect of Cold Environment on Bone Mass
3. Effect of Cold Environment on Bone Biomechanics
4. Effect of Cold Environment on Bone Metabolism
5. Effect of Cold Environment on Bone Microenvironment
5.1. Effect of Cold Environment on Skeletal Cells
5.2. Effects of Cold Environments on Bone Vascularity
5.3. Effect of Cold Environment on Bone Fat
5.4. Effects of the Cold Environment on the Bony Nerves and Lymphatic
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMD | Bone mineral density |
BMSCs | Bone marrow mesenchymal stem cells |
Runx2 | Runt-related transcription factor 2 |
OBs | Osteoblasts |
RANKL | Receptor activator of nuclear factor kappa-B ligand |
OCs | Osteoclasts |
VEGF | Vascular endothelial growth factor |
ECs | Endothelial cells |
MAT | Marrow adipose tissue |
PDGF-BB | Platelet-derived growth factor type BB |
SLIT3 | Slit guidance ligand 3 |
CMP | Cold-related musculoskeletal pain |
Conn.D | Connectivity density |
NPY | Neuropeptide Y |
UCP1 | Uncoupling Protein-1 |
BAT | Brown adipose tissue |
ECM | Extracellular matrix |
WBC | Whole body cryotherapy |
SOST | Sclerostin |
Srankl | Soluble receptor activator for nuclear factor κ B ligand |
CTX-1 | Carboxy-terminal cross-linked telopeptide of type 1 collagen |
OCN | Osteocalcin |
PTH | Parathormone |
P1NP | Procollagen type 1 N-terminal propeptide |
β-CTX | C-terminal telopeptide of type 1 collagen |
OPN | Osteopontin |
BSP | Bone sialoprotein |
Col1 | Collagen I |
FGF21 | Fibroblast growth factor 21 |
IL-6 | Interleukin-6 |
ALP | Alkaline phosphatase |
HSCs | Haematopoietic stem cells |
MAPK | Mitogen-activated protein kinase |
NHOst | Normal human OBs |
RBM3 | RNA-binding motif protein 3 |
ERK | Extracellular signal-regulated kinase |
OCPs | OC precursors |
HIF1-α | Hypoxia-inducible factor 1-alpha |
cMAT | Constitutive MAT |
rMAT | Regulatory MAT |
PPAR-γ | Proliferator-activated receptor-γ |
PGC | Proliferator-activated receptor-γ coactivator |
References
- Sosnowski, P.; Mikrut, K.; Krauss, H. Hypothermia--mechanism of action and pathophysiological changes in the human body. Postep. Hig. I Med. Dosw. 2015, 69, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Ke, F.; Xiao, Y.; Huang, S.; Duan, Y.; Liu, G.; Yu, S.; Fu, Y.; Peng, J.; Cheng, J.; et al. Effect of Cold Spells and Their Different Definitions on Mortality in Shenzhen, China. Front. Public Health 2021, 9, 817079. [Google Scholar] [CrossRef]
- Chen, T.H.; Du, X.L.; Chan, W.; Zhang, K. Impacts of cold weather on emergency hospital admission in Texas, 2004-2013. Environ. Res. 2019, 169, 139–146. [Google Scholar] [CrossRef]
- Doucette, C.R.; Rosen, C.J. Current Protocols in Mouse Biology. Curr. Protoc. Mouse Biol. 2014, 2014, 71. [Google Scholar]
- Robbins, A.; Tom, C.; Cosman, M.N.; Moursi, C.; Shipp, L.; Spencer, T.M.; Brash, T.; Devlin, M.J. Low temperature decreases bone mass in mice: Implications for humans. Am. J. Phys. Anthropol. 2018, 167, 557–568. [Google Scholar] [CrossRef]
