Advanced Biosensing Technologies: Leading Innovations in Alzheimer’s Disease Diagnosis
Abstract
:1. Introduction
1.1. Pathophysiology and Progression of Alzheimer’s Disease
1.2. Biosensors
1.2.1. Electrochemical Biosensors for Alzheimer’s Disease Diagnosis
1.2.2. Voltametric Biosensors
SAM-Support-Based Electrochemical Sensor
1.2.3. Impedance Biosensors
1.2.4. Amperometric Biosensors
1.2.5. Potentiometric Biosensors
Molecularly Imprinted Polymer-Based Sensors
1.2.6. Immunosensor
Field-Effect Transistors (FETs)
Electrochemiluminescence Immunosensor
1.2.7. Optical Biosnsors
Classification of Optical Biosensors
Fluorescence-Based Biosensors
SPR Biosensors
Colorimetric Biosensors
SERS Biosensors
1.2.8. Nanomaterials-Enabled Biosensors
Gold Nanostructures-Enabled Biosensing
Lanthanide-Based Biosensors
Graphene-Enabled Biosensing
1.2.9. Peptide Biosensors
1.2.10. Tau Protein
Approach/Detection | Technique | Target | Linear Range Detection | Detection Limit | Samples | References |
---|---|---|---|---|---|---|
Sandwich immunoassay using HRP-DAb | Amperometry–0.20 V vs. Ag (HQ/H2O2) | Tau | ~0.11–91 pM | 1.7 pg/mL | Brain tissue, Blood | [174] |
Electrochemical biosensor | EIS, CV | 2N4R tau | 0.01 pM–10 nM | 0.03 pM | Human serum | [184] |
Label-Freef Electrochemical Immunosensor | EIS, CV, DPV | cis P-tau | 10 × 10−14–3.0 × 10−9 M | 0.02 and 0.05 pM, | PBS Human serum | [71] |
rGO-AuNP/11-MUA based biosensor ITO-coated PET | CV/EIS | Tau-441 | 1–500 pg/mL | 0.091 pg/mL | Serum CSF | [171] |
CeO2 NPs and nanocomposite of rGO (rGO-CeO2) via polyaniline (PANI)/GCE | CV/EIS | Tau | 10 fM to 10 nM | 1 fM | PBS | [185] |
GO/LbL-AuNPs-Anti-tau-SPR | SPR sensogram | Tau-441 | 150 ng/mL to 5 fg/mL | 13.25 fg/mL | Blood and saliva | [180] |
Photoelectrochemical, FeOOH/Mo:BiVO4-PEC | LSV | Tau-5 | 100–104 fM | 1.59 fM | Human plasma | [186] |
label-free electrochemical aptasensor CG/TH/AuNPs | CV, EIS, DPV | Tau-381 | 1.0–100 pM | 0.70 pM | Human serum | [172] |
Enzyme-linked aptamer photoelectrochemical biosensor AuNPs/MoSe2 | PEC | Tau-381 | 0.5 fM–1.0 nM | 0.3 fM | Human serum | [187] |
Electrochemical biosensor SPCE, MIP,3-aminophenol | CV.SWV, EIS | Tau-444 | 2.18 pM–2.18 nM | 0.024 pM | Serum | [173] |
Electrochemical biosensor Graphene oxide/Prussian blue nanocubes | EIS, SWV | Tau 441 | 1.09–2.18 nmol/L | 0.01 pmol/L | Buffer | [177] |
Immunosensor HPN-PDA | DPV | T-tau | 1–30 pg/mL | 0.42 pg/mL | Blood serum | [183] |
Gold Nanostar, Carbon Nitride Nanosheets | ECL | Tau | 0.1–100 ng/mL | 0.034 ng/mL | Serum | [188] |
Immunosensor SPCE, APTES | EIS | Tau-441 | 0.0064–0.8 ng/mL | 0.0053 ng/mL | CSF | [189] |
1.2.11. Aβ Monomers and Oligomers
1.2.12. POC Diagnosis
2. Challenges, Limitations, and Aspects for Developing EC Biosensors for AD
3. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Khan, A.; Abbas, S.; Hameed, K.; Mushtaq, S.; Mallhi, T.H.; Khan, Y.H.; Akash, M.S.H.; Khan, G.M.; Butt, M.H.; Khan, T.M. Alzheimer’s Disease Management in Developing Countries. In Handbook of Medical and Health Sciences in Developing Countries; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–15. [Google Scholar]
- Delatycki, M.B. Friedreich Ataxia: An Overview. J. Med. Genet. 2000, 37, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Patterson, C. World Alzheimer Report 2018; Alzheimer’s Disease International: Lincolnshire, IL, USA, 2018. [Google Scholar]
- Clark, L.C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Park, J.; Lee, W.; Lee, G.; Choi, H.; Kim, M.; Kim, W.; Na, S.; Park, J. Electrochemical Amyloid-Based Biosensor for the Determination of Metal Ions. J. Electrochem. Soc. 2019, 166, B1497–B1505. [Google Scholar] [CrossRef]
- Benjamin, S.R.; Vilela, R.S.; de Camargo, H.S.; Guedes, M.I.F.; Fernandes, K.F.; Colmati, F. Enzymatic Electrochemical Biosensor Based on Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles for Rutin Detection. Int. J. Electrochem. Sci. 2018, 13, 563–586. [Google Scholar] [CrossRef]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; Li, Q.-X.; Martins, R.; Rowe, C.; et al. High Performance Plasma Amyloid-β Biomarkers for Alzheimer’s Disease. Nature 2018, 554, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; O’Bryant, S.E.; Molinuevo, J.L.; Zetterberg, H.; Masters, C.L.; Lista, S.; Kiddle, S.J.; Batrla, R.; Blennow, K. Blood-Based Biomarkers for Alzheimer Disease: Mapping the Road to the Clinic. Nat. Rev. Neurol. 2018, 14, 639–652. [Google Scholar] [CrossRef]
- Palmqvist, S.; Tideman, P.; Mattsson-Carlgren, N.; Schindler, S.E.; Smith, R.; Ossenkoppele, R.; Calling, S.; West, T.; Monane, M.; Verghese, P.B.; et al. Blood Biomarkers to Detect Alzheimer Disease in Primary Care and Secondary Care. JAMA 2024, 332, 1245. [Google Scholar] [CrossRef]
- van der Kant, R.; Goldstein, L.S.B. Cellular Functions of the Amyloid Precursor Protein from Development to Dementia. Dev. Cell 2015, 32, 502–515. [Google Scholar] [CrossRef]
- Zhang, C.-C.; Xing, A.; Tan, M.-S.; Tan, L.; Yu, J.-T. The Role of MAPT in Neurodegenerative Diseases: Genetics, Mechanisms and Therapy. Mol. Neurobiol. 2016, 53, 4893–4904. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, H.; Park, D.; Yoon, D.S.; San Lee, J.; Hwang, K.S. Plasma-Based Diagnostic and Screening Platform Using a Combination of Biosensing Signals in Alzheimer’s Disease. Biosens. Bioelectron. 2023, 230, 115246. [Google Scholar] [CrossRef] [PubMed]
- Sethi, J.; Van Bulck, M.; Suhail, A.; Safarzadeh, M.; Perez-Castillo, A.; Pan, G. A Label-Free Biosensor Based on Graphene and Reduced Graphene Oxide Dual-Layer for Electrochemical Determination of Beta-Amyloid Biomarkers. Microchim. Acta 2020, 187, 288. [Google Scholar] [CrossRef]
- Özcan, N.; Medetalibeyoglu, H.; Akyıldırım, O.; Atar, N.; Yola, M.L. Electrochemical Detection of Amyloid-β Protein by Delaminated Titanium Carbide MXene/Multi-Walled Carbon Nanotubes Composite with Molecularly Imprinted Polymer. Mater. Today Commun. 2020, 23, 101097. [Google Scholar] [CrossRef]
- Negahdary, M.; Heli, H. An Electrochemical Peptide-Based Biosensor for the Alzheimer Biomarker Amyloid-β(1–42) Using a Microporous Gold Nanostructure. Microchim. Acta 2019, 186, 766. [Google Scholar] [CrossRef]
- Supraja, P.; Tripathy, S.; Vanjari, S.R.K.; Singh, R.; Singh, V.; Singh, S.G. Label-Free Detection of β-Amyloid (1-42) in Plasma Using Electrospun SnO2 Nanofiber Based Electro-Analytical Sensor. Sens. Actuators B Chem. 2021, 346, 130522. [Google Scholar] [CrossRef]
- Qin, J.; Cho, M.; Lee, Y. Ferrocene-Encapsulated Zn Zeolitic Imidazole Framework (ZIF-8) for Optical and Electrochemical Sensing of Amyloid-β Oligomers and for the Early Diagnosis of Alzheimer’s Disease. ACS Appl. Mater. Interfaces 2019, 11, 11743–11748. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, Q.; Zhang, Y.; Ren, B.; Huang, L.; Cai, H.; Xu, T.; Liu, Q.; Zhang, X. An Electrochemical Aptasensor Based on AuPt Alloy Nanoparticles for Ultrasensitive Detection of Amyloid-β Oligomers. Talanta 2021, 231, 122360. [Google Scholar] [CrossRef]
- Shui, B.; Tao, D.; Cheng, J.; Mei, Y.; Jaffrezic-Renault, N.; Guo, Z. A Novel Electrochemical Aptamer–Antibody Sandwich Assay for the Detection of Tau-381 in Human Serum. Analyst 2018, 143, 3549–3554. [Google Scholar] [CrossRef]
- Le, P.G.; Le, H.T.N.; Kim, H.-E.; Cho, S. SAM-Support-Based Electrochemical Sensor for Aβ Biomarker Detection of Alzheimer’s Disease. Biosensors 2023, 13, 809. [Google Scholar] [CrossRef]
- Koo, K.M.; Kim, C.D.; Kim, T.H. Recent Advances in Electrochemical Detection of Cell Energy Metabolism. Biosensors 2024, 14, 46. [Google Scholar] [CrossRef]
- Yoo, Y.K.; Kim, G.; Park, D.; Kim, J.; Kim, Y.S.; Yun Kim, H.; Yang, S.H.; Lee, J.H.; Hwang, K.S. Gold Nanoparticles Assisted Sensitivity Improvement of Interdigitated Microelectrodes Biosensor for Amyloid-β Detection in Plasma Sample. Sens. Actuators B Chem. 2020, 308, 127710. [Google Scholar] [CrossRef]
- Chae, M.S.; Kim, J.; Jeong, D.; Kim, Y.S.; Roh, J.H.; Lee, S.M.; Heo, Y.; Kang, J.Y.; Lee, J.H.; Yoon, D.S.; et al. Enhancing Surface Functionality of Reduced Graphene Oxide Biosensors by Oxygen Plasma Treatment for Alzheimer’s Disease Diagnosis. Biosens. Bioelectron. 2017, 92, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Ngoc Le, H.T.; Park, J.; Chinnadayyala, S.R.; Cho, S. Sensitive Electrochemical Detection of Amyloid Beta Peptide in Human Serum Using an Interdigitated Chain-Shaped Electrode. Biosens. Bioelectron. 2019, 144, 111694. [Google Scholar] [CrossRef]
- Palley, B.F.; Artur, J.C.; De Arruda, M.N.; De Souza, G.F.; Graves, D.A.; de Carvalho Bovolato, A.L.; Deffune, E.; Schelp, A.O.; Gonçalves, E.S.; De Moraes, M.L. Screen-Printed Electrodes on Tyvek Substrate as Low-Cost Device to Applications in Alzheimer’s Disease Detection. J. Electrochem. Soc. 2022, 169, 037505. [Google Scholar] [CrossRef]
- Abbasi, H.Y.; Tehrani, Z.; Devadoss, A.; Ali, M.M.; Moradi-Bachiller, S.; Albani, D.; Guy, O.J. Graphene Based Electrochemical Immunosensor for the Ultra-Sensitive Label Free Detection of Alzheimer’s Beta Amyloid Peptides Aβ(1-42). Nanoscale Adv. 2021, 3, 2295–2304. [Google Scholar] [CrossRef]
- Li, M.; Zeng, Y.; Huang, Z.; Zhang, L.; Liu, Y. Vertical Graphene-Based Printed Electrochemical Biosensor for Simultaneous Detection of Four Alzheimer’s Disease Blood Biomarkers. Biosensors 2023, 13, 758. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, J.; Zhang, L.; Wang, W. Boosting the Specific Molecular Recognition of β-Amyloid Oligomer by Constructing of Antibody-Mimic Y Probe. Sens. Actuators B Chem. 2023, 381, 133418. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Liu, X.; Feng, R.; Zhang, N.; Fan, D.; Ding, C.; Zhao, H.; Du, Y.; Wei, Q.; et al. Bifunctional Pd-Decorated Polysulfide Nanoparticle of Co9S8 Supported on Graphene Oxide: A New and Efficient Label-Free Immunosensor for Amyloid β-Protein Detection. Sens. Actuators B Chem. 2020, 304, 127413. [Google Scholar] [CrossRef]
- Qin, J.; Park, J.S.; Jo, D.G.; Cho, M.; Lee, Y. Curcumin-Based Electrochemical Sensor of Amyloid-Β Oligomer for the Early Detection of Alzheimer’s Disease. Sens. Actuators B Chem. 2018, 273, 1593–1599. [Google Scholar] [CrossRef]
- Ding, M.; Shu, Q.; Zhang, N.; Yan, C.; Niu, H.; Li, X.; Guan, P.; Hu, X. Electrochemical Immunosensor for the Sensitive Detection of Alzheimer’s Biomarker Amyloid-β (1–42) Using the Heme-Amyloid-β (1–42) Complex as the Signal Source. Electroanalysis 2022, 34, 263–274. [Google Scholar] [CrossRef]
- Park, Y.M.; Ahn, J.; Choi, Y.S.; Jeong, J.M.; Lee, S.J.; Lee, J.J.; Choi, B.G.; Lee, K.G. Flexible Nanopillar-Based Immunoelectrochemical Biosensor for Noninvasive Detection of Amyloid Beta. Nano Converg. 2020, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, S.R.; Miranda Ribeiro Júnior, E.J. Graphene-Based Electrochemical Sensors for Detection of Environmental Pollutants. Curr. Opin. Environ. Sci. Health 2022, 29, 100381. [Google Scholar] [CrossRef]
- Ye, S.; Wang, P.; Li, Y.; Wang, W.; Liu, Q.; Li, Y. Halloysite Nanotubes-Loaded Conductive Polymer as Substrate and Label Material for Sensitive Detection of Amyloid-β Protein by Electrochemical Immunosensor. Talanta 2024, 268, 125345. [Google Scholar] [CrossRef]
- Miao, J.; Li, X.; Li, Y.; Dong, X.; Zhao, G.; Fang, J.; Wei, Q.; Cao, W. Dual-Signal Sandwich Electrochemical Immunosensor for Amyloid β-Protein Detection Based on Cu–Al2O3-g–C3N4–Pd and UiO-66@PANI-MB. Anal. Chim. Acta 2019, 1089, 48–55. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, X.; Wang, L.; Gu, J.; Zuo, Y.; Zhao, L.; Lu, W.; Yu, Y. A Liposome-Based Aptasensor Integrated with Competitive Reaction Enabling Portable and Electrochemical Detection of Aβ Oligomer. Biosens. Bioelectron. 2023, 225, 115108. [Google Scholar] [CrossRef]
- Yan, J.; Wen, X.; Yin, L.; Wang, Y.; Li, H.; Tu, Y. An Electrochemiluminescence Aptasensor for Amyloid-β Protein with Signal Enhancement from AuNPs/Fe-MOFs Nanocomposite. J. Electroanal. Chem. 2023, 933, 117293. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Li, X.; Zhu, X.; Ye, B.; Xu, M. A Sensitive Aptasensor for the Detection of β-Amyloid Oligomers Based on Metal–Organic Frameworks as Electrochemical Signal Probes. Anal. Methods 2018, 10, 4430–4437. [Google Scholar] [CrossRef]
- Palla, G.; Malecka, K.; Dehaen, W.; Radecki, J.; Radecka, H. Immunosensor Incorporating Half-Antibody Fragment for Electrochemical Monitoring of Amyloid-β Fibrils in Artificial Blood Plasma. Bioelectrochemistry 2021, 137, 107643. [Google Scholar] [CrossRef]
- Lien, T.T.N.; Takamura, Y.; Tamiya, E.; Vestergaard, M.C. Modified Screen Printed Electrode for Development of a Highly Sensitive Label-Free Impedimetric Immunosensor to Detect Amyloid Beta Peptides. Anal. Chim. Acta 2015, 892, 69–76. [Google Scholar] [CrossRef]
- Kim, S.; Song, H.; Ahn, H.; Kim, T.; Jung, J.; Cho, S.K.; Shin, D.M.; Choi, J.R.; Hwang, Y.H.; Kim, K. A Review of Advanced Impedance Biosensors with Microfluidic Chips for Single-Cell Analysis. Biosensors 2021, 11, 412. [Google Scholar] [CrossRef]
- Wang, B.-Y.Y.; Gu, B.-C.C.; Wang, G.-J.J.; Yang, Y.-H.H.; Wu, C.-C.C. Detection of Amyloid-β(1–42) Aggregation With a Nanostructured Electrochemical Sandwich Immunoassay Biosensor. Front. Bioeng. Biotechnol. 2022, 10, 853947. [Google Scholar] [CrossRef]
- Wang, P.G.; Li, B.R.; Wang, Y.L.; Wu, C.C.; Chen, J.C. Application of Aminobenzoic Acid Electrodeposited Screen-Printed Carbon Electrode in the Beta-Amyloid Electrochemical Impedance Spectroscopy Immunoassay. Talanta 2023, 254, 124154. [Google Scholar] [CrossRef] [PubMed]
- Kutovyi, Y.; Hlukhova, H.; Boichuk, N.; Menger, M.; Offenhäusser, A.; Vitusevich, S. Amyloid-Beta Peptide Detection via Aptamer-Functionalized Nanowire Sensors Exploiting Single-Trap Phenomena. Biosens. Bioelectron. 2020, 154, 112053. [Google Scholar] [CrossRef]
- Le, H.T.N.H.T.N.; Kim, D.; Phan, L.M.T.L.M.T.; Cho, S. Ultrasensitive Capacitance Sensor to Detect Amyloid-Beta 1-40 in Human Serum Using Supramolecular Recognition of β-CD/RGO/ITO Micro-Disk Electrode. Talanta 2022, 237, 122907. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Yan, X.; Shi, X.; Ou, S.; Gu, H.; Yin, X.; Shi, G.; Yu, Y. In Vivo Monitoring of Superoxide Anion from Alzheimer’s Rat Brains with Functionalized Ionic Liquid Polymer Decorated Microsensor. Biosens. Bioelectron. 2019, 144, 111665. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P.; Gorton, L. Enzyme Based Amperometric Biosensors. Curr. Opin. Electrochem. 2018, 10, 157–173. [Google Scholar] [CrossRef]
- Shoaie, N.; Daneshpour, M.; Azimzadeh, M.; Mahshid, S.; Khoshfetrat, S.M.; Jahanpeyma, F.; Gholaminejad, A.; Omidfar, K.; Foruzandeh, M. Electrochemical Sensors and Biosensors Based on the Use of Polyaniline and Its Nanocomposites: A Review on Recent Advances. Microchim. Acta 2019, 186, 465. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Y.; Zhang, C.; Zhang, S.; Jia, Y.; Li, F.; Ding, H.; Li, X.; Chen, Z.; Wei, Q. AuCuxO-Embedded Mesoporous CeO2 Nanocomposites as a Signal Probe for Electrochemical Sensitive Detection of Amyloid-Beta Protein. ACS Appl. Mater. Interfaces 2019, 11, 12335–12341. [Google Scholar] [CrossRef]
- Zhang, Y.; Figueroa-Miranda, G.; Zafiu, C.; Willbold, D.; Offenhäusser, A.; Mayer, D. Amperometric Aptasensor for Amyloid-β Oligomer Detection by Optimized Stem-Loop Structures with an Adjustable Detection Range. ACS Sens. 2019, 4, 3042–3050. [Google Scholar] [CrossRef]
- Benjamin, S.R.; Dutra, R.F. Polymer Composites for Immunosensors. In Polymeric Nanocomposite Materials for Sensor Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 367–379. [Google Scholar]
- Mustafa, Y.L.; Keirouz, A.; Leese, H.S. Molecularly Imprinted Polymers in Diagnostics: Accessing Analytes in Biofluids. J. Mater. Chem. B 2022, 10, 7418–7449. [Google Scholar] [CrossRef]
- Dehdari Vais, R.; Yadegari, H.; Heli, H.; Sattarahmady, N. A β-Amyloid(1-42) Biosensor Based on Molecularly Imprinted Poly-Pyrrole for Early Diagnosis of Alzheimer’s Disease. J. Biomed. Phys. Eng. 2021, 11, 215–228. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Yang, S.; An, Y.; Zhang, F.; He, P. A Novel Electrochemical Biosensor with Molecularly Imprinted Polymers and Aptamer-Based Sandwich Assay for Determining Amyloid-β Oligomer. J. Electroanal. Chem. 2020, 862, 114017. [Google Scholar] [CrossRef]
- Pereira, M.V.M.V.; Marques, A.C.A.C.; Oliveira, D.; Martins, R.; Moreira, F.T.C.F.T.C.; Sales, M.G.F.G.F.; Fortunato, E. Paper-Based Platform with an in Situ Molecularly Imprinted Polymer for β-Amyloid. ACS Omega 2020, 5, 12057–12066. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.T.C.; Sales, M.G.F. Smart Naturally Plastic Antibody Based on Poly(α-Cyclodextrin) Polymer for β-Amyloid-42 Soluble Oligomer Detection. Sens. Actuators B Chem. 2017, 240, 229–238. [Google Scholar] [CrossRef]
- Ding, M.; Niu, H.; Guan, P.; Hu, X. Molecularly Imprinted Sensor Based on Poly-o-Phenylenediamine-Hydroquinone Polymer for β-Amyloid-42 Detection. Anal. Bioanal. Chem. 2023, 415, 1545–1557. [Google Scholar] [CrossRef]
- Kasturi, S.; Torati, S.R.; Eom, Y.; Kim, C. Microvalve-Controlled Miniaturized Electrochemical Lab-on-a-Chip Based Biosensor for the Detection of β-Amyloid Biomarker. J. Ind. Eng. Chem. 2021, 97, 349–355. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, X.; Shen, Q.; Xing, D. Paper-Based Electrochemiluminescence Sensor for Highly Sensitive Detection of Amyloid-β Oligomerization: Toward Potential Diagnosis of Alzheimer’s Disease. Theranostics 2018, 8, 2289–2299. [Google Scholar] [CrossRef]
- Mehta, P.D.; Patrick, B.A.; Miller, D.L.; Coyle, P.K.; Wisniewski, T. A Sensitive and Cost-Effective Chemiluminescence ELISA for Measurement of Amyloid-β 1-42 Peptide in Human Plasma. J. Alzheimer’s Dis. 2020, 78, 1237–1244. [Google Scholar] [CrossRef]
- Yin, L.; Wang, Y.; Tan, R.; Li, H.; Tu, Y. Determination of β-Amyloid Oligomer Using Electrochemiluminescent Aptasensor with Signal Enhancement by AuNP/MOF Nanocomposite. Microchim. Acta 2021, 188, 53. [Google Scholar] [CrossRef]
- Qin, D.; Meng, S.; Wu, Y.; Mo, G.; Jiang, X.; Deng, B. Design of a Dual-Wavelength Ratiometric Electrochemiluminescence Immunosensor for Sensitive Detection of Amyloid-β Protein in Human Serum. ACS Sustain. Chem. Eng. 2021, 9, 7541–7549. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, G.; Li, X.; Fang, J.; Miao, J.; Wei, Q.; Cao, W. Electrochemiluminescence Immunosensor of “Signal-off” for β-Amyloid Detection Based on Dual Metal-Organic Frameworks. Talanta 2020, 208, 120376. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Gao, X.; Yang, X.; Cao, W.; Liu, S. A Label-Free and Signal-on Electrochemiluminescence Strategy for Sensitive Amyloid-Beta Assay. Biosens. Bioelectron. 2019, 141, 111438. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Hu, S.; Qin, D.; Nong, C.; Yang, L.; Deng, B. Aggregation-Induced Electrochemiluminescence Enhancement of Ag-MOG for Amyloid β 42 Sensing. Anal. Chim. Acta 2023, 1281, 341898. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Sha, H.; Xiong, X.; Jia, N. Design and Biosensing of a Ratiometric Electrochemiluminescence Resonance Energy Transfer Aptasensor between a G-C3N4 Nanosheet and Ru@MOF for Amyloid-β Protein. ACS Appl. Mater. Interfaces 2019, 11, 36299–36306. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Li, W.; Zhang, F.; Yang, X.; Ding, C. Peptide-Antifouling Interface for Monitoring β-Amyloid Based on Electrochemiluminescence Resonance Energy Transfer. Talanta 2024, 267, 125229. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.; Lim, C.T. Surface Plasmon Resonance Assay for Identification of Small Molecules Capable of Inhibiting Aβ Aggregation. ACS Appl. Mater. Interfaces 2021, 13, 27845–27855. [Google Scholar] [CrossRef]
- Benjamin, S.R.; de Souza Nascimento, T.; Roque, C.R.; de Andrade, G.M.; Oriá, R.B. Recent Advances in the Development of Immunosensors for Infectious Diseases. In Biosensors for Emerging and Re-Emerging Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2022; pp. 19–72. [Google Scholar]
- Shiravandi, A.; Yari, F.; Tofigh, N.; Kazemi Ashtiani, M.; Shahpasand, K.; Ghanian, M.-H.M.-H.; Shekari, F.; Faridbod, F. Earlier Detection of Alzheimer’s Disease Based on a Novel Biomarker Cis P-Tau by a Label-Free Electrochemical Immunosensor. Biosensors 2022, 12, 879. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Jo, D.G.; Cho, M.; Lee, Y. Monitoring of Early Diagnosis of Alzheimer’s Disease Using the Cellular Prion Protein and Poly(Pyrrole-2-Carboxylic Acid) Modified Electrode. Biosens. Bioelectron. 2018, 113, 82–87. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Chuang, H.-C.; Tripathi, A.; Wang, Y.-L.; Ko, M.-L.; Chuang, C.-C.; Chen, J.-C. High-Sensitivity and Trace-Amount Specimen Electrochemical Sensors for Exploring the Levels of β-Amyloid in Human Blood and Tears. Anal. Chem. 2021, 93, 8099–8106. [Google Scholar] [CrossRef]
- Seo, D.H.; Pineda, S.; Yick, S.; Bell, J.; Han, Z.J.; Ostrikov, K.K. Plasma-Enabled Sustainable Elemental Lifecycles: Honeycomb-Derived Graphenes for next-Generation Biosensors and Supercapacitors. Green Chem. 2015, 17, 2164–2171. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, B.; Yuan, L.; Liu, L. A Signal Amplification Strategy Based on Peptide Self-Assembly for the Identification of Amyloid-β Oligomer. Sens. Actuators B Chem. 2021, 335, 129697. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, Q.; Fan, Z.; Zhao, J.; Li, H. Platelet-Driven Formation of Interface Peptide Nano-Network Biosensor Enabling a Non-Invasive Means for Early Detection of Alzheimer’s Disease. Biosens. Bioelectron. 2019, 145, 111701. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Kim, S.; Cho, M.; Lee, Y. Hierarchical and Ultra-Sensitive Amyloid Beta Oligomer Sensor for Practical Applications. Chem. Eng. J. 2020, 401, 126055. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, A.; Tang, X.; Qin, J. Electrochemical Sensitive Detection of Amyloid-β Oligomer Harnessing Cellular Prion Protein on AuNPs Embedded Poly (Pyrrole-3-Carboxylic Acid) Matrix. Mater. Today Adv. 2022, 14, 100250. [Google Scholar] [CrossRef]
- Wei, J.; Ge, K.; Gong, Y.; Li, L.; Tang, Q.; Liao, X.; Zhang, G.; Gao, F. DNAzyme-Driven Bipedal DNA Walker for Label-Free and Signal-on Electrochemical Detection of Amyloid-β Oligomer. Int. J. Biol. Macromol. 2023, 228, 234–241. [Google Scholar] [CrossRef]
- Sun, L.P.; Zhong, Y.; Gui, J.; Wang, X.W.; Zhuang, X.R.; Weng, J. A Hydrogel Biosensor for High Selective and Sensitive Detection of Amyloid-Beta Oligomers. Int. J. Nanomed. 2018, 13, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lv, Y.; Dong, H.; Liu, L.; Mao, G.; Zhang, Y.; Xu, M. Ultrasensitive Assay of Amyloid-Beta Oligomers Using Au-Vertical Graphene/Carbon Cloth Electrode Based on Poly(Thymine)-Templated Copper Nanoparticles as Probes. Sens. Actuators B: Chem. 2021, 331, 129429. [Google Scholar] [CrossRef]
- Song, Y.; Xu, T.; Zhu, Q.; Zhang, X. Integrated Individually Electrochemical Array for Simultaneously Detecting Multiple Alzheimer’s Biomarkers. Biosens. Bioelectron. 2020, 162, 112253. [Google Scholar] [CrossRef]
- Song, C.; Deng, P.; Que, L. Rapid Multiplexed Detection of Beta-Amyloid and Total-Tau as Biomarkers for Alzheimer’s Disease in Cerebrospinal Fluid. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1845–1852. [Google Scholar] [CrossRef]
- Prabhulkar, S.; Piatyszek, R.; Cirrito, J.R.; Wu, Z.-Z.; Li, C.-Z. Microbiosensor for Alzheimer’s Disease Diagnostics: Detection of Amyloid Beta Biomarkers. J. Neurochem. 2012, 122, 374–381. [Google Scholar] [CrossRef]
- Sethi, J.; Suhail, A.; Safarzadeh, M.; Sattar, A.; Wei, Y.; Pan, G. NH2 Linker for Femtomolar Label-Free Detection with Reduced Graphene Oxide Screen-Printed Electrodes. Carbon 2021, 179, 514–522. [Google Scholar] [CrossRef]
- Chan, H.-N.; Xu, D.; Ho, S.-L.; Wong, M.S.; Li, H.-W. Ultra-Sensitive Detection of Protein Biomarkers for Diagnosis of Alzheimer’s Disease. Chem. Sci. 2017, 8, 4012–4018. [Google Scholar] [CrossRef]
- Kim, K.; Kim, M.-J.; Kim, D.W.; Kim, S.Y.; Park, S.; Park, C.B. Clinically Accurate Diagnosis of Alzheimer’s Disease via Multiplexed Sensing of Core Biomarkers in Human Plasma. Nat. Commun. 2020, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, Z.; Xu, Q.; Zhang, L.; Liu, Q.; Xu, T. Portable Electrochemical Micro-Workstation Platform for Simultaneous Detection of Multiple Alzheimer’s Disease Biomarkers. Microchim. Acta. 2022, 189, 91. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, M.; Zhang, L.; Liu, Y. Electrochemical Immunosensor Based on Superwettable Microdroplet Array for Detecting Multiple Alzheimer’s Disease Biomarkers. Front. Bioeng. Biotechnol. 2022, 10, 1029428. [Google Scholar] [CrossRef]
- Salehirozveh, M.; Dehghani, P.; Zimmermann, M.; Roy, V.A.L.; Heidari, H. Graphene Field Effect Transistor Biosensors Based on Aptamer for Amyloid- β Detection. IEEE Sens. J. 2020, 20, 12488–12494. [Google Scholar] [CrossRef]
- Park, D.; Kim, J.H.; Kim, H.J.; Lee, D.; Lee, D.S.; Yoon, D.S.; Hwang, K.S. Multiplexed Femtomolar Detection of Alzheimer’s Disease Biomarkