Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (538)

Search Parameters:
Keywords = plasmon resonance biosensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2815 KiB  
Review
Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics
by Seungah Lee, Nayra A. M. Moussa and Seong Ho Kang
Nanomaterials 2025, 15(15), 1153; https://doi.org/10.3390/nano15151153 - 25 Jul 2025
Viewed by 322
Abstract
Exosomes are nanoscale extracellular vesicles (EVs) that carry biomolecular signatures reflective of their parent cells, making them powerful tools for non-invasive diagnostics and therapeutic monitoring. Despite their potential, clinical application is hindered by challenges such as low abundance, heterogeneity, and the complexity of [...] Read more.
Exosomes are nanoscale extracellular vesicles (EVs) that carry biomolecular signatures reflective of their parent cells, making them powerful tools for non-invasive diagnostics and therapeutic monitoring. Despite their potential, clinical application is hindered by challenges such as low abundance, heterogeneity, and the complexity of biological samples. To address these limitations, plasmonic biosensing technologies—particularly propagating surface plasmon resonance (PSPR), localized surface plasmon resonance (LSPR), and surface-enhanced Raman scattering (SERS)—have been developed to enable label-free, highly sensitive, and multiplexed detection at the single-vesicle level. This review outlines recent advancements in nanoplasmonic platforms for exosome detection and profiling, emphasizing innovations in nanostructure engineering, microfluidic integration, and signal enhancement. Representative applications in oncology, neurology, and immunology are discussed, along with the increasingly critical role of artificial intelligence (AI) in spectral interpretation and diagnostic classification. Key technical and translational challenges—such as assay standardization, substrate reproducibility, and clinical validation—are also addressed. Overall, this review highlights the synergy between exosome biology and plasmonic nanotechnology, offering a path toward real-time, precision diagnostics via sub-femtomolar detection of exosomal miRNAs through next-generation biosensing strategies. Full article
Show Figures

Figure 1

41 pages, 3816 KiB  
Review
Updates on the Advantages and Disadvantages of Microscopic and Spectroscopic Characterization of Magnetotactic Bacteria for Biosensor Applications
by Natalia Lorela Paul, Catalin Ovidiu Popa and Rodica Elena Ionescu
Biosensors 2025, 15(8), 472; https://doi.org/10.3390/bios15080472 - 22 Jul 2025
Viewed by 375
Abstract
Magnetotactic bacteria (MTB), a unique group of Gram-negative prokaryotes, have the remarkable ability to biomineralize magnetic nanoparticles (MNPs) intracellularly, making them promising candidates for various biomedical applications such as biosensors, drug delivery, imaging contrast agents, and cancer-targeted therapies. To fully exploit the potential [...] Read more.
Magnetotactic bacteria (MTB), a unique group of Gram-negative prokaryotes, have the remarkable ability to biomineralize magnetic nanoparticles (MNPs) intracellularly, making them promising candidates for various biomedical applications such as biosensors, drug delivery, imaging contrast agents, and cancer-targeted therapies. To fully exploit the potential of MTB, a precise understanding of the structural, surface, and functional properties of these biologically produced nanoparticles is required. Given these concerns, this review provides a focused synthesis of the most widely used microscopic and spectroscopic methods applied in the characterization of MTB and their associated MNPs, covering the latest research from January 2022 to May 2025. Specifically, various optical microscopy techniques (e.g., transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM)) and spectroscopic approaches (e.g., localized surface plasmon resonance (LSPR), surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS)) relevant to ultrasensitive MTB biosensor development are herein discussed and compared in term of their advantages and disadvantages. Overall, the novelty of this work lies in its clarity and structure, aiming to consolidate and simplify access to the most current and effective characterization techniques. Furthermore, several gaps in the characterization methods of MTB were identified, and new directions of methods that can be integrated into the study, analysis, and characterization of these bacteria are suggested in exhaustive manner. Finally, to the authors’ knowledge, this is the first comprehensive overview of characterization techniques that could serve as a practical resource for both younger and more experienced researchers seeking to optimize the use of MTB in the development of advanced biosensing systems and other biomedical tools. Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
Show Figures

Figure 1

21 pages, 3587 KiB  
Article
Carboxymethyl Dextran-Based Biosensor for Simultaneous Determination of IDO-1 and IFN-Gamma in Biological Material
by Zuzanna Zielinska, Anna Sankiewicz, Natalia Kalinowska, Beata Zelazowska-Rutkowska, Tomasz Guszcz, Leszek Ambroziak, Miroslaw Kondratiuk and Ewa Gorodkiewicz
Biosensors 2025, 15(7), 444; https://doi.org/10.3390/bios15070444 - 10 Jul 2025
Viewed by 298
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO-1) and interferon-gamma (IFN-γ) are proteins that play a significant role in inflammatory conditions and tumor development. The detection of IDO1 and IFN-γ is crucial for understanding their interplay in immune responses. This study introduced a novel method for the [...] Read more.
Indoleamine 2,3-dioxygenase 1 (IDO-1) and interferon-gamma (IFN-γ) are proteins that play a significant role in inflammatory conditions and tumor development. The detection of IDO1 and IFN-γ is crucial for understanding their interplay in immune responses. This study introduced a novel method for the simultaneous quantitative determination of IDO-1 and IFN-γ in different biological samples/materials. The method is based on an optical biosensor, with surface plasmon resonance detection carried out by the imaging version of the sensor (SPRi). Biotinylated antibodies immobilized on the surfaces of the linker and carboxymethylated dextran served as the recognition elements for the developed biosensor. Relevant studies were conducted to optimize the activities of the biosensor by employing appropriate reagent concentrations. Validation was performed for each protein separately; low detection and quantification limits were obtained (for IDO-1 LOD = 0.27 ng/mL, LOQ = 0.81 ng/mL; for IFN-γ LOD = 1.76 pg/mL and LOQ = 5.29 pg/mL). The sensor operating ranges were 0.001–10 ng/mL for IDO-1 and 0.1–1000 pg/mL for IFN-γ. The constructed biosensor demonstrated its sensitivity and precision when the appropriate analytical parameters were determined, based on the proposed method. It can also selectively capture IDO-1 and IFN-γ from a large sample matrix. The biosensor efficiency was confirmed by the determination of IDO-1 and IFN-γ in simultaneous measurements of the plasma and urine samples of patients diagnosed with bladder cancer and the control group. The outcomes were compared to those obtained using a certified ELISA test, demonstrating convergence between the two methodologies. The preliminary findings demonstrate the biosensor’s efficacy and suitability for comprehensive analyses of the examined biological samples. Full article
(This article belongs to the Special Issue Micro/Nanofluidic System-Based Biosensors)
Show Figures

Figure 1

33 pages, 4158 KiB  
Review
Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors
by Waqas Ahmad, Yihuan Wang, Guangqing Du, Qing Yang and Feng Chen
Nanomaterials 2025, 15(12), 943; https://doi.org/10.3390/nano15120943 - 18 Jun 2025
Cited by 1 | Viewed by 861
Abstract
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic [...] Read more.
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic combination of graphene and other functional materials enables superior plasmonic sensitivity, improves biomolecular interaction, and enhances signal transduction. Key focus areas include the fundamental principle of graphene-enhanced SPR, the functional advantages of graphene hybrid platforms, and their recent applications in detecting biomolecules, disease biomarkers, and pathogens. Finally, current limitations and potential future perspectives are discussed, highlighting the transformative potential of these hybrid nanomaterials in next-generation optical biosensing Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Optical Sensors, Second Edition)
Show Figures

Figure 1

33 pages, 571 KiB  
Review
Advanced Biosensing Technologies: Leading Innovations in Alzheimer’s Disease Diagnosis
by Stephen Rathinaraj Benjamin, Fábio de Lima, Paulo Iury Gomes Nunes, Rosa Fireman Dutra, Geanne Matos de Andrade and Reinaldo B. Oriá
Chemosensors 2025, 13(6), 220; https://doi.org/10.3390/chemosensors13060220 - 17 Jun 2025
Viewed by 799
Abstract
Diagnosing Alzheimer’s disease (AD) remains a significant challenge due to its multifactorial nature and the limitations of traditional diagnostic methods, such as clinical assessments and neuroimaging, which often lack the specificity and sensitivity required for early detection. The urgent need for innovative diagnostic [...] Read more.
Diagnosing Alzheimer’s disease (AD) remains a significant challenge due to its multifactorial nature and the limitations of traditional diagnostic methods, such as clinical assessments and neuroimaging, which often lack the specificity and sensitivity required for early detection. The urgent need for innovative diagnostic tools is further underscored by the potential of early intervention to improve treatment outcomes and slow disease progression. Recent advancements in biosensing technologies offer promising solutions for precise and non-invasive AD detection. Electrochemical and optical biosensors, in particular, provide high sensitivity, specificity, and real-time detection capabilities, making them valuable for identifying key biomarkers, including amyloid-β (Aβ) peptides and tau proteins. Additionally, integrating these biosensors with nanomaterials enhances their performance, stability, and detection limits, enabling improved diagnostic accuracy. Beyond nanomaterial-based sensors, emerging innovations in microfluidics, surface plasmon resonance (SPR), and artificial intelligence-assisted biosensing further contribute to the development of next-generation AD diagnostics. This review provides a comprehensive analysis of the latest advancements in biosensing technologies for AD, highlighting their mechanisms, advantages, and future perspectives in detecting biomarkers from biological fluids. Full article
(This article belongs to the Special Issue Electrochemical Sensing in Medical Diagnosis)
Show Figures

Figure 1

21 pages, 13615 KiB  
Article
Real-Time SPR Biosensing to Detect and Characterize Fast Dissociation Rate Binding Interactions Missed by Endpoint Detection and Implications for Off-Target Toxicity Screening
by William Martelly, Rebecca L. Cook, Chidozie Victor Agu, Lydia R. Gushgari, Salvador Moreno, Sailaja Kesiraju, Mukilan Mohan and Bharath Takulapalli
Biomolecules 2025, 15(6), 882; https://doi.org/10.3390/biom15060882 - 17 Jun 2025
Viewed by 527
Abstract
Accurate detection of biomolecular interactions is essential in many areas, from the detection of the presence of biomarkers in the clinic to the development of therapeutic drugs and biologics in biopharma to the understanding of various biological processes in basic research. Traditional endpoint [...] Read more.
Accurate detection of biomolecular interactions is essential in many areas, from the detection of the presence of biomarkers in the clinic to the development of therapeutic drugs and biologics in biopharma to the understanding of various biological processes in basic research. Traditional endpoint approaches can suffer from false-negative results for biomolecular interactions with fast kinetics. By contrast, real-time detection techniques like surface plasmon resonance (SPR) monitor interactions as they form and disassemble, reducing the risk of false-negative results. By leveraging cell-free expressed proteins captured on either glass or SPR biosensors and using two different commercial antibodies with variable off-rates that both target HaloTag antigens as a model, we compare and contrast results from a fluorescence endpoint assay versus real-time sensor-integrated proteome on chip (SPOC®) SPR-based detection. In this study, we illustrate the limitations of the representative immunofluorescent endpoint assay when investigating transient interactions characterized by fast dissociation rates. We highlight the importance of choosing reagents well suited to the selected assay, as well as the importance of considering binding kinetics and protein ligand conformational states when interpreting results from binding assays, especially for applications as critical as the off-target screening of therapeutics. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

22 pages, 9227 KiB  
Review
Review: The Application of MXene in Thermal Energy Storage Materials for Efficient Solar Energy Utilization
by Han Sun, Yingai Jin and Firoz Alam
Materials 2025, 18(12), 2839; https://doi.org/10.3390/ma18122839 - 16 Jun 2025
Viewed by 466
Abstract
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of [...] Read more.
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of the growing interest in MXenes, there are relatively few studies on their applications in phase-change materials for enhancing thermal conductivity and weak photo-responsiveness between 0 °C and 150 °C. Thus, this study aims to provide a current overview of recent developments, to examine how MXenes are made, and to outline the combined effects of different processes that can convert light into heat. This study illustrates the mechanisms that include enhanced broadband photon harvesting through localized surface plasmon resonance, electron–phonon coupling-mediated nonradiative relaxation, and interlayer phonon transport that optimizes thermal diffusion pathways. This study emphasizes that MXene-engineered 3D thermal networks can greatly improve energy storage and heat conversion, solving important problems with phase-change materials (PCMs), like poor heat conductivity and low responsiveness to light. This study also highlights the real-world issues of making MXene-based materials on a large scale, and suggests future research directions for using them in smart thermal management systems and solar thermal grid technologies. Full article
Show Figures

Figure 1

25 pages, 3696 KiB  
Review
Research Progress on Multiplexed Pathogen Detection Using Optical Biosensors
by Yue Wu, Xing Xu, Yinchu Zhu, Jiaxin Wan, Xingbo Wang, Xin Zhou, Xiangjun Li and Weidong Zhou
Biosensors 2025, 15(6), 378; https://doi.org/10.3390/bios15060378 - 12 Jun 2025
Viewed by 1157
Abstract
The rapid and precise identification of multiple pathogens is critical for ensuring food safety, controlling epidemics, diagnosing diseases, and monitoring the environment. However, traditional detection methods are hindered by complex workflows, the need for skilled operators, and reliance on sophisticated equipment, making them [...] Read more.
The rapid and precise identification of multiple pathogens is critical for ensuring food safety, controlling epidemics, diagnosing diseases, and monitoring the environment. However, traditional detection methods are hindered by complex workflows, the need for skilled operators, and reliance on sophisticated equipment, making them unsuitable for rapid, on-site testing. Optical biosensors, known for their rapid analysis, portability, high sensitivity, and multiplexing capabilities, offer a promising solution for simultaneous multi-pathogenic identification. This paper explores recent advancements in the utilization of optical biosensors for multiple pathogenic detection. First, it provides an overview of key sensing principles, focusing on colorimetric, fluorescence-based, surface-enhanced Raman scattering (SERS), and surface plasmon resonance (SPR) techniques, as well as their applications in pathogenic detection. Then, the research progress and practical applications of optical biosensors for multiplex pathogenic detection are discussed in detail from three perspectives: microfluidic devices, nucleic acid amplification technology (NAAT), and nanomaterials. Finally, the challenges presented by optical biosensing technologies in multi-pathogen detection are discussed, along with future prospects and potential innovations in the field. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

47 pages, 1518 KiB  
Review
Advances in MoS2-Based Biosensors: From Material Fabrication and Characterization to Biomedical, Environmental, and Industrial Applications
by Chun-Liang Lai, Arvind Mukundan, Riya Karmakar, Roopmeet Kaur, Kuo-Liang Huang and Hsiang-Chen Wang
Biosensors 2025, 15(6), 371; https://doi.org/10.3390/bios15060371 - 10 Jun 2025
Viewed by 1150
Abstract
The growing demand for low-cost biosensors has stimulated the study of new technologies and materials like molybdenum disulfide (MoS2). Due to its electroconductive nature and high surface-to-volume ratio, it allows for the ultra-sensitive detection of biomarkers. The crystal structure of MoS [...] Read more.
The growing demand for low-cost biosensors has stimulated the study of new technologies and materials like molybdenum disulfide (MoS2). Due to its electroconductive nature and high surface-to-volume ratio, it allows for the ultra-sensitive detection of biomarkers. The crystal structure of MoS2 provides it with a unique micrometer thickness, making it appropriate for biosensing in healthcare, environmental monitoring, and food safety. As compared to traditional materials, MoS2 can work without labels (through field-effect transduction or plasmonic shifts) while maintaining biocompatibility and low-cost fabrication, which fill significant voids in the early diagnosis of diseases. This paper provides an overview of the recent advancements in MoS2-based biosensors, which are primarily focused on the field-effect transistors and surface plasmon resonance techniques and fabrication methods for MoS2-based biosensors like mechanical exfoliation, liquid-phase exfoliation, physical vapor deposition, chemical vapor deposition, and chemical exfoliation, applications in various industries, and their characterization techniques to evaluate the quality and functionality of MoS2 nanosheets in biosensors. While certain challenges remain like improving conductivity and scalability, MoS2-based biosensors serve as a powerful tool for the precise and reliable detection of biomarkers in environmental, food, and healthcare industries. Full article
(This article belongs to the Collection Novel Sensing System for Biomedical Applications)
Show Figures

Figure 1

13 pages, 1417 KiB  
Article
Development of an SPRi Immune Method for the Quantitative Detection of Osteopontin
by Anna Sankiewicz, Beata Żelazowska-Rutkowska, Tomasz Guszcz and Ewa Gorodkiewicz
Sensors 2025, 25(12), 3628; https://doi.org/10.3390/s25123628 - 9 Jun 2025
Viewed by 400
Abstract
Osteopontin (OPN) is a protein that plays many essential functions in the human body. It is present in most tissues and body fluids. OPN, among other things, participates in wound healing, the formation and remodeling of bone, immune response, inflammation, angiogenesis, and tumor [...] Read more.
Osteopontin (OPN) is a protein that plays many essential functions in the human body. It is present in most tissues and body fluids. OPN, among other things, participates in wound healing, the formation and remodeling of bone, immune response, inflammation, angiogenesis, and tumor formation. A new analytical method, based on SPRi (surface plasmon resonance imaging) biosensors, has been developed to determine osteopontin in biological fluids. OPN was captured from a solution by an immobilized antibody (mouse or rabbit), a bioreceptor in the SPRi sensor. A separate validation process was carried out for each antibody used. The LOD and LOQ values obtained for the biosensor with mouse antibody were 0.014 ng mL−1 and 0.043 ng mL−1, respectively, and those obtained for the biosensor with rabbit antibody were 0.018 ng mL−1 and 0.055 ng mL−1, respectively. The response ranges of both biosensors were in a similar range: 0.05–1.00 ng mL−1. OPN was determined in blood plasma to demonstrate the sensor potential, showing good agreement with the data obtained using an ELISA test and reported in the literature. The presented method is characterized by ease and speed of measurement, and the process does not require special preparation of samples. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

30 pages, 3363 KiB  
Review
Surface Plasmon Resonance Aptasensors: Emerging Design and Deployment Landscape
by Fahd Khalid-Salako, Hasan Kurt and Meral Yüce
Biosensors 2025, 15(6), 359; https://doi.org/10.3390/bios15060359 - 4 Jun 2025
Viewed by 733
Abstract
SPR biosensors operate on the principle of evanescent wave propagation at metal–dielectric interfaces in total internal reflection conditions, with consequent photonic energy attenuation. This plasmonic excitation occurs in specific conditions of incident light wavelength, angle, and the dielectric refractive index. This principle has [...] Read more.
SPR biosensors operate on the principle of evanescent wave propagation at metal–dielectric interfaces in total internal reflection conditions, with consequent photonic energy attenuation. This plasmonic excitation occurs in specific conditions of incident light wavelength, angle, and the dielectric refractive index. This principle has been the basis for SPR-based biosensor setups wherein mass/concentration-induced changes in the refractive indices of dielectric media reflect as plasmonic resonance condition changes quantitatively reported as arbitrary response units. SPR biosensors operating on this conceptual framework have been designed to study biomolecular interactions with real-time readout and in label-free setups, providing key kinetic characterization that has been valuable in various applications. SPR biosensors often feature antibodies as target affinity probes. Notably, the operational challenges encountered with antibodies have led to the development of aptamers—oligonucleotide biomolecules rationally designed to adopt tertiary structures, enabling high affinity and specific binding to a wide range of targets. Aptamers have been extensively adopted in SPR biosensor setups with promising clinical and industrial prospects. In this paper, we explore the growing literature on SPR setups featuring aptamers, specifically providing expert commentary on the current state and future implications of these SPR aptasensors for drug discovery as well as disease diagnosis and monitoring. Full article
(This article belongs to the Special Issue Aptamer-Based Biosensors for Point-of-Care Diagnostics)
Show Figures

Graphical abstract

20 pages, 2102 KiB  
Article
The Detection of Different Cancer Types Using an Optimized MoS2-Based Surface Plasmon Resonance Multilayer System
by Talia Tene, Diego Fabián Vique López, Paulina Elizabeth Valverde Aguirre, Adriana Monserrath Monge Moreno and Cristian Vacacela Gomez
Sci 2025, 7(2), 76; https://doi.org/10.3390/sci7020076 - 3 Jun 2025
Cited by 1 | Viewed by 474
Abstract
The early and accurate detection of cancer remains a critical challenge in biomedical diagnostics. In this work, we propose and investigate a novel surface plasmon resonance (SPR) biosensor platform based on a multilayer configuration incorporating copper (Cu), silicon nitride (Si3N4 [...] Read more.
The early and accurate detection of cancer remains a critical challenge in biomedical diagnostics. In this work, we propose and investigate a novel surface plasmon resonance (SPR) biosensor platform based on a multilayer configuration incorporating copper (Cu), silicon nitride (Si3N4), and molybdenum disulfide (MoS2) for the optical detection of various cancer types. Four distinct sensor architectures (Sys1–Sys4) were optimized through the systematic tuning of Cu thickness, Si3N4 dielectric layer thickness, and the number of MoS2 monolayers to enhance sensitivity, angular shift, and spectral sharpness. The optimized systems were evaluated using refractive index data corresponding to six cancer types (skin, cervical, blood, adrenal, breast T1, and breast T2), with performance metrics including sensitivity, detection accuracy, quality factor, figure of merit, limit of detection, and comprehensive sensitivity factor. Among the configurations, Sys3 (BK7–Cu–Si3N4–MoS2) demonstrated the highest sensitivity, reaching 254.64 °/RIU for adrenal cancer, while maintaining a low detection limit and competitive figures of merit. Comparative analysis revealed that the MoS2-based designs, particularly Sys3, outperform conventional noble-metal architectures in terms of sensitivity while using earth-abundant, scalable materials. These results confirm the potential of Cu/Si3N4/MoS2-based SPR biosensors as practical and effective tools for label-free cancer diagnosis across multiple malignancy types. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

13 pages, 629 KiB  
Article
Detection of Cadherin 12 in Plasma and Peritoneal Fluid Among Women with Endometriosis Using Novel Surface Plasmon Resonance Imaging (SPRi) Method
by Ksawery Goławski, Zuzanna Zielińska, Cezary Wojtyła, Łukasz Ołdak, Mariusz Kuźmicki, Sławomir Ławicki, Michał Ciebiera, Tadeusz Issat, Ewa Gorodkiewicz, Piotr Pierzyński and Piotr Laudański
Diagnostics 2025, 15(11), 1366; https://doi.org/10.3390/diagnostics15111366 - 28 May 2025
Viewed by 468
Abstract
Background: Endometriosis is a common gynecological disease linked to significant diagnostic challenges. Cadherin 12 (CDH12), as a member of adhesion molecules, is supposed to be involved in the pathogenesis of this disease and therefore can be a potential biomarker candidate. Methods: In this [...] Read more.
Background: Endometriosis is a common gynecological disease linked to significant diagnostic challenges. Cadherin 12 (CDH12), as a member of adhesion molecules, is supposed to be involved in the pathogenesis of this disease and therefore can be a potential biomarker candidate. Methods: In this study, we analyzed the concentration of CDH12 in plasma and peritoneal fluid samples collected from women with endometriosis and controls, using surface plasmon resonance imaging (SPRi). We collected plasma samples from 96 women and peritoneal fluid from 73 women after laparoscopy due to symptoms/ultrasound findings suggestive of endometriosis. The diagnosis was confirmed histologically. In the collected samples, we measured the concentrations of CDH12 using a novel technique utilizing an SPRi biosensor. Results: We found that peritoneal fluid CDH12 concentrations were lower in women with infertility compared to fertile women. However, we observed no differences in concentration of CDH12 between endometriosis and control groups in both plasma and peritoneal fluid. Additionally, in a study group of patients with confirmed endometriosis, we observed a significant positive correlation of CDH12 concentrations with patients’ age. Overall, plasma concentrations of CDH12 were significantly greater as compared to levels found in peritoneal fluid. Conclusion: Cadherin 12 has not been confirmed to show direct diagnostic potential for endometriosis using the SPRi method, at least in our cohort of patients. Full article
(This article belongs to the Collection Diagnosis of Endometriosis: Biomarkers and Clinical Methods)
Show Figures

Figure 1

15 pages, 902 KiB  
Article
Silver Nanoparticles for Biosensing and Drug Delivery: A Mechanical Study on DNA Interaction
by Katarína Nemčeková, Patrícia Dudoňová, Tomáš Holka, Sabína Balážová, Michaela Hornychová, Viktória Szebellaiová, Monika Naumowicz, Pavol Gemeiner, Tomáš Mackuľak, Miroslav Gál and Veronika Svitková
Biosensors 2025, 15(5), 331; https://doi.org/10.3390/bios15050331 - 21 May 2025
Viewed by 1000
Abstract
Silver nanoparticles (AgNPs) have attracted tremendous attention in recent years due to their unique physicochemical properties, including pronounced surface plasmon resonance, tunable size, and amenability to functionalization. These attributes underpin the growing interest in AgNPs as SMART nanocarriers for targeted drug delivery and [...] Read more.
Silver nanoparticles (AgNPs) have attracted tremendous attention in recent years due to their unique physicochemical properties, including pronounced surface plasmon resonance, tunable size, and amenability to functionalization. These attributes underpin the growing interest in AgNPs as SMART nanocarriers for targeted drug delivery and as active components in biosensing platforms. In this work, we discuss various synthesis strategies for AgNPs—ranging from conventional chemical methods to green approaches—and highlight their subsequent functionalization with anticancer drugs, notably doxorubicin (DOX). We also examine the potential of AgNPs in biosensor applications, emphasizing electrochemical and optical detection modalities capable of monitoring drug release, oxidative stress, and relevant biomarkers. Our experimental data support the conclusion that AgNPs can effectively improve therapeutic efficacy by exploiting tumor-specific conditions (e.g., lower pH) while also enhancing biosensor sensitivity via surface plasmon resonance and electrochemical signal amplification. We provide a thorough discussion of the results, including mechanistic aspects of reactive oxygen species (ROS) generation, drug release kinetics, and sensor performance metrics. Overall, AgNP-based nanocarriers emerge as a powerful platform to address current challenges in precision oncology and medical diagnostics. Full article
(This article belongs to the Special Issue Nanotechnology-Based Biosensors in Drug Delivery)
Show Figures

Graphical abstract

38 pages, 7289 KiB  
Review
The Biomodification and Biomimetic Synthesis of 2D Nanomaterial-Based Nanohybrids for Biosensor Applications: A Review
by Ranran Wang, Xinyue Wang, Yan Wang and Gang Wei
Biosensors 2025, 15(5), 328; https://doi.org/10.3390/bios15050328 - 20 May 2025
Viewed by 900
Abstract
Two-dimensional nanomaterials (2DNMs) exhibit significant potential for the development of functional and specifically targeted biosensors, owing to their unique planar nanosheet structures and distinct physical and chemical properties. Biomodification and biomimetic synthesis offer green and mild approaches for the fabrication of multifunctional nanohybrids [...] Read more.
Two-dimensional nanomaterials (2DNMs) exhibit significant potential for the development of functional and specifically targeted biosensors, owing to their unique planar nanosheet structures and distinct physical and chemical properties. Biomodification and biomimetic synthesis offer green and mild approaches for the fabrication of multifunctional nanohybrids with enhanced catalytic, fluorescent, electronic, and optical properties, thereby expanding their utility in constructing high-performance biosensors. In this review, we present recent advances in the synthesis of 2DNM-based nanohybrids via both biomodification and biomimetic strategies for biosensor applications. We discuss covalent and non-covalent biomodification methods involving various biomolecules, including peptides, proteins, DNA/RNA, enzymes, biopolymers, and bioactive polysaccharides. The engineering of biomolecule–nanomaterial interfaces for the creation of biomodified 2DNM-based nanohybrids is also explored. Furthermore, we summarize the biomimetic synthesis of 2DNM-based bio–nanohybrids through pathways such as bio-templating, biomolecule-directed self-assembly, biomineralization, and biomimetic functional integration. The potential applications of these nanohybrids in diverse biosensing platforms—including colorimetric, surface plasmon resonance, electrochemical, fluorescence, photoelectrochemical, and integrated multimodal biosensors—are introduced and discussed. Finally, we analyze the opportunities and challenges associated with this rapidly developing field. We believe this comprehensive review will provide valuable insights into the biofunctionalization of 2DNMs and guide the rational design of advanced biosensors for diagnostic applications. Full article
(This article belongs to the Special Issue Nano- and Micro-biosensing Technologies)
Show Figures

Figure 1

Back to TopTop