- Pienimäki, T.; Karppinen, J.; Rintamäki, H.; Borodulin, K.; Laatikainen, T.; Jousilahti, P.; Hassi, J.; Näyhä, S. Prevalence of cold-related musculoskeletal pain according to self-reported threshold temperature among the Finnish adult population. Eur. J. Pain 2014, 18, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Farbu, E.H.; Skandfer, M.; Nielsen, C.; Brenn, T.; Stubhaug, A.; Höper, A.C. Working in a cold environment, feeling cold at work and chronic pain: A cross-sectional analysis of the Tromsø Study. BMJ Open 2019, 9, e031248. [Google Scholar] [CrossRef]
- Zeng, P.; Bengtsson, C.; Klareskog, L.; Alfredsson, L. Working in cold environment and risk of developing rheumatoid arthritis: Results from the Swedish EIRA case-control study. RMD Open 2017, 3, e000488. [Google Scholar] [CrossRef]
- Durand, C.; Rappold, G.A. Height matters-from monogenic disorders to normal variation. Nat. Rev. Endocrinol. 2013, 9, 171–177. [Google Scholar] [CrossRef]
- Zhang, J.; Du, L.; Davis, B.; Gu, Z.; Lyu, J.; Zhao, Z.; Xu, J.; Morrison, S.J. Osteolectin increases bone elongation and body length by promoting growth plate chondrocyte proliferation. Proc. Natl. Acad. Sci. USA 2023, 120, e2220159120. [Google Scholar] [CrossRef]
- Smith, S.L. Stature estimation of 3-10-year-old children from long bone lengths. J. Forensic Sci. 2007, 52, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.A. The Influence of Physical Conditions in the Genesis of Species. 1877. Available online: https://people.wku.edu/charles.smith/biogeog/ALLE1877.htm (accessed on 13 February 2025).
- Al-Hilli, F.; Wright, E.A. The effects of changes in the environmental temperature on the growth of tail bones in the mouse. Br. J. Exp. Pathol. 1983, 64, 34–42. [Google Scholar]
- Al-Hilli, F.; Wright, E.A. The effects of changes in the environmental temperature on the growth of bone in the mouse. Radiological and morphological study. Br. J. Exp. Pathol. 1983, 64, 43–52. [Google Scholar] [PubMed]
- Haas, S.L. The relation of the blood supply to the longitudinal growth of bone. J. Bone Jt. Surg. 1917, 15, 157–171. [Google Scholar]
- Scholander, P. Evolution of Climatic Adaptation in Homeotherms. Evolution 1955, 9, 15–26. [Google Scholar] [CrossRef]
- Serrat, M.A.; King, D.; Lovejoy, C.O. Temperature regulates limb length in homeotherms by directly modulating cartilage growth. Proc. Natl. Acad. Sci. USA 2008, 105, 19348–19353. [Google Scholar] [CrossRef]
- Feldhamer, G.A.; Feldhamer, G.A.; Merritt, J.E. Mammalogy: Adaptation, Diversity, Ecology; Johns Hopkins University Press: Baltimore, MD, USA, 2007. [Google Scholar]
- Bierens de Haan, B.; Wexler, M.R.; Porat, S.; Nyska, A.; Teitelbaum, A. The effects of cold upon bone growth: A preliminary study. Ann. Plast. Surg. 1986, 16, 509–515. [Google Scholar] [CrossRef]
- Serrat, M.A.; Williams, R.M.; Farnum, C.E. Exercise mitigates the stunting effect of cold temperature on limb elongation in mice by increasing solute delivery to the growth plate. J. Appl. Physiol. 2010, 109, 1869–1879. [Google Scholar] [CrossRef]
- Goosse, H.; Barriat, P.Y.; Lefebvre, W.; Loutre, M.F.; Zunz, V. Introduction to Climate Dynamics and Climate Modelling; Centre de recherche sur la Terre et le climat Georges Lemaître: Wallonia, Belgium, 2009. [Google Scholar]
- Roberts, D.F. Body weight, race and climate. Am. J. Phys. Anthropol. 1953, 11, 533–558. [Google Scholar] [CrossRef]
- Christopher, B. Morphological Adaptation to Climate in Modern and Fossil Hominids. Am. J. Phys. Anthropol. Yearb. 1994, 37, 65–107. [Google Scholar]
- Liu, J.; Peng, F.; Cheng, H.; Zhang, D.; Zhang, Y.; Wang, L.; Tang, F.; Wang, J.; Wan, Y.; Wu, J.; et al. Chronic cold environment regulates rheumatoid arthritis through modulation of gut microbiota-derived bile acids. Sci. Total Environ. 2023, 903, 166837. [Google Scholar] [CrossRef] [PubMed]
- Mazess, R.B.; Mather, W. Bone mineral content of North Alaskan Eskimos. Am. J. Clin. Nutr. 1974, 27, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.D.; Gunness-Hey, M. Bone mineral-osteon analysis of Yupik-Inupiaq skeletons. Am. J. Phys. Anthropol. 1981, 55, 1–7. [Google Scholar] [CrossRef]
- Wee, N.K.Y.; Nguyen, A.D.; Enriquez, R.F.; Zhang, L.; Herzog, H.; Baldock, P.A. Neuropeptide Y Regulation of Energy Partitioning and Bone Mass During Cold Exposure. Calcif. Tissue Int. 2020, 107, 510–523. [Google Scholar] [CrossRef] [PubMed]
- Elefteriou, F. Impact of the Autonomic Nervous System on the Skeleton. Physiol. Rev. 2018, 98, 1083–1112. [Google Scholar] [CrossRef]
- Nicholls, D.G.; Rial, E. A history of the first uncoupling protein, UCP1. J. Bioenerg. Biomembr. 1999, 31, 399–406. [Google Scholar] [CrossRef]
- Bredella, M.A.; Fazeli, P.K.; Freedman, L.M.; Calder, G.; Lee, H.; Rosen, C.J.; Klibanski, A. Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: A study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J. Clin. Endocrinol. Metab. 2012, 97, E584–E590. [Google Scholar] [CrossRef]
- Sanchez-Delgado, G.; Martinez-Tellez, B.; Garcia-Rivero, Y.; Acosta, F.M.; Alcantara, J.M.A.; Amaro-Gahete, F.J.; Llamas-Elvira, J.M.; Gracia-Marco, L.; Ruiz, J.R. Association between brown adipose tissue and bone mineral density in humans. Int. J. Obes. 2019, 43, 1516–1525. [Google Scholar] [CrossRef]
- Khosla, S.; Monroe, D.G. Regulation of Bone Metabolism by Sex Steroids. Cold Spring Harb. Perspect. Med. 2018, 8, 31211. [Google Scholar] [CrossRef]
- Brazda, I.J.; Reeves, J.; Langohr, G.D.G.; Crookshank, M.C.; Schemitsch, E.H.; Zdero, R. Biomechanical properties and thermal characteristics of frozen versus thawed whole bone. Proc. Inst. Mech. Engineers. Part H J. Eng. Med. 2020, 234, 874–883. [Google Scholar] [CrossRef]
- Pelker, R.R.; Friedlaender, G.E.; Markham, T.C.; Panjabi, M.M.; Moen, C.J. Effects of freezing and freeze-drying on the biomechanical properties of rat bone. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 1984, 1, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Jasiuk, I. Effects of freeze-thaw and micro-computed tomography irradiation on structure-property relations of porcine trabecular bone. J. Biomech. 2014, 47, 1495–1498. [Google Scholar] [CrossRef] [PubMed]
- Nordin, M.; Frankel, V.H. Basic Biomechanics of the Musculoskeletal System; LWW: Philadelphia, PA, USA, 2013. [Google Scholar]
- Bonfield, W.; Li, C.H. The temperature dependence of the deformation of bone. J. Biomech. 1968, 1, 323–329. [Google Scholar] [CrossRef]
- Institution of Civil Engineers (ICE). ICE Handbooks. Available online: https://www.icevirtuallibrary.com/series/shand?mobileUi=0 (accessed on 13 February 2025).
- Vashishth, D. Hierarchy of Bone Microdamage at Multiple Length Scales. Int. J. Fatigue 2007, 29, 1024–1033. [Google Scholar] [CrossRef]
- Dardenne, O.; Prud’homme, J.; Arabian, A.; Glorieux, F.H.; St-Arnaud, R. Targeted inactivation of the 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 2001, 142, 3135–3141. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, D.; Lombardi, G.; Strollo, M.; Pontillo, M.; Motta, A.; Locatelli, M. Association between solar ultraviolet doses and vitamin D clinical routine data in European mid-latitude population between 2006 and 2018. Photochem. Photobiol. Sci. Off. J. Eur. Photochem. Assoc. Eur. Soc. Photobiol. 2019, 18, 2696–2706. [Google Scholar] [CrossRef]
- Schaffler, M.B.; Burr, D.B. Stiffness of compact bone: Effects of porosity and density. J. Biomech. 1988, 21, 13–16. [Google Scholar] [CrossRef]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef]
- Rho, J.Y.; Kuhn-Spearing, L.; Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998, 20, 92–102. [Google Scholar] [CrossRef]
- Zaidi, M. Skeletal remodeling in health and disease. Nat. Med. 2007, 13, 791–801. [Google Scholar] [CrossRef]
- Du, J.; He, Z.; Xu, M.; Qu, X.; Cui, J.; Zhang, S.; Zhang, S.; Li, H.; Yu, Z. Brown Adipose Tissue Rescues Bone Loss Induced by Cold Exposure. Front. Endocrinol. 2021, 12, 778019. [Google Scholar] [CrossRef] [PubMed]
- Motyl, K.J.; Bishop, K.A.; DeMambro, V.E.; Bornstein, S.A.; Le, P.; Kawai, M.; Lotinun, S.; Horowitz, M.C.; Baron, R.; Bouxsein, M.L.; et al. Altered thermogenesis and impaired bone remodeling in Misty mice. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2013, 28, 1885–1897. [Google Scholar] [CrossRef] [PubMed]
- Straburzyńska-Lupa, A.; Cisoń, T.; Gomarasca, M.; Banfi, G.; Lombardi, G.; Babińska, A.; Liwicka, E. Sclerostin and bone remodeling biomarkers responses to whole-body cryotherapy (110 °C) in healthy young men with different physical fitness levels. Sci. Rep. 2021, 11, 11. [Google Scholar] [CrossRef]
- Gombos, G.C.; Bajsz, V.; Pék, E.; Schmidt, B.; Sió, E.; Molics, B.; Betlehem, J. Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. BMC Musculoskelet. Disord. 2016, 17, 254. [Google Scholar] [CrossRef] [PubMed]
- Mu, S.; Xia, Y.; Wu, Q.; Ji, C.; Dai, H.; Zhang, M.; Jiao, J.; Shi, F.; Liu, S.; Wang, G.; et al. Response of Bone Metabolism Markers to Ice Swimming in Regular Practitioners. Front. Physiol. 2021, 12, 731523. [Google Scholar] [CrossRef]
- Patel, J.J.; Utting, J.C.; Key, M.L.; Orriss, I.R.; Taylor, S.E.; Whatling, P.; Arnett, T.R. Hypothermia inhibits osteoblast differentiation and bone formation but stimulates osteoclastogenesis. Exp. Cell Res. 2012, 318, 2237–2244. [Google Scholar] [CrossRef]
- Nie, Y.; Yan, Z.; Yan, W.; Xia, Q.; Zhang, Y. Cold exposure stimulates lipid metabolism, induces inflammatory response in the adipose tissue of mice and promotes the osteogenic differentiation of BMMSCs via the p38 MAPK pathway in vitro. Int. J. Clin. Exp. Pathol. 2015, 8, 10875–10886. [Google Scholar]
- Galliera, E.; Dogliotti, G.; Melegati, G.; Corsi Romanelli, M.M.; Cabitza, P.; Banfi, G. Bone remodelling biomarkers after whole body cryotherapy (WBC) in elite rugby players. Injury 2013, 44, 1117–1121. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, M. Fibroblast growth factor 21 and bone homeostasis. Biomed. J. 2023, 46, 100548. [Google Scholar] [CrossRef]
- Manolagas, S.C. The role of IL-6 type cytokines and their receptors in bone. Ann. N. Y. Acad. Sci. 1998, 840, 194–204. [Google Scholar] [CrossRef]
- Marlatt, K.L.; Ravussin, E. Brown Adipose Tissue: An Update on Recent Findings. Curr. Obes. Rep. 2017, 6, 389–396. [Google Scholar] [CrossRef]
- Takeda, S.; Elefteriou, F.; Levasseur, R.; Liu, X.; Zhao, L.; Parker, K.L.; Armstrong, D.; Ducy, P.; Karsenty, G. Leptin regulates bone formation via the sympathetic nervous system. Cell 2002, 111, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Szulc, P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017, 5, 908–923. [Google Scholar] [CrossRef]
- Chandra, A.; Rajawat, J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int. J. Mol. Sci. 2021, 22, 3553. [Google Scholar] [CrossRef]
- Dickhut, A.; Schwerdtfeger, R.; Kuklick, L.; Ritter, M.; Thiede, C.; Neubauer, A.; Brendel, C. Mesenchymal stem cells obtained after bone marrow transplantation or peripheral blood stem cell transplantation originate from host tissue. Ann. Hematol. 2005, 84, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, G.; Fox, J.; Ashton, B.; Middleton, J. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007, 25, 2739–2749. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Feng, C.; Jiang, Y.; Miao, Q.; Liu, H. Regulative Effect of Mir-205 on Osteogenic Differentiation of Bone Mesenchymal Stem Cells (BMSCs): Possible Role of SATB2/Runx2 and ERK/MAPK Pathway. Int. J. Mol. Sci. 2015, 16, 10491–10506. [Google Scholar] [CrossRef]
- Robinson, N.J.; Picken, A.; Coopman, K. Low temperature cell pausing: An alternative short-term preservation method for use in cell therapies including stem cell applications. Biotechnol. Lett. 2014, 36, 201–209. [Google Scholar] [CrossRef]
- Liu, X.; Ren, W.; Jiang, Z.; Su, Z.; Ma, X.; Li, Y.; Jiang, R.; Zhang, J.; Yang, X. Hypothermia inhibits the proliferation of bone marrow-derived mesenchymal stem cells and increases tolerance to hypoxia by enhancing SUMOylation. Int. J. Mol. Med. 2017, 40, 1631–1638. [Google Scholar] [CrossRef]
- Komori, T. Regulation of Proliferation, Differentiation and Functions of Osteoblasts by Runx2. Int. J. Mol. Sci. 2019, 20, 1694. [Google Scholar] [CrossRef]
- Aisha, M.D.; Nor-Ashikin, M.N.; Sharaniza, A.B.; Nawawi, H.M.; Kapitonova, M.Y.; Froemming, G.R. Short-term moderate hypothermia stimulates alkaline phosphatase activity and osteocalcin expression in osteoblasts by upregulating Runx2 and osterix in vitro. Exp. Cell Res. 2014, 326, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Kim, K.M.; Kim, E.J.; Jang, W.G. Hypothermia-induced RNA-binding motif protein 3 (RBM3) stimulates osteoblast differentiation via the ERK signaling pathway. Biochem. Biophys. Res. Commun. 2018, 498, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Baldock, P.A.; Cornish, J. Effects of Leptin on the Skeleton. Endocr. Rev. 2018, 39, 938–959. [Google Scholar] [CrossRef]
- Bonewald, L.F. The amazing osteocyte. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2011, 26, 229–238. [Google Scholar] [CrossRef]
- Du, J.; He, Z.; Cui, J.; Li, H.; Xu, M.; Zhang, S.; Zhang, S.; Yan, M.; Qu, X.; Yu, Z. Osteocyte Apoptosis Contributes to Cold Exposure-induced Bone Loss. Front. Bioeng. Biotechnol. 2021, 9, 733582. [Google Scholar] [CrossRef]
- Suto, K.; Urabe, K.; Naruse, K.; Uchida, K.; Matsuura, T.; Mikuni-Takagaki, Y.; Suto, M.; Nemoto, N.; Kamiya, K.; Itoman, M. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons. Cell Tissue Bank. 2012, 13, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Barragan-Adjemian, C.; Ye, L.; Kotha, S.; Dallas, M.; Lu, Y.; Zhao, S.; Harris, M.; Harris, S.E.; Feng, J.Q.; et al. E11/gp38 selective expression in osteocytes: Regulation by mechanical strain and role in dendrite elongation. Mol. Cell. Biol. 2006, 26, 4539–4552. [Google Scholar] [CrossRef]
- Guo, D.; Bonewald, L.F. Advancing our understanding of osteocyte cell biology. Ther. Adv. Musculoskelet. Dis. 2009, 1, 87–96. [Google Scholar]
- Ramasamy, S.K.; Kusumbe, A.P.; Wang, L.; Adams, R.H. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 2014, 507, 376–380. [Google Scholar] [CrossRef]
- Hanaoka, M.; Droma, Y.; Naramoto, A.; Honda, T.; Kobayashi, T.; Kubo, K. Vascular endothelial growth factor in patients with high-altitude pulmonary edema. J. Appl. Physiol. 2003, 94, 1836–1840. [Google Scholar] [CrossRef]
- Zhang, L.C.; Huang, Z.; Li, P.B.; Nie, H.J.; Deng, B.N.; Duan, R.F.; Xiao, Z.H.; Peng, H.; Feng, H.; Liu, W. Diazoxide protects rat vascular endothelial cells against hypoxia and cold-induced damage. Exp. Ther. Med. 2017, 13, 3257–3266. [Google Scholar] [CrossRef] [PubMed]
- Krüger-Genge, A.; Blocki, A.; Franke, R.P.; Jung, F. Vascular Endothelial Cell Biology: An Update. Int. J. Mol. Sci. 2019, 20, 4411. [Google Scholar] [CrossRef]
- Atsumi, T.; Kuroki, Y. Role of impairment of blood supply of the femoral head in the pathogenesis of idiopathic osteonecrosis. Clin. Orthop. Relat. Res. 1992, 277, 22–30. [Google Scholar] [CrossRef]
- Trueta, J. Blood supply and the rate of healing of tibial fractures. Clin. Orthop. Relat. Res. 1974, 105, 11–26. [Google Scholar] [CrossRef]
- Nicoli, S.; Standley, C.; Walker, P.; Hurlstone, A.; Fogarty, K.E.; Lawson, N.D. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 2010, 464, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Gilbert, S.R.; Wang, Y.; Cao, X.; Shen, X.; Ramaswamy, G.; Jacobsen, K.A.; Alaql, Z.S.; Eberhardt, A.W.; Gerstenfeld, L.C.; et al. Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc. Natl. Acad. Sci. USA 2008, 105, 686–691. [Google Scholar] [CrossRef]
- Kylmaoja, E.; Nakamura, M.; Tuukkanen, J. Osteoclasts and Remodeling Based Bone Formation. Curr. Stem Cell Res. Ther. 2016, 11, 626–633. [Google Scholar] [CrossRef]
- Udagawa, N.; Koide, M.; Nakamura, M.; Nakamichi, Y.; Yamashita, T.; Uehara, S.; Kobayashi, Y.; Furuya, Y.; Yasuda, H.; Fukuda, C.; et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J. Bone Miner. Metab. 2021, 39, 19–26. [Google Scholar] [CrossRef]
- Boyce, B.F.; Zuscik, M.J.; Xing, L. Biology of Bone and Cartilage. In Genetics of Bone Biology and Skeletal Disease; Academic Press: New York, NY, USA, 2013; pp. 3–24. [Google Scholar]
- Singh, S.; Nandi, A.; Banerjee, O.; Bhattacharjee, A.; Prasad, S.K.; Maji, B.K.; Saha, A.; Mukherjee, S. Cold stress modulates redox signalling in murine fresh bone marrow cells and promotes osteoclast transformation. Arch. Physiol. Biochem. 2020, 126, 348–355. [Google Scholar] [CrossRef]
- Qing, H.; Desrouleaux, R.; Israni-Winger, K.; Mineur, Y.S.; Fogelman, N.; Zhang, C.; Rashed, S.; Palm, N.W.; Sinha, R.; Picciotto, M.R.; et al. Origin and Function of Stress-Induced IL-6 in Murine Models. Cell 2020, 182, 1660. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases. Ann. N. Y. Acad. Sci. 2020, 1474, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, R.E.; Silva, M.J. Skeletal Blood Flow in Bone Repair and Maintenance. Bone Res. 2013, 1, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, P.; Gu, Y.; Guo, Q.; Liu, Y. Type H vessels: Functions in bone development and diseases. Front. Cell Dev. Biol. 2023, 11, 1236545. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, S.; Li, Y.; Crane, J.L. Type H blood vessels in bone modeling and remodeling. Theranostics 2020, 10, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Jin, H.K.; Min, W.K.; Lee, W.W.; Lee, J.E.; Akiyama, H.; Herzog, H.; Enikolopov, G.N.; Schuchman, E.H.; Bae, J.S. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow. EMBO J. 2015, 34, 1648–1660. [Google Scholar] [CrossRef]
- Xie, H.; Cui, Z.; Wang, L.; Xia, Z.; Hu, Y.; Xian, L.; Li, C.; Xie, L.; Crane, J.; Wan, M.; et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 2014, 20, 1270–1278. [Google Scholar] [CrossRef]
- Fierro, F.A.; Nolta, J.A.; Adamopoulos, I.E. Concise Review: Stem Cells in Osteoimmunology. Stem Cells 2017, 35, 1461–1467. [Google Scholar] [CrossRef]
- Ramasamy, S.K.; Kusumbe, A.P.; Schiller, M.; Zeuschner, D.; Bixel, M.G.; Milia, C.; Gamrekelashvili, J.; Limbourg, A.; Medvinsky, A.; Santoro, M.M.; et al. Blood flow controls bone vascular function and osteogenesis. Nat. Commun. 2016, 7, 13601. [Google Scholar] [CrossRef]
- Muruganandan, S.; Govindarajan, R.; Sinal, C.J. Bone Marrow Adipose Tissue and Skeletal Health. Curr. Osteoporos. Rep. 2018, 16, 434–442. [Google Scholar] [CrossRef]
- Harvey, N.; Dennison, E.; Cooper, C. Osteoporosis: Impact on health and economics. Nat. Rev. Rheumatol. 2010, 6, 99–105. [Google Scholar] [CrossRef]
- Cawthorn, W.P.; Scheller, E.L.; Learman, B.S.; Parlee, S.D.; Simon, B.R.; Mori, H.; Ning, X.; Bree, A.J.; Schell, B.; Broome, D.T.; et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 2014, 20, 368–375. [Google Scholar] [CrossRef]
- Scheller, E.L.; Doucette, C.R.; Learman, B.S.; Cawthorn, W.P.; Khandaker, S.; Schell, B.; Wu, B.; Ding, S.Y.; Bredella, M.A.; Fazeli, P.K.; et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat. Commun. 2015, 6, 7808. [Google Scholar] [CrossRef]
- Kricun, M.E. Red-yellow marrow conversion: Its effect on the location of some solitary bone lesions. Skelet. Radiol. 1985, 14, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Leppäluoto, J.; Pääkkönen, T.; Korhonen, I.; Hassi, J. Pituitary and autonomic responses to cold exposures in man. Acta Physiol. Scand. 2005, 184, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Hung, H.C.; Feng, C.W.; Huang, S.Y.; Chen, C.H.; Lin, Y.Y.; Chen, Y.C.; Yang, S.N.; Su, J.H.; Sheu, J.H.; et al. Dihydroaustrasulfone Alcohol (WA-25) Impedes Macrophage Foam Cell Formation by Regulating the Transforming Growth Factor-β1 Pathway. Int. J. Mol. Sci. 2015, 16, 10507–10525. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Hu, B.; Xie, L.Q.; Su, T.; Li, C.J.; Liu, Y.; Yang, M.; Xiao, Y.; Feng, X.; Zhou, R.; et al. A mechanosensitive lipolytic factor in the bone marrow promotes osteogenesis and lymphopoiesis. Cell Metab. 2022, 34, 1168–1182.e1166. [Google Scholar] [CrossRef] [PubMed]
- Koska, J.; Ksinantova, L.; Seböková, E.; Kvetnansky, R.; Klimes, I.; Chrousos, G.; Pacak, K. Endocrine regulation of subcutaneous fat metabolism during cold exposure in humans. Ann. N. Y. Acad. Sci. 2002, 967, 500–505. [Google Scholar] [CrossRef]
- Tontonoz, P.; Hu, E.; Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994, 79, 1147–1156. [Google Scholar] [CrossRef]
- Puigserver, P.; Wu, Z.; Park, C.W.; Graves, R.; Wright, M.; Spiegelman, B.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92, 829–839. [Google Scholar] [CrossRef]
- Shute, R.J.; Heesch, M.W.; Zak, R.B.; Kreiling, J.L.; Slivka, D.R. Effects of exercise in a cold environment on transcriptional control of PGC-1α. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R850–R857. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen. Med. 2019, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Kneissel, M. WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat. Med. 2013, 19, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. Roles of Runx2 in Skeletal Development. Adv. Exp. Med. Biol. 2017, 962, 83–93. [Google Scholar] [PubMed]
- Schaffler, M.B.; Cheung, W.Y.; Majeska, R.; Kennedy, O. Osteocytes: Master orchestrators of bone. Calcif. Tissue Int. 2014, 94, 5–24. [Google Scholar] [CrossRef]
Feature | Normal Temperature | Cold Environment |
---|---|---|
Bone mass | Normal bone length and thickness, stable BMD. | Shortened bone length, thinner bone thickness, decreased BMD, resulting in decreased bone mass. |
Bone biomechanics | The biomechanical properties of bone are stable, the mineral content and collagen fibres are orderly arranged, and it can effectively resist external forces and provide good mechanical support. | Bone strength and stiffness decrease, elasticity and volume of some bone components increase. |
Bone metabolism | Bone metabolic balance is maintained mainly by the coordinated activity of OBs and OCs. Bone formation markers such as OCN and Col1 have high expression levels, while bone resorption markers such as CTX-1 are low. | Bone metabolic balance is disrupted, and bone resorption activity is enhanced. BAT plays a complex role in bone metabolism regulation. It not only secretes cytokines that promote bone resorption but also promotes bone formation and inhibits bone resorption by increasing certain indicators. |
Skeletal cells | MSCs maintain high proliferation rate and differentiate into OBs, adipocytes, or chondrocytes in balance. Osteogenic differentiation mainly depends on Wnt/β-catenin and BMP signalling pathways. Runx2 and Osterix are highly expressed, which promotes the secretion of Col1 and OCN. The activity of OCs is regulated by the OPG/RANKL ratio, which cooperates with OBs to maintain bone homeostasis. Osteocytes sense mechanical stimulation through dendritic networks and regulate bone formation/resorption. | BMSCs undergo spindle and fibroblast-like changes, proliferation decreases, but osteogenic differentiation is promoted through the p38 MAPK pathway; OBs proliferation decreases; OC proliferation increases; osteocyte apoptosis. |
Bone vascularity | H-type blood vessels support the recruitment of osteoblast precursors and provide the necessary conditions for bone growth. | Interferes with angiogenesis and inhibits bone growth. |
Bone marrow fat | MAT acts as an energy reserve and secretes adiponectin to protect bone mass. | MAT decreases, promoting the differentiation of BMSCs into adipocytes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, L.; Guan, Q.; Zhang, L. Bone Modelling and Remodelling in Cold Environment. Biomolecules 2025, 15, 564. https://doi.org/10.3390/biom15040564
Xue L, Guan Q, Zhang L. Bone Modelling and Remodelling in Cold Environment. Biomolecules. 2025; 15(4):564. https://doi.org/10.3390/biom15040564
Chicago/Turabian StyleXue, Leyi, Qiao Guan, and Lingli Zhang. 2025. "Bone Modelling and Remodelling in Cold Environment" Biomolecules 15, no. 4: 564. https://doi.org/10.3390/biom15040564
APA StyleXue, L., Guan, Q., & Zhang, L. (2025). Bone Modelling and Remodelling in Cold Environment. Biomolecules, 15(4), 564. https://doi.org/10.3390/biom15040564