Updates on the Advantages and Disadvantages of Microscopic and Spectroscopic Characterization of Magnetotactic Bacteria for Biosensor Applications
Abstract
1. Introduction
2. Promising Characteristics of Magnetotactic Bacteria in Biomedical Research
2.1. Magnetosomes Formation in MTB
2.2. Biomineralization of Magnetosomes in MTB
3. Data Collection
4. Data Analysis
4.1. Context Analysis
4.2. Content Analysis
5. Microscopic Characterization of MTB
- Techniques for characterizing the internal structure of bacteria
5.1. Transmission Electron Microscopy in the Analysis of MTB
- Techniques for characterizing bacterial surfaces
5.2. Scanning Electron Microscopy in the Analysis of MTB
5.3. Atomic Force Microscopy in the Analysis of MTB
5.4. Magnetic Force Microscopy in the Analysis of MTB
5.5. Spectroscopic Methods for MTB Investigations
5.5.1. Infrared Spectroscopy, Fourier-Transform Infrared
5.5.2. X-Ray Photoelectron Spectroscopy
5.5.3. Localized Surface Plasmon Resonance
5.5.4. Surface-Enhanced Raman Scattering
6. UltrasSensitive Biosensors Using Whole-Cell Magnetotactic Bacteria vs. Their Magnetosomes
6.1. Acoustic Sensing
6.2. Electrochemical Sensing
6.3. Optical Sensing
6.4. Magnetic Sensing
7. Discussions
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, W.; Pan, Y.; Bazylinski, D.A. Diversity and Ecology of and Biomineralization by Magnetotactic Bacteria. Environ. Microbiol. Rep. 2017, 9, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Bazylinski, D.A.; Lefèvre, C.T.; Schüler, D. Magnetotactic Bacteria. In The Prokaryotes: Prokaryotic Physiology and Biochemistry; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 453–494. ISBN 978-3-642-30141-4. [Google Scholar]
- Uebe, R.; Schüler, D. Magnetosome Biogenesis in Magnetotactic Bacteria. Nat. Rev. Microbiol. 2016, 14, 621–637. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Bazylinski, D.A.; Xiao, T.; Wu, L.-F.; Pan, Y. Life with Compass: Diversity and Biogeography of Magnetotactic Bacteria. Environ. Microbiol. 2014, 16, 2646–2658. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Peng, C.; Khan, Z.M.; Naz, I.; Sultan, M. An Overview of Heavy Metal Removal from Wastewater Using Magnetotactic Bacteria. J. Chem. Technol. Biotechnol. 2018, 93, 2817–2832. [Google Scholar] [CrossRef]
- Fuduche, M.; Davidson, S.; Boileau, C.; Wu, L.-F.; Combet-Blanc, Y. A Novel Highly Efficient Device for Growing Micro-Aerophilic Microorganisms. Front. Microbiol. 2019, 10, 534. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Li, J.; Zhang, W.; Zhang, W.; Zhao, Y.; Xiao, T.; Wu, L.-F.; Pan, H. The Detection of Magnetotactic Bacteria in Deep Sea Sediments from the East Pacific Manganese Nodule Province. Environ. Microbiol. Rep. 2016, 8, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Sorty, A.M.; Shaikh, N.R. Novel Co-Enrichment Method for Isolation of Magnetotactic Bacteria. J. Basic. Microbiol. 2015, 55, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Klumpp, S.; Faivre, D. Magnetotactic Bacteria. Eur. Phys. J. Spec. Top. 2016, 225, 2173–2188. [Google Scholar] [CrossRef]
- Rismani Yazdi, S.; Nosrati, R.; Stevens, C.A.; Vogel, D.; Davies, P.L.; Escobedo, C. Magnetotaxis Enables Magnetotactic Bacteria to Navigate in Flow. Small 2018, 14, 1702982. [Google Scholar] [CrossRef] [PubMed]
- Le Nagard, L.; Morillo-López, V.; Fradin, C.; Bazylinski, D.A. Growing Magnetotactic Bacteria of the Genus Magnetospirillum: Strains MSR-1, AMB-1 and MS-1. J. Vis. Exp. 2018, 140, 58536. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Li, X.; Li, X.; Chen, X.; Li, J.-H.; Teng, Z.; Xu, C.; Santini, C.-L.; Zhao, L.; et al. Bacterial Community Structure and Novel Species of Magnetotactic Bacteria in Sediments from a Seamount in the Mariana Volcanic Arc. Sci. Rep. 2017, 7, 17964. [Google Scholar] [CrossRef] [PubMed]
- Goswami, P.; He, K.; Li, J.; Pan, Y.; Roberts, A.P.; Lin, W. Magnetotactic Bacteria and Magnetofossils: Ecology, Evolution and Environmental Implications. NPJ Biofilms Microbiomes 2022, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Paul, N.L.; Carpa, R.; Ionescu, R.E.; Popa, C.O. The Biomedical Limitations of Magnetic Nanoparticles and a Biocompatible Alternative in the Form of Magnetotactic Bacteria. J. Funct. Biomater. 2025, 16, 231. [Google Scholar] [CrossRef]
- Wang, J.; Xing, Y.; Ngatio, M.; Bies, P.; Xu, L.L.; Xing, L.; Zarea, A.; Makela, A.V.; Contag, C.H.; Li, J. Engineering Magnetotactic Bacteria as Medical Microrobots. Adv. Mater. 2025, 37, 2416966. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Zhou, X.; Long, R.; Xie, M.; Kankala, R.K.; Wang, S.; Zhang, Y.S.; Liu, Y. Biomedical Applications of Magnetosomes: State of the Art and Perspectives. Bioact. Mater. 2023, 28, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhang, S.; Chen, P.; Liu, H.; Yin, H.; Li, H. Magnetotactic Bacteria, Magnetosomes and Their Application. Microbiol. Res. 2012, 167, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Avalos, D.; Leão, P.; Abreu, F.; Bazylinski, D.A. Magnetotaxis☆. In Encyclopedia of Microbiology, 4th ed.; Schmidt, T.M., Ed.; Academic Press: Oxford, UK, 2019; pp. 1–17. ISBN 978-0-12-811737-8. [Google Scholar]
- Lefèvre, C.T.; Bazylinski, D.A. Ecology, Diversity, and Evolution of Magnetotactic Bacteria. Microbiol. Mol. Biol. Rev. 2013, 77, 497–526. [Google Scholar] [CrossRef] [PubMed]
- Faivre, D.; Böttger, L.H.; Matzanke, B.F.; Schüler, D. Intracellular Magnetite Biomineralization in Bacteria Proceeds by a Distinct Pathway Involving Membrane-Bound Ferritin and an Iron(II) Species. Angew. Chem. Int. Ed. 2007, 46, 8495–8499. [Google Scholar] [CrossRef] [PubMed]
- Tada, Y.; Yang, P.C. Iron Oxide Labeling and Tracking of Extracellular Vesicles. Magnetochemistry 2019, 5, 60. [Google Scholar] [CrossRef]
- Wan, J.; Ji, R.; Liu, J.; Ma, K.; Pan, Y.; Lin, W. Biomineralization in Magnetotactic Bacteria: From Diversity to Molecular Discovery-Based Applications. Cell Rep. 2024, 43, 114995. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, D.; Marcano, L.; Martín-Rodríguez, R.; Simonelli, L.; Serrano, A.; García-Prieto, A.; Fdez-Gubieda, M.L.; Muela, A. Magnetosomes Could Be Protective Shields against Metal Stress in Magnetotactic Bacteria. Sci. Rep. 2020, 10, 11430. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Wan, J.; Liu, J.; Zheng, J.; Xiao, T.; Pan, Y.; Lin, W. Linking Morphology, Genome, and Metabolic Activity of Uncultured Magnetotactic Nitrospirota at the Single-Cell Level. Microbiome 2024, 12, 158. [Google Scholar] [CrossRef] [PubMed]
- Jefremovas, E.M.; Gandarias, L.; Marcano, L.; Gacía-Prieto, A.; Orue, I.; Muela, A.; Fdez-Gubieda, M.L.; Fernández Barquín, L.; Alonso, J. Modifying the Magnetic Response of Magnetotactic Bacteria: Incorporation of Gd and Tb Ions into the Magnetosome Structure. Nanoscale Adv. 2022, 4, 2649–2659. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, H.; Menguy, N.; Benzerara, K.; Wang, F.; Lin, X.; Chen, Z.; Pan, Y. Single-Cell Resolution of Uncultured Magnetotactic Bacteria via Fluorescence-Coupled Electron Microscopy. Appl. Environ. Microbiol. 2017, 83, e00409-17. [Google Scholar] [CrossRef] [PubMed]
- Basit, A.; Wang, J.; Guo, F.; Niu, W.; Jiang, W. Improved Methods for Mass Production of Magnetosomes and Applications: A Review. Microb. Cell Factories 2020, 19, 197. [Google Scholar] [CrossRef] [PubMed]
- Peddie, C.J.; Genoud, C.; Kreshuk, A.; Meechan, K.; Micheva, K.D.; Narayan, K.; Pape, C.; Parton, R.G.; Schieber, N.L.; Schwab, Y.; et al. Volume Electron Microscopy. Nat. Rev. Methods Primers 2022, 2, 51. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Korkmaz, N.; Cycil, L.M.; Hasan, F. Isolation, Microscopic and Magnetotactic Characterization of Magnetospirillum Moscoviense MS-24 from Banjosa Lake, Pakistan. Biotechnol. Lett. 2023, 45, 967–979. [Google Scholar] [CrossRef] [PubMed]
- Egerton, R.F. Choice of Operating Voltage for a Transmission Electron Microscope. Ultramicroscopy 2014, 145, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Malatesta, M. Transmission Electron Microscopy as a Powerful Tool to Investigate the Interaction of Nanoparticles with Subcellular Structures. Int. J. Mol. Sci. 2021, 22, 12789. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, H.; Han, Y. Applications of Transmission Electron Microscopy in Phase Engineering of Nanomaterials. Chem. Rev. 2023, 123, 10728–10749. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.Y.; Yang, Z. Chapter 8—Transmission Electron Microscopy (TEM). In Membrane Characterization; Hilal, N., Ismail, A.F., Matsuura, T., Oatley-Radcliffe, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 145–159. ISBN 978-0-444-63776-5. [Google Scholar]
- Harris, J.R. Transmission Electron Microscopy in Molecular Structural Biology: A Historical Survey. Arch. Biochem. Biophys. 2015, 581, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Franken, L.E.; Grünewald, K.; Boekema, E.J.; Stuart, M.C.A. A Technical Introduction to Transmission Electron Microscopy for Soft-Matter: Imaging, Possibilities, Choices, and Technical Developments. Small 2020, 16, 1906198. [Google Scholar] [CrossRef] [PubMed]
- Bazylinski, D.A.; Garratt-Reed, A.J.; Frankel, R.B. Electron Microscopic Studies of Magnetosomes in Magnetotactic Bacteria. Microsc. Res. Tech. 1994, 27, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Orue, I.; Marcano, L.; Bender, P.; García-Prieto, A.; Valencia, S.; Mawass, M.A.; Gil-Cartón, D.; Venero, D.A.; Honecker, D.; García-Arribas, A.; et al. Configuration of the Magnetosome Chain: A Natural Magnetic Nanoarchitecture. Nanoscale 2018, 10, 7407–7419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Roberts, A.P.; Ge, S.; Liu, Y.; Liu, J.; Liu, S.; Tang, X.; Wang, H.; Wang, D.; Li, J.; et al. Interpretation of Anhysteretic Remanent Magnetization Carriers in Magnetofossil-Rich Marine Sediments. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024432. [Google Scholar] [CrossRef]
- Kadam, N.; Badesab, F.; Lascu, I.; Wagner, C.L.; Gaikwad, V.; Saha, A.; Sangode, S.; Venkateshwarlu, M. Discovery of Late Quaternary Giant Magnetofossils in the Bay of Bengal. Commun. Earth Env. 2024, 5, 107. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y. Formation and Preservation Mechanisms of Magnetofossils in the Surface Sediments of Muddy Areas in the Yellow and Bohai Seas, China. Mar. Geol. 2024, 477, 107401. [Google Scholar] [CrossRef]
- Masó-Martínez, M.; Fryer, B.; Aubert, D.; Peacock, B.; Lees, R.; Rance, G.A.; Fay, M.W.; Topham, P.D.; Fernández-Castané, A. Evaluation of Cell Disruption Technologies on Magnetosome Chain Length and Aggregation Behaviour from Magnetospirillum Gryphiswaldense MSR-1. Front. Bioeng. Biotechnol. 2023, 11, 1172457. [Google Scholar] [CrossRef] [PubMed]
- Gandia, D.; Marcano, L.; Gandarias, L.; Villanueva, D.; Orue, I.; Abrudan, R.M.; Valencia, S.; Rodrigo, I.; Ángel García, J.; Muela, A.; et al. Tuning the Magnetic Response of Magnetospirillum Magneticum by Changing the Culture Medium: A Straightforward Approach to Improve Their Hyperthermia Efficiency. ACS Appl. Mater. Interfaces 2023, 15, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Huerta, A.; Cappelli, C.; Jabalera, Y.; Prozorov, T.; Jimenez-Lopez, C.; Bazylinski, D.A. Biogeochemical Fingerprinting of Magnetotactic Bacterial Magnetite. Proc. Natl. Acad. Sci. USA 2022, 119, e2203758119. [Google Scholar] [CrossRef] [PubMed]
- Carvallo, C.; Fondet, A.; Le Fèvre, R.; Taverna, D.; Guyodo, Y.; Chebbi, I.; Dupuis, V.; Lagroix, F.; Khelfallah, M.; Guigner, J.-M.; et al. Magnetic and Structural Properties of Biogenic Magnetic Nanoparticles along Their Production Process for Use in Magnetic Hyperthermia. J. Magn. Magn. Mater. 2023, 575, 170726. [Google Scholar] [CrossRef]
- Chen, S.; Yu, M.; Zhang, W.; He, K.; Pan, H.; Cui, K.; Zhao, Y.; Zhang, X.-H.; Xiao, T.; Zhang, W.; et al. Metagenomic and Microscopic Analysis of Magnetotactic Bacteria in Tangyin Hydrothermal Field of Okinawa Trough. Front. Microbiol. 2022, 13, 887136. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, P.; Menguy, N.; Benzerara, K.; Bai, J.; Zhao, X.; Leroy, E.; Zhang, C.; Zhang, H.; Liu, J.; et al. Identification of Sulfate-Reducing Magnetotactic Bacteria via a Group-Specific 16S rDNA Primer and Correlative Fluorescence and Electron Microscopy: Strategy for Culture-Independent Study. Environ. Microbiol. 2022, 24, 5019–5038. [Google Scholar] [CrossRef] [PubMed]
- Marcano, L.; Orue, I.; Gandia, D.; Gandarias, L.; Weigand, M.; Abrudan, R.M.; García-Prieto, A.; García-Arribas, A.; Muela, A.; Fdez-Gubieda, M.L.; et al. Magnetic Anisotropy of Individual Nanomagnets Embedded in Biological Systems Determined by Axi-Asymmetric X-Ray Transmission Microscopy. ACS Nano 2022, 16, 7398–7408. [Google Scholar] [CrossRef] [PubMed]
- Marqués-Marchán, J.; Jaafar, M.; Ares, P.; Gubieda, A.G.; Berganza, E.; Abad, A.; Fdez-Gubieda, M.L.; Asenjo, A. Magnetic Imaging of Individual Magnetosome Chains in Magnetotactic Bacteria. Biomater. Adv. 2024, 163, 213969. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, M.K.; Ryan, D.P.; Goodwin, P.M.; Sheehan, C.J.; Werner, J.H.; Majumder, S.; Hollingsworth, J.A.; Gelfand, M.P.; Van Orden, A. Nanoscale Imaging of Quantum Dot Dimers Using Time-Resolved Super-Resolution Microscopy Combined with Scanning Electron Microscopy. Nanotechnology 2023, 34, 275202. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.I.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Lyman, C.E.; Lifshin, E.; Sawyer, L.; Michael, J.R. Scanning Electron Microscopy and X-ray Microanalysis: Third Edition; Springer: Boston, MA, USA, 2003; ISBN 978-1-4613-4969-3. [Google Scholar]
- Goldstein, J.I.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Lyman, C.E.; Lifshin, E.; Sawyer, L.; Michael, J.R. Ambient-Temperature Specimen Preparation of Biological Material. In Scanning Electron Microscopy and X-ray Microanalysis: Third Edition; Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Lyman, C.E., Lifshin, E., Sawyer, L., Michael, J.R., Eds.; Springer: Boston, MA, USA, 2003; pp. 591–619. [Google Scholar]
- Goldstein, J.I.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Lyman, C.E.; Lifshin, E.; Sawyer, L.; Michael, J.R. Electron Beam–Specimen Interactions. In Scanning Electron Microscopy and X-ray Microanalysis: Third Edition; Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Lyman, C.E., Lifshin, E., Sawyer, L., Michael, J.R., Eds.; Springer: Boston, MA, USA, 2003; pp. 61–98. ISBN 978-1-4615-0215-9. [Google Scholar]
- Sacco, M.A.; Gualtieri, S.; Santos, A.; Mendes, B.; Raffaele, R.; Tarallo, A.P.; Verrina, M.C.; Ranno, F.; Monterossi, M.D.; Ricci, P.; et al. Scanning Electron Microscopy Techniques in the Analysis of Gunshot Residues: A Literature Review. Appl. Sci. 2025, 15, 2634. [Google Scholar] [CrossRef]
- Abd Mutalib, M.; Rahman, M.A.; Othman, M.H.D.; Ismail, A.F.; Jaafar, J. Chapter 9—Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy. In Membrane Characterization; Hilal, N., Ismail, A.F., Matsuura, T., Oatley-Radcliffe, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 161–179. ISBN 978-0-444-63776-5. [Google Scholar]
- Goldstein, J.I.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Lyman, C.E.; Lifshin, E.; Sawyer, L.; Michael, J.R. Specimen Preparation of Hard Materials: Metals, Ceramics, Rocks, Minerals, Microelectronic and Packaged Devices, Particles, and Fibers. In Scanning Electron Microscopy and X-ray Microanalysis: Third Edition; Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Lyman, C.E., Lifshin, E., Sawyer, L., Michael, J.R., Eds.; Springer: Boston, MA, USA, 2003; pp. 537–564. ISBN 978-1-4615-0215-9. [Google Scholar]
- Bektas, I.; Yildirim, N.B. Molecular Characterization of Bacterial Cellulose Producing Bacillus Strains Isolated From Soil. J. Basic. Microbiol. 2025, 65, e70026. [Google Scholar] [CrossRef] [PubMed]
- Oestreicher, Z.; Pérez-Guzmán, L.; Casillas-Ituarte, N.N.; Hostetler, M.R.; Mumper, E.; Bazylinski, D.A.; Lower, S.K.; Lower, B.H. Thermophilic Magnetotactic Bacteria from Mickey Hot Springs, an Arsenic-Rich Hydrothermal System in Oregon. ACS Earth Space Chem. 2022, 6, 530–540. [Google Scholar] [CrossRef]
- Schaible, G.A.; Kohtz, A.J.; Cliff, J.; Hatzenpichler, R. Correlative SIP-FISH-Raman-SEM-NanoSIMS Links Identity, Morphology, Biochemistry, and Physiology of Environmental Microbes. ISME Commun. 2022, 2, 52. [Google Scholar] [CrossRef] [PubMed]
- Muangkaew, W.; Thanomsridetchai, N.; Tangwattanachuleeporn, M.; Ampawong, S.; Sukphopetch, P. Unveiling Lodderomyces Elongisporus as an Emerging Yeast Pathogen: A Holistic Approach to Microbiological Diagnostic Strategies. Mycopathologia 2024, 189, 94. [Google Scholar] [CrossRef] [PubMed]
- Kontomaris, S.V.; Stylianou, A.; Chliveros, G.; Malamou, A. Overcoming Challenges and Limitations Regarding the Atomic Force Microscopy Imaging and Mechanical Characterization of Nanofibers. Fibers 2023, 11, 83. [Google Scholar] [CrossRef]
- Magazzù, A.; Marcuello, C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. Nanomaterials 2023, 13, 963. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Shaikh, H.; Abbas, A.; Zehra, K.E.; Javed, B. Microscopic Techniques for Nanomaterials Characterization: A Concise Review. Microsc. Res. Tech. 2024, 88, 1599–1614. [Google Scholar] [CrossRef] [PubMed]
- Bîrleanu, C.; Pustan, M.; Șerdean, F.; Merie, V. AFM Nanotribomechanical Characterization of Thin Films for MEMS Applications. Micromachines 2021, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Joshi, J.; Homburg, S.V.; Ehrmann, A. Atomic Force Microscopy (AFM) on Biopolymers and Hydrogels for Biotechnological Applications—Possibilities and Limits. Polymers 2022, 14, 1267. [Google Scholar] [CrossRef] [PubMed]
- Parvej, M.S.; Wang, X.; Jiang, L. AFM Based Nanomechanical Characterization of Cellulose Nanofibril. J. Compos. Mater. 2020, 54, 4487–4493. [Google Scholar] [CrossRef]
- Xia, F.; Youcef-Toumi, K. Review: Advanced Atomic Force Microscopy Modes for Biomedical Research. Biosensors 2022, 12, 1116. [Google Scholar] [CrossRef] [PubMed]
- Duverger, W.; Tsaka, G.; Khodaparast, L.; Khodaparast, L.; Louros, N.; Rousseau, F.; Schymkowitz, J. An End-to-End Approach for Single-Cell Infrared Absorption Spectroscopy of Bacterial Inclusion Bodies: From AFM-IR Measurement to Data Interpretation of Large Sample Sets. J. Nanobiotechnol 2024, 22, 406. [Google Scholar] [CrossRef] [PubMed]
- Gulati, K.; Adachi, T. Profiling to Probing: Atomic Force Microscopy to Characterize Nano-Engineered Implants. Acta Biomater. 2023, 170, 15–38. [Google Scholar] [CrossRef] [PubMed]
- Winkler, R.; Ciria, M.; Ahmad, M.; Plank, H.; Marcuello, C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. Nanomaterials 2023, 13, 2585. [Google Scholar] [CrossRef] [PubMed]
- Joshua, A.M.; Cheng, G.; Lau, E.V. Soft Matter Analysis via Atomic Force Microscopy (AFM): A Review. Appl. Surf. Sci. Adv. 2023, 17, 100448. [Google Scholar] [CrossRef]
- Temiryazev, A.G.; Krayev, A.V.; Temiryazeva, M.P. Two Dynamic Modes to Streamline Challenging Atomic Force Microscopy Measurements. Beilstein J. Nanotechnol. 2021, 12, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, K.; Zhang, W.; Hou, Y.; Chen, Y. Multifunctional Cantilevers for Simultaneous Enhancement of Contact Resonance and Harmonic Atomic Force Microscopy. Nanotechnology 2021, 32, 295505. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Feng, H.; Zhao, Y.; Shi, Y.; Feng, W.; Loh, X.J.; Vancso, G.J.; Guo, S. AFM-Based Nanomechanics and Machine Learning for Rapid and Non-Destructive Detection of Bacterial Viability. Cell Rep. Phys. Sci. 2024, 5, 101902. [Google Scholar] [CrossRef]
- Efremov, Y.M.; Suter, D.M.; Timashev, P.S.; Raman, A. 3D Nanomechanical Mapping of Subcellular and Sub-Nuclear Structures of Living Cells by Multi-Harmonic AFM with Long-Tip Microcantilevers. Sci. Rep. 2022, 12, 529. [Google Scholar] [CrossRef] [PubMed]
- Shahina, Z.; Bhat, S.V.; Ndlovu, E.; Sultana, T.; Körnig, A.; Dague, É.; Dahms, T.E.S. Cellulomics of Live Yeast by Advanced and Correlative Microscopy. In Laboratory Protocols in Fungal Biology: Current Methods in Fungal Biology; Gupta, V.K., Tuohy, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 159–174. ISBN 978-3-030-83749-5. [Google Scholar]
- Marcuello, C. Present and Future Opportunities in the Use of Atomic Force Microscopy to Address the Physico-Chemical Properties of Aquatic Ecosystems at the Nanoscale Level. Int. Aquat. Res. 2022, 14, 231–240. [Google Scholar] [CrossRef]
- Lefèvre, C.T.; Bernadac, A.; Yu-Zhang, K.; Pradel, N.; Wu, L.-F. Isolation and Characterization of a Magnetotactic Bacterial Culture from the Mediterranean Sea. Environ. Microbiol. 2009, 11, 1646–1657. [Google Scholar] [CrossRef] [PubMed]
- Frankel, R.B.; Bazylinski, D.A.; Johnson, M.S.; Taylor, B.L. Magneto-Aerotaxis in Marine Coccoid Bacteria. Biophys. J. 1997, 73, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Oestreicher, Z.; Valverde-Tercedor, C.; Chen, L.; Jimenez-Lopez, C.; Bazylinski, D.A.; Casillas-Ituarte, N.N.; Lower, S.K.; Lower, B.H. Magnetosomes and Magnetite Crystals Produced by Magnetotactic Bacteria as Resolved by Atomic Force Microscopy and Transmission Electron Microscopy. Micron 2012, 43, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Zahn, C.; Keller, S.; Toro-Nahuelpan, M.; Dorscht, P.; Gross, W.; Laumann, M.; Gekle, S.; Zimmermann, W.; Schüler, D.; Kress, H. Measurement of the Magnetic Moment of Single Magnetospirillum Gryphiswaldense Cells by Magnetic Tweezers. Sci. Rep. 2017, 7, 3558. [Google Scholar] [CrossRef] [PubMed]
- Šoltýs, J.; Feilhauer, J.; Vetrova, I.; Tóbik, J.; Bublikov, K.; Ščepka, T.; Fedor, J.; Dérer, J.; Cambel, V. Magnetic-Field Imaging Using Vortex-Core MFM Tip. Appl. Phys. Lett. 2020, 116, 242406. [Google Scholar] [CrossRef]
- Stiufiuc, G.F.; Stiufiuc, R.I. Magnetic Nanoparticles: Synthesis, Characterization, and Their Use in Biomedical Field. Appl. Sci. 2024, 14, 1623. [Google Scholar] [CrossRef]
- Shimoshige, H.; Nakajima, Y.; Kobayashi, H.; Yanagisawa, K.; Nagaoka, Y.; Shimamura, S.; Mizuki, T.; Inoue, A.; Maekawa, T. Formation of Core-Shell Nanoparticles Composed of Magnetite and Samarium Oxide in Magnetospirillum Magneticum Strain RSS-1. PLoS ONE 2017, 12, e0170932. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yu, L.; Zhou, P.; Wang, G.; Xu, B.; Cheng, Z.; Xu, W. Properties of Magnetite Nanoparticles Produced by Magnetotactic Bacteria. J. Wuhan. Univ. Technol.-Mat. Sci. Edit. 2014, 29, 1317–1322. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, L.; Li, L.; Feng, C.; Cao, Y. Innovative Progress of LSPR-Based Dark-Field Scattering Spectral Imaging in the Biomedical Assay at the Single-Particle Level. ChemistryOpen 2025, 14, e202400017. [Google Scholar] [CrossRef] [PubMed]
- Fathollahi Arani, S.; Zeinoddini, M.; Saeedinia, A.R.; Danesh, N.M.; Robatjazi, S.M. LSPR-Based Colorimetric Aptasensor Design for Rapid and Simple Detection of Vibrio Cholerae O1. Appl. Biochem. Microbiol. 2024, 60, 967–975. [Google Scholar] [CrossRef]
- Tang, L.; Casas, J.; Venkataramasubramani, M. Magnetic Nanoparticle Mediated Enhancement of Localized Surface Plasmon Resonance for Ultrasensitive Bioanalytical Assay in Human Blood Plasma. Anal. Chem. 2013, 85, 1431–1439. [Google Scholar] [CrossRef] [PubMed]
- Mostufa, S.; Rezaei, B.; Azizi, E.; Wang, Y.A.; Li, C.; Gómez-Pastora, J.; He, R.; Wu, K. Characterizing the Physicochemical Properties of Magnetic Nanoparticles by a Surface Plasmon Resonance Approach. AIP Adv. 2025, 15, 035022. [Google Scholar] [CrossRef]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-Enhanced Raman Spectroscopy. Nat. Rev. Methods Primers 2022, 1, 87. [Google Scholar] [CrossRef]
- Wang, C.; Meloni, M.M.; Wu, X.; Zhuo, M.; He, T.; Wang, J.; Wang, C.; Dong, P. Magnetic Plasmonic Particles for SERS-Based Bacteria Sensing: A Review. AIP Adv. 2019, 9, 010701. [Google Scholar] [CrossRef]
- Cheng, S.; Tu, Z.; Zheng, S.; Khan, A.; Yang, P.; Shen, H.; Gu, B. Development of a Magnetically-Assisted SERS Biosensor for Rapid Bacterial Detection. Int. J. Nanomed. 2024, 19, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Pramanik, S.; Alghamdi, S.; Atwah, B.; Qusty, N.F.; Babalghith, A.O.; Solanki, V.S.; Agarwal, N.; Gupta, N.; Niazi, P.; et al. Therapeutic Innovations in Nanomedicine: Exploring the Potential of Magnetotactic Bacteria and Bacterial Magnetosomes. Int. J. Nanomed. 2025, 20, 403–444. [Google Scholar] [CrossRef] [PubMed]
- Mobed, A.; Darvishi, M.; Kohansal, F.; Dehfooli, F.M.; Alipourfard, I.; Tahavvori, A.; Ghazi, F. Biosensors; Nanomaterial-Based Methods in Diagnosing of Mycobacterium tuberculosis. J. Clin. Tuberc. Other Mycobact. Dis. 2024, 34, 100412. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ji, X.; Lu, S.; Du, J. Shining a Light on Environmental Science: Recent Advances in SERS Technology for Rapid Detection of Persistent Toxic Substances. J. Environ. Sci. 2025, 153, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Rostami, B.; Nansen, C. Application of Active Acoustic Transducers in Monitoring and Assessment of Terrestrial Ecosystem Health—A Review—Rostami—2022—Methods in Ecology and Evolution—Wiley Online Library. Available online: https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.14004 (accessed on 13 May 2025).
- Viggen, E.M.; Arnestad, H.K. Modelling Acoustic Radiation from Vibrating Surfaces around Coincidence: Radiation into Fluids. J. Sound Vib. 2023, 560, 117787. [Google Scholar] [CrossRef]
- Gouda, M.; Ghazzawy, H.S.; Alqahtani, N.; Li, X. The Recent Development of Acoustic Sensors as Effective Chemical Detecting Tools for Biological Cells and Their Bioactivities. Molecules 2023, 28, 4855. [Google Scholar] [CrossRef] [PubMed]
- Borodina, I.A.; Zaitsev, B.D.; Alsowaidi, A.K.M.; Karavaeva, O.A.; Guliy, O.I. A Biological Sensor Based on the Acoustic Slot Mode Using Microbial Cells for the Determination of Ampicillin. Acoust. Phys. 2022, 68, 537–541. [Google Scholar] [CrossRef]
- Nair, M.P.; Teo, A.J.T.; Li, K.H.H. Acoustic Biosensors and Microfluidic Devices in the Decennium: Principles and Applications. Micromachines 2022, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Minakov, A.V.; Pryazhnikov, M.I.; Damdinov, B.B.; Nemtsev, I.V. Acoustic Spectroscopy Study of the Bulk Viscosity of Nanosuspensions. Acoust. Phys. 2022, 68, 155–161. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef] [PubMed]
- Guliy, O.I.; Zaitsev, B.D.; Semyonov, A.P.; Alsowaidi, A.K.M.; Teplykh, A.A.; Karavaeva, O.A.; Borodina, I.A. Microbial Acoustic Sensor Test-System Based on a Piezoelectric Resonator with a Lateral Electric Field for Kanamycin Detection in Liquid. Ultrasonics 2022, 120, 106651. [Google Scholar] [CrossRef] [PubMed]
- Durukan, Y.; Shevelko, M.; Peregudov, A.; Popkova, E.; Shevchenko, S. The Effect of a Rotating Medium on Bulk Acoustic Wave Polarization: From Theoretical Considerations to Perspective Angular Motion Sensor Design. Sensors 2020, 20, 2487. [Google Scholar] [CrossRef] [PubMed]
- Länge, K. Bulk and Surface Acoustic Wave Biosensors for Milk Analysis. Biosensors 2022, 12, 602. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Kumar, A. Recent Trends in Nanostructured Carbon-Based Electrochemical Sensors for the Detection and Remediation of Persistent Toxic Substances in Real-Time Analysis. Mater. Res. Express 2023, 10, 034001. [Google Scholar] [CrossRef]
- Mousaabadi, K.Z.; Ensafi, A.A.; Rezaei, B. Simultaneous Determination of Some Opioid Drugs Using Cu-Hemin MOF@MWCNTs as an Electrochemical Sensor. Chemosphere 2022, 303, 135149. [Google Scholar] [CrossRef] [PubMed]
- Christ-Ribeiro, A.; Maciel, J.V.; Bier, E.M.; Pinto, J.S.; Dias, D. Application of Electrochemical Sensors in the Determination of Synthetic Dyes in Foods or Beverages and Their Toxicological Effects on Human Health: A Review. Food Anal. Methods 2022, 15, 2394–2413. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, W.; Fu, L.; Lorenzo, J.M.; Hao, Y. Fabrication and Application of Electrochemical Sensor for Analyzing Hydrogen Peroxide in Food System and Biological Samples. Food Chem. 2022, 385, 132555. [Google Scholar] [CrossRef] [PubMed]
- Hulanicki, A.; Glab, S.; Ingman, F. Chemical Sensors: Definitions and Classification. Pure Appl. Chem. 1991, 63, 1247–1250. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Barhoum, A.; Hamimed, S.; Slimi, H.; Othmani, A.; Abdel-Haleem, F.M.; Bechelany, M. Modern Designs of Electrochemical Sensor Platforms for Environmental Analyses: Principles, Nanofabrication Opportunities, and Challenges. Trends Environ. Anal. Chem. 2023, 38, e00199. [Google Scholar] [CrossRef]
- Bhattacharyya, A.S. Conducting Polymers in Biosensing: A Review. Chem. Phys. Impact 2024, 8, 100642. [Google Scholar] [CrossRef]
- He, Q.; Wang, B.; Liang, J.; Liu, J.; Liang, B.; Li, G.; Long, Y.; Zhang, G.; Liu, H. Research on the construction of portable electrochemical sensors for environmental compounds quality monitoring. Mater. Today Adv. 2023, 17, 100340. [Google Scholar] [CrossRef]
- Maheshwaran, S.; Chen, W.-H.; Lin, S.-L.; Ghorbani, M.; Hoang, A.T. Metal Oxide-Based Electrochemical Sensors for Pesticide Detection in Water and Food Samples: A Review. Environ. Sci. Adv. 2024, 3, 154–176. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.C.; Soltis, I.; Lee, S.H.; Yeo, W.-H. Advances in Electrochemical Sensors for Detecting Analytes in Biofluids. Adv. Sens. Res. 2023, 2, 2200088. [Google Scholar] [CrossRef]
- Lin, T.; Xu, Y.; Zhao, A.; He, W.; Xiao, F. Flexible Electrochemical Sensors Integrated with Nanomaterials for in Situ Determination of Small Molecules in Biological Samples: A Review. Anal. Chim. Acta 2022, 1207, 339461. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Ma, X.; Sailjoi, A.; Zou, Y.; Lin, X.; Yan, F.; Su, B.; Liu, J. Vertical Silica Nanochannels Supported by Nanocarbon Composite for Simultaneous Detection of Serotonin and Melatonin in Biological Fluids. Sens. Actuators B Chem. 2022, 353, 131101. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, R.; Bansal, D.; Bhateria, R.; Sharma, M. A Review on Recent Trends and Future Developments in Electrochemical Sensing. ACS Omega 2024, 9, 7336–7356. [Google Scholar] [CrossRef] [PubMed]
- Boonkaew, S.; Jang, I.; Noviana, E.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Electrochemical Paper-Based Analytical Device for Multiplexed, Point-of-Care Detection of Cardiovascular Disease Biomarkers. Sens. Actuators B Chem. 2021, 330, 129336. [Google Scholar] [CrossRef]
- Crapnell, R.D.; Ferrari, A.G.-M.; Dempsey, N.C.; Banks, C.E. Electroanalytical Overview: Screen-Printed Electrochemical Sensing Platforms for the Detection of Vital Cardiac, Cancer and Inflammatory Biomarkers. Sens. Diagn. 2022, 1, 405–428. [Google Scholar] [CrossRef]
- Fessler, M.; Su, Q.; Jensen, M.M.; Zhang, Y. Electroactivity of the Magnetotactic Bacteria Magnetospirillum Magneticum AMB-1 and Magnetospirillum Gryphiswaldense MSR-1. Front. Environ. Sci. Eng. 2023, 18, 48. [Google Scholar] [CrossRef]
- Nakhlband, A.; Kholafazad-Kordasht, H.; Rahimi, M.; Mokhtarzadeh, A.; Soleymani, J. Applications of Magnetic Materials in the Fabrication of Microfluidic-Based Sensing Systems: Recent Advances. Microchem. J. 2022, 173, 107042. [Google Scholar] [CrossRef]
- Revathy, R.; Sajini, T.; Augustine, C.; Joseph, N. Iron-Based Magnetic Nanomaterials: Sustainable Approaches of Synthesis and Applications. Results Eng. 2023, 18, 101114. [Google Scholar] [CrossRef]
- Jeyakumar, P.; Debnath, C.; Vijayaraghavan, R.; Muthuraj, M. Trends in Bioremediation of Heavy Metal Contaminations. Environ. Eng. Res. 2023, 28, 220631. [Google Scholar] [CrossRef]
- Adampourezare, M.; Hasanzadeh, M.; Hoseinpourefeizi, M.-A.; Seidi, F. Iron/Iron Oxide-Based Magneto-Electrochemical Sensors/Biosensors for Ensuring Food Safety: Recent Progress and Challenges in Environmental Protection. RSC Adv. 2023, 13, 12760–12780. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Liu, J. Decorated Bacteria and the Application in Drug Delivery. Adv. Drug Deliv. Rev. 2022, 188, 114443. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, P.; Chen, H.; Wang, X.; Halgamuge, M.N.; Chen, C.; Song, T. Smart Magnetotactic Bacteria Enable the Inhibition of Neuroblastoma under an Alternating Magnetic Field. ACS Appl. Mater. Interfaces 2022, 14, 14049–14058. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tissot, A.; Serre, C. Recent Progress on MOF-Based Optical Sensors for VOC Sensing. Chem. Sci. 2022, 13, 13978–14007. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Ali, G.; Maab, H.; Khan, Q.; Akhtar, S.; Karim, S.; Khan, M.; Maqbool, M. Six Band Terahertz Absorption in Metamaterial for Designing Optical Filters, and Sensors. Opt. Quant. Electron. 2022, 54, 436. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, N.Z.; Xie, Y.; Abbas, M.T.; Rauf, M.; Mehmood, I.; Runowski, M.; Agathopoulos, S.; Zhu, J. Optical Sensing by Metamaterials and Metasurfaces: From Physics to Biomolecule Detection. Adv. Opt. Mater. 2022, 10, 2200500. [Google Scholar] [CrossRef]
- Tang, J.; Qiu, G.; Wang, J. Recent Development of Optofluidics for Imaging and Sensing Applications. Chemosensors 2022, 10, 15. [Google Scholar] [CrossRef]
- Pendão, C.; Silva, I. Optical Fiber Sensors and Sensing Networks: Overview of the Main Principles and Applications. Sensors 2022, 22, 7554. [Google Scholar] [CrossRef] [PubMed]
- Davison, N.B.; Gaffney, C.J.; Kerns, J.G.; Zhuang, Q.D. Recent Progress and Perspectives on Non-Invasive Glucose Sensors. Diabetology 2022, 3, 56–71. [Google Scholar] [CrossRef]
- Karim, K.; Lamaoui, A.; Amine, A. Paper-Based Optical Sensors Paired with Smartphones for Biomedical Analysis. J. Pharm. Biomed. Anal. 2023, 225, 115207. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Wang, J.; Yang, L.; Liu, W.; Fu, H.; Chu, P.K.; Liu, C. Recent Advances of Optical Fiber Biosensors Based on Surface Plasmon Resonance: Sensing Principles, Structures, and Prospects. Sens. Diagn. 2024, 3, 1369–1391. [Google Scholar] [CrossRef]
- Park, J.-H.; Cho, Y.-W.; Kim, T.-H. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. Biosensors 2022, 12, 180. [Google Scholar] [CrossRef] [PubMed]
- Philip, A.; Kumar, A.R. The Performance Enhancement of Surface Plasmon Resonance Optical Sensors Using Nanomaterials: A Review. Coord. Chem. Rev. 2022, 458, 214424. [Google Scholar] [CrossRef]
- Uniyal, A.; Srivastava, G.; Pal, A.; Taya, S.; Muduli, A. Recent Advances in Optical Biosensors for Sensing Applications: A Review. Plasmonics 2023, 18, 735–750. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.; Wang, Z.; Cheng, X.; Li, B.; Shi, Y.; Tsai, D.P.; Liu, A.Q.; Huang, W.; Zhu, W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef] [PubMed]
- Amjad, A.; Xian, X. Optical Sensors for Transdermal Biomarker Detection: A Review. Biosens. Bioelectron. 2025, 267, 116844. [Google Scholar] [CrossRef] [PubMed]
- Nan, M.; Darmawan, B.A.; Go, G.; Zheng, S.; Lee, J.; Kim, S.; Lee, T.; Choi, E.; Park, J.-O.; Bang, D. Wearable Localized Surface Plasmon Resonance-Based Biosensor with Highly Sensitive and Direct Detection of Cortisol in Human Sweat. Biosensors 2023, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Hair, M.E.; Gerkman, R.; Mathis, A.I.; Halámková, L.; Halámek, J. Noninvasive Concept for Optical Ethanol Sensing on the Skin Surface with Camera-Based Quantification. Anal. Chem. 2019, 91, 15860–15865. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Dewey, H.; Budhathoki-Uprety, J. Optical Detection of pH Changes in Artificial Sweat Using Near-Infrared Fluorescent Nanomaterials. Sens. Diagn. 2022, 1, 1189–1197. [Google Scholar] [CrossRef]
- Sharifi, A.R.; Ardalan, S.; Tabatabaee, R.S.; Soleimani Gorgani, S.; Yousefi, H.; Omidfar, K.; Kiani, M.A.; Dincer, C.; Naghdi, T.; Golmohammadi, H. Smart Wearable Nanopaper Patch for Continuous Multiplexed Optical Monitoring of Sweat Parameters. Anal. Chem. 2023, 95, 16098–16106. [Google Scholar] [CrossRef] [PubMed]
- Jaishi, L.R.; Yu, J.; Ding, W.; Tsow, F.; Xian, X. A Novel Colorimetric Tuning Fork Sensor for Ammonia Monitoring. Sens. Actuators B Chem. 2024, 405, 135342. [Google Scholar] [CrossRef]
- Cui, Y.; Cao, Q.; Zheng, X.; Dong, H.; Wang, J.; Xu, F.; Qian, L.; Wang, D. A Wearable Bracelet for Simultaneous Monitoring of Transcutaneous Carbon Dioxide and Pulse Rates. Adv. Electron. Mater. 2024, 10, 2300760. [Google Scholar] [CrossRef]
- Tipparaju, V.V.; Mora, S.J.; Yu, J.; Tsow, F.; Xian, X. Wearable Transcutaneous CO2 Monitor Based on Miniaturized Nondispersive Infrared Sensor. IEEE Sens. J. 2021, 21, 17327–17334. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Kumar, S.; Kaushik, B.K. Novel Wearable Optical Sensors for Vital Health Monitoring Systems—A Review. Biosensors 2023, 13, 181. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tang, Q.; Wei, H.; Liu, J.; Wang, Q.; Wang, Y.; Du, Z.; Wang, J.; Xu, R.; Bi, Y.; et al. Smart Wearable Fluorescence Sensing of Bacterial Pathogens and Toxic Contaminants by Eu3+-Induced Sodium Alginate/Ag Nanoparticle Aggregates. ACS Appl. Nano Mater. 2022, 5, 8393–8403. [Google Scholar] [CrossRef]
- Pandey, P.S.; Raghuwanshi, S.K.; Shadab, A.; Ansari, M.T.I.; Tiwari, U.K.; Kumar, S. SPR Based Biosensing Chip for COVID-19 Diagnosis—A Review. IEEE Sens. J. 2022, 22, 13800–13810. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, Y.; Wang, Y.; Ning, P.; Shen, Y.; Wei, X.; Feng, Q.; Liu, Y.; Li, Z.; Xu, C.; et al. An Engineered Bacteria-Hybrid Microrobot with the Magnetothermal Bioswitch for Remotely Collective Perception and Imaging-Guided Cancer Treatment. ACS Nano 2022, 16, 6118–6133. [Google Scholar] [CrossRef] [PubMed]
- Garcés, V.; González, A.; Gálvez, N.; Delgado-López, J.M.; Calvino, J.J.; Trasobares, S.; Fernández-Afonso, Y.; Gutiérrez, L.; Dominguez-Vera, J.M. Magneto-Optical Hyperthermia Agents Based on Probiotic Bacteria Loaded with Magnetic and Gold Nanoparticles. Nanoscale 2022, 14, 5716–5724. [Google Scholar] [CrossRef] [PubMed]
- Dudchenko, N.; Pawar, S.; Perelshtein, I.; Fixler, D. Magnetite Nanoparticles: Synthesis and Applications in Optics and Nanophotonics. Materials 2022, 15, 2601. [Google Scholar] [CrossRef] [PubMed]
- Maurya, P.; Mukherjee, M.D.; Ranjan, K.R. Chapter 3—Role of Nanobiotechnology in Maintaining a Hygienic Environment for the Livestock. In Nanobiotechnology for the Livestock Industry; Pratap Singh, R., Adetunji, C.O., Singh, R.L., Singh, J., Solanki, P.R., Singh, K.R.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 61–81. ISBN 978-0-323-98387-7. [Google Scholar]
- Inês, A.; Cosme, F. Biosensors for Detecting Food Contaminants—An Overview. Processes 2025, 13, 380. [Google Scholar] [CrossRef]
- Clark, L.C., Jr.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Katey, B.; Voiculescu, I.; Penkova, A.N.; Untaroiu, A. A Review of Biosensors and Their Applications. ASME Open J. Eng. 2023, 2, 020201. [Google Scholar] [CrossRef]
- Smutok, O.; Katz, E. Biosensors: Electrochemical Devices—General Concepts and Performance. Available online: https://www.mdpi.com/2079-6374/13/1/44 (accessed on 28 April 2025).
- Bhatia, D.; Paul, S.; Acharjee, T.; Ramachairy, S.S. Biosensors and Their Widespread Impact on Human Health. Sens. Int. 2024, 5, 100257. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Manoharan Nair Sudha Kumari, S.; Thankappan Suryabai, X. Sensing the Future─Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances. ACS Omega 2024, 9, 48918–48987. [Google Scholar] [CrossRef] [PubMed]
- Rashidy Ahmady, A.; Khan, S.; Han, H.; Gao, W.; Hosseinidoust, Z.; Didar, T.F. Micro- and Nano-Bots for Infection Control. Adv. Mater. 2025, 37, 2419155. [Google Scholar] [CrossRef] [PubMed]
- Sannigrahi, S.; Kumar, A.S.; Mathiyarasu, J.; Suthindhiran, K. Detection of Escherichia coli in Food Samples by Magnetosome-Based Biosensor. Biotechnol. Bioproc E 2023, 28, 152–161. [Google Scholar] [CrossRef]
- de Souza Freire, L.; Ruzo, C.M.; Salgado, B.B.; Gandarilla, A.M.D.; Romaguera-Barcelay, Y.; Tavares, A.P.M.; Sales, M.G.F.; Cordeiro, I.; Lalwani, J.D.B.; Matos, R.; et al. An Electrochemical Immunosensor Based on Carboxylated Graphene/SPCE for IgG-SARS-CoV-2 Nucleocapsid Determination. Biosensors 2022, 12, 1161. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Jiang, H.; Liu, X.; Yin, L.; Wang, X. Advances in Engineered Nano-Biosensors for Bacteria Diagnosis and Multidrug Resistance Inhibition. Biosensors 2024, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Su, Y.; Xu, M.; Gong, D.; Cai, J.; Akhter, M.; Chen, K.; Li, S.; Pan, J.; Gao, C.; et al. Magnetic Micro/nanorobots for Biological Detection and Targeted Delivery. Biosens. Bioelectron. 2023, 222, 114960. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhou, T.; Li, S.; Feng, J.; Li, W.; Li, L.; Zhou, X.; Wang, M.; Li, F.; Zhao, X.; et al. Living Magnetotactic Microrobots Based on Bacteria with a Surface-Displayed CRISPR/Cas12a System for Penaeus Viruses Detection. ACS Appl. Mater. Interfaces 2023, 15, 47930–47938. [Google Scholar] [CrossRef] [PubMed]
- Zimina, T.M.; Sitkov, N.O.; Gareev, K.G.; Fedorov, V.; Grouzdev, D.; Koziaeva, V.; Gao, H.; Combs, S.E.; Shevtsov, M. Biosensors and Drug Delivery in Oncotheranostics Using Inorganic Synthetic and Biogenic Magnetic Nanoparticles. Biosensors 2022, 12, 789. [Google Scholar] [CrossRef] [PubMed]
- Gotovtsev, P. Microbial Cells as a Microrobots: From Drug Delivery to Advanced Biosensors. Biosensors 2023, 8, 109. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Chen, C.-F.; Yi, Y.; Chen, L.-J.; Wu, L.-F.; Song, T. Construction of a Microrobot System Using Magnetotactic Bacteria for the Separation of Staphylococcus Aureus. Biomed. Microdevices 2014, 16, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, L.; Yi, Y.; Chen, C.; Wu, L.-F.; Song, T. Killing of Staphylococcus Aureus via Magnetic Hyperthermia Mediated by Magnetotactic Bacteria. Appl. Env. Microbiol. 2016, 82, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, L.; Wang, P.; Wu, L.-F.; Song, T. Magnetically-Induced Elimination of Staphylococcus Aureus by Magnetotactic Bacteria under a Swing Magnetic Field. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-J.; Mayorga-Martinez, C.C.; Vyskočil, J.; Častorálová, M.; Ruml, T.; Pumera, M. Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum Magneticum for Water Decontamination. ACS Appl. Mater. Interfaces 2023, 15, 7023–7029. [Google Scholar] [CrossRef] [PubMed]
- Kotakadi, S.M.; Borelli, D.P.R.; Nannepaga, J.S. Therapeutic Applications of Magnetotactic Bacteria and Magnetosomes: A Review Emphasizing on the Cancer Treatment. Front. Bioeng. Biotechnol. 2022, 10, 789016. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.; Hashmi, A.A. Magnetotactic Bacteria-Synthesized Nanoparticles and Their Applications. In Green Synthesis of Nanomaterials; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2024; pp. 187–207. ISBN 978-1-119-90093-1. [Google Scholar]
- Smid, P.; Shcherbakov, V.; Petersen, N. Microscopic Observation of Magnetic Bacteria in the Magnetic Field of a Rotating Permanent Magnet. Rev. Sci. Instrum. 2015, 86, 095106. [Google Scholar] [CrossRef] [PubMed]
- Bidaud, C.C.; Monteil, C.L.; Menguy, N.; Busigny, V.; Jézéquel, D.; Viollier, É.; Travert, C.; Skouri-Panet, F.; Benzerara, K.; Lefevre, C.T.; et al. Biogeochemical Niche of Magnetotactic Cocci Capable of Sequestering Large Polyphosphate Inclusions in the Anoxic Layer of the Lake Pavin Water Column. Front. Microbiol. 2022, 12, 789134. [Google Scholar] [CrossRef] [PubMed]
- Dubay, M.M.; Acres, J.; Riekeles, M.; Nadeau, J.L. Recent Advances in Experimental Design and Data Analysis to Characterize Prokaryotic Motility. J. Microbiol. Methods 2023, 204, 106658. [Google Scholar] [CrossRef] [PubMed]
- Potrč, T.; Kralj, S.; Nemec, S.; Kocbek, P.; Kreft, M.E. The Shape Anisotropy of Magnetic Nanoparticles: An Approach to Cell-Type Selective and Enhanced Internalization. Nanoscale 2023, 15, 8611–8618. [Google Scholar] [CrossRef] [PubMed]
- Taveira, I.; Cypriano, J.; Guimarães, J.; Vieira, L.C.G.; Junior, J.F.G.; Enrich-Prast, A.; Abreu, F. Ecology and Spatial Distribution of Magnetotactic Bacteria in Araguaia River Floodplain. Environ. Microbiol. Rep. 2025, 17, e70073. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.; Regan, D.; Payne, L.; Langbein, W.; Borri, P. Sizing Individual Dielectric Nanoparticles with Quantitative Differential Interference Contrast Microscopy. Analyst 2022, 147, 1567–1580. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, H.; Wang, J.; Liu, X.; Hao, H.; Tan, Y.S.; Zhang, Y.; Zhang, H.; Ding, X.; Zhao, W.; et al. Single-Shot Isotropic Differential Interference Contrast Microscopy. Nat. Commun. 2023, 14, 2063. [Google Scholar] [CrossRef] [PubMed]
- Hodoroaba, V.-D. Chapter 4.4—Energy-Dispersive X-Ray Spectroscopy (EDS). In Characterization of Nanoparticles; Hodoroaba, V.-D., Unger, W.E.S., Shard, A.G., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 397–417. ISBN 978-0-12-814182-3. [Google Scholar]
- Makela, A.V.; Schott, M.A.; Madsen, C.S.; Greeson, E.M.; Contag, C.H. Magnetic Particle Imaging of Magnetotactic Bacteria as Living Contrast Agents Is Improved by Altering Magnetosome Arrangement. Nano Lett. 2022, 22, 4630–4639. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Y.; Li, C.; Ye, Z.; Bell, S.E.J. SERS as a Probe of Surface Chemistry Enabled by Surface-Accessible Plasmonic Nanomaterials. Acc. Chem. Res. 2023, 56, 2072–2083. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.; Tewari, B.S. Progress in Surface Enhanced Raman Scattering Molecular Sensing: A Review. Surf. Interfaces 2022, 28, 101655. [Google Scholar] [CrossRef]
- Zhou, S.; Li, J.; Zhang, Q.; Tong, Y.; Qi, X.; Duan, Y.; Zhang, X.; Luo, Z.; Li, Y. Recent Advance on Fiber Optic SPR/LSPR-Based Ultra-Sensitive Biosensors Using Novel Structures and Emerging Signal Amplification Strategies. Opt. Laser Technol. 2024, 175, 110783. [Google Scholar] [CrossRef]
- Comanescu, C. Recent Advances in Surface Functionalization of Magnetic Nanoparticles. Coatings 2023, 13, 1772. [Google Scholar] [CrossRef]
- Kassem, A.; Abbas, L.; Coutinho, O.; Opara, S.; Najaf, H.; Kasperek, D.; Pokhrel, K.; Li, X.; Tiquia-Arashiro, S. Applications of Fourier Transform-Infrared Spectroscopy in Microbial Cell Biology and Environmental Microbiology: Advances, Challenges, and Future Perspectives. Front. Microbiol. 2023, 14, 1304081. [Google Scholar] [CrossRef] [PubMed]
- Nandiyanto, A.B.D.; Ragadhita, R.; Fiandini, M. Interpretation of Fourier Transform Infrared Spectra (FTIR): A Practical Approach in the Polymer/Plastic Thermal Decomposition. Indones. J. Sci. Technol. 2023, 8, 113–126. [Google Scholar] [CrossRef]
- Ketenoglu, D. A General Overview and Comparative Interpretation on Element-Specific X-Ray Spectroscopy Techniques: XPS, XAS, and XRS. X-Ray Spectrom. 2022, 51, 422–443. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Tong, L.; Yu, J.; Lin, S.; Li, Y.; Fan, H.J. Oxidation State Engineering in Octahedral Ni by Anchored Sulfate to Boost Intrinsic Oxygen Evolution Activity. ACS Nano 2023, 17, 6770–6780. [Google Scholar] [CrossRef] [PubMed]
- Gandarias, L.; Jefremovas, E.M.; Gandia, D.; Marcano, L.; Martínez-Martínez, V.; Ramos-Cabrer, P.; Chevrier, D.M.; Valencia, S.; Fernández Barquín, L.; Fdez-Gubieda, M.L.; et al. Incorporation of Tb and Gd Improves the Diagnostic Functionality of Magnetotactic Bacteria. Mater. Today Bio 2023, 20, 100680. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Li, Q.; Sun, X.; Yao, L.; Wang, X. Tumor Microenvironment-Responsive Magnetotactic Bacteria-Based Multi-Drug Delivery Platform for MRI-Visualized Tumor Photothermal Chemodynamic Therapy. Biology 2024, 13, 658. [Google Scholar] [CrossRef] [PubMed]
Advantages | Disadvantages | Ref. |
---|---|---|
very high resolution (range) | complex sample preparation | [32] |
ability to observe internal structures | high costs | [47] |
localized chemical analysis | requires vacuum environment | [32] |
atomic and nanometric scale imaging | risk of artifacts | [31] |
MTB Strain | TEM—Device Type | Characteristics Highlighted | Ref. |
---|---|---|---|
Magnetofossils | JEOL F200, 200 kV | morphology, magnetic components (detrital magnetic component) | [39] |
Magnetofossils | JEM-2100Plus | composition of the magnetosome (magnetite) | [40] |
Magnetospirillum gryphiswaldense MSR-1 | JEM-2100 F, 200 kV | composition of the magnetosome (magnetite crystals), chain integrity, aggregation state of magnetosomes | [41] |
Magnetospirillum magneticum AMB-1 | JEOL JEM-1400 Plus, 120 kV | structural, morphological, and magnetic characteristics of the magnetosome chains (magnetite crystals) | [42] |
Magnetospirillum gryphiswaldense MSR-1 | JEOL JEM-14000 Plus, 120 kV | size (35–120 nm), shape (cuboctahedral), and arrangement of the magnetosomes (magnetite crystals) | [25] |
Magnetospirillum gryphiswaldense MSR-1 | size (40–80 nm), shape (cuboctahedral), arrangement (nonuniform distribution), and composition of the magnetosomes (magnetite crystals) | [43] | |
Magnetospirillum gryphiswaldense MSR-1 | Jeol 2100F equipped with a Schotky FEG gun | characterization and organization of magnetosomes (magnetite crystals) | [44] |
Magnetofossils | JEOL JEM-2100, 200 kV | morphological characteristics of the type magnetofossils (single-magnetic domain magnetite) | [45] |
Magnetospirillum gryphiswaldense MSR-1 | JEOL JEM-1400 Plus, 120 kV | internal arrangement, distribution, and chain analysis of type magnetosomes | [48]. |
MTB Strain | SEM—Device Type | Characteristics Highlighted | Ref. |
---|---|---|---|
Magnetospirillum moscoviense MS-24 | HR-SEM—FEI Quanta 250 FEG | magnetotaxis movement, size, and morphology of bacterial cells and magnetosomes | [29] |
M. blakemorei MV-1 | hybrid method—experimental and theoretical approaches STXM—MAXYMUS end station at HZB BESSY II, Berlin | magnetic anisotropy of magnetosomes | [47] |
unidentified species of MTB | Zeiss (Jena, Germany) SUPRA 55VP field emission scanning electron microscope (FE-SEM) | information related to the morphology, physiology, or taxonomy of each cell | [58] |
Advantages | Disadvantages | Ref. |
---|---|---|
high resolution and magnification, allowing the observation of very fine surface details | high cost | [59] |
large depth of field | complex sample preparation | [53] |
elemental analysis can provide detailed elemental composition data of the sample when paired with EDX | surface-only imaging | [29] |
versatility and wide variety of materials (biological tissues, metals, polymers) | risk of sample damage | [47] |
non-destructive imaging | requires skilled operators | [47] |
Advantages | Disadvantages | Ref. |
---|---|---|
high-resolution nanometric scale images | imaging depth limitation—offers high surface resolution, but it can be more difficult to obtain clear images of the internal structures of bacteria | [48] |
observation of the fine details of bacteria’s structure, including their shape and size | complex operation and additional costs of maintenance | [67] |
topographic analysis | relatively slow technique, obtaining a complete data set can take a long time | [68] |
information about morphology and roughness | quantitative analysis of certain parameters may be more complicated and less precise compared to other techniques | [69] |
measurement of mechanical properties | possible mechanical interference given by the interaction between the AFM tip and the bacterium; this can influence its morphology, which can lead to artifacts | [68] |
evaluation of mechanical properties such as stiffness and elasticity of bacteria | useful for studying small bacteria, and its applicability may be limited when studying larger or multicellular organisms | [29] |
does not require dyes or special coloration for sample preparation, thus reducing the risks of artifacts induced by these substances | sample artifacts—deformation, scratching, indentation | [67] |
can be used to study living bacteria in an environment close to natural conditions, allowing real-time observations of their behavior | [63] | |
can be used to study both the morphology and physicochemical properties of bacteria | [64] |
Advantages | Disadvantages | Ref. |
---|---|---|
useful for studying bacteria that have magnetic particles | limited use for non-magnetic bacteria | [69] |
provides high spatial resolution and can probe structures at the nanometer scale | only provides information about the surface of bacteria | [81] |
useful for detecting fine magnetic features of bacterial cells | can be difficult to interpret because magnetic interactions can be influenced by various factors, such as the orientation of magnetic domains or external fields | [48] |
provide insights into distribution, alignment, and morphology of MTB | [69] | |
non-destructive to the samples, preserving their integrity during analysis | [80] |
Property | AFM | MFM | Ref. |
---|---|---|---|
imaging focus | surface topography, mechanical properties | magnetic interactions and properties | [48] |
resolution | high, nanometer-scale | high, but dependent on magnetic features | [81] |
sample requirements | no special preparation required | must have magnetic materials (e.g., magnetosomes) | [48] |
internal structure imaging | no, surface-level only | no, unless magnetic features are present | [81] |
speed | relatively slow | slow | [70] |
non-destructive | yes | yes | [65] |
suited for | general surface properties, morphology, mechanical characteristics | magnetotactic bacteria, mapping magnetic domains | [81] |
MTB Strain | Sample Preparation | Device Type/Description | Analysis Mode | Characteristics Highlighted with AFM/MFM | Ref. |
---|---|---|---|---|---|
Magnetococcus sp. MC-1 | MC-1 adsorbed on V-1 muscovite treated with uranyl acetate (0.1%) and Nile red staining | Topometrix TMX2000 Explorer (Topometrix Corporation, Santa Clara, CA, USA) | Tapping mode |
| [77] |
Magnetosprillum gryphiswaldense MSR-1 | saline solution, PBS, pH 7.4 in ambient atmosphere and at room temperature, with a relative humidity of 40% | Digital Instruments Bioscope AFM with controler NanoScope IV (Digital Instruments, Santa Barbara, CA, USA) | Tapping mode |
| [79] |
Asylum Research MFP3D AFM (Asylum Research, Santa Barbara, CA, USA) | |||||
Magnetosprillum gryphiswaldense MSR-1 | fixed bacteria suspended in the 85% (v/v) glycerol solution (dynamic viscosity of 135 mPas at 22.5 °C) placed on a glass coverslip (No. 1, 18 mm diameter, Marienfeld-Superior, Lauda-Königshofen, Germany) mounted into an aluminum holder | Magnetic tweezers (MT) setup with inverted light microscope (Nikon Eclipse Ti-U, Nikon, Tokyo, Japan) with a 20× magnification objective for calibration measurements (CFI Plan Achromat 20× objective, NA 0.4, Nikon) and a 60× magnification objective (CFI Plan Apochromat λ 60× oil objective, NA 1.40, Nikon) | Magnetic Tweezers |
| [80] |
Magnetovibrio blakemorei MV-1 | DSM 18854, grown anaerobically at 30 °C in liquid medium; unstained cells adsorbed onto 300 mesh carbon-coated copper grids | X-ray Magnetic Circular Dichroism (XMCD), at room temperature, using ALICE station (Scienta Omicron, Berlin, Germany) | Magnetic imaging |
| [47] |
Magnetospirillum gryphiswaldense MSR-1 | DMSZ: DMS 6631, cultured in flask standard medium containing 100 μM of Fe (III) citrate, at 28 °C, fixed with 2% glutaraldehyde standard MFM tips magnetic AFM probes with a sputtered magnetic coating (cobalt) | AFM and MFM experiments performed using a Nanotec Electronica S.L. measurements conducted in air and under liquid magnetic coil system used to perform Variable Field MFM (VF-MFM) measurements, with in-plane magnetic field (Nanotec Electronica S.L., Madrid, Spain) | Amplitude modulation mode |
| [48] |
Magnetospirillum moscoviense MS-24 | growth culturing medium, specific and modified iron-containing medium for MTB growth; microfluidic chip was positioned on a microscope slide by plasma gas so that no air was present between the glass slide and chip; MS-24 inserted in the microfluidic chip by micropipette | Bruker ICON Dimension Microscope, bacterial broth culture suspended in phosphate buffer saline (PBS), pH 7.4, and placed the suspension onto a glass slide and air-dried, then placed the slide under a microscope (Bruker Corporation, Santa Barbara, CA, USA) | AFM |
| [29] |
Spectroscopic Technique | Advantages | Disadvantages | Ref. |
---|---|---|---|
FTIR |
|
| [82] |
XPS |
|
| [83] |
LSPR |
|
| [88] |
SERS |
|
| [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, N.L.; Popa, C.O.; Ionescu, R.E. Updates on the Advantages and Disadvantages of Microscopic and Spectroscopic Characterization of Magnetotactic Bacteria for Biosensor Applications. Biosensors 2025, 15, 472. https://doi.org/10.3390/bios15080472
Paul NL, Popa CO, Ionescu RE. Updates on the Advantages and Disadvantages of Microscopic and Spectroscopic Characterization of Magnetotactic Bacteria for Biosensor Applications. Biosensors. 2025; 15(8):472. https://doi.org/10.3390/bios15080472
Chicago/Turabian StylePaul, Natalia Lorela, Catalin Ovidiu Popa, and Rodica Elena Ionescu. 2025. "Updates on the Advantages and Disadvantages of Microscopic and Spectroscopic Characterization of Magnetotactic Bacteria for Biosensor Applications" Biosensors 15, no. 8: 472. https://doi.org/10.3390/bios15080472
APA StylePaul, N. L., Popa, C. O., & Ionescu, R. E. (2025). Updates on the Advantages and Disadvantages of Microscopic and Spectroscopic Characterization of Magnetotactic Bacteria for Biosensor Applications. Biosensors, 15(8), 472. https://doi.org/10.3390/bios15080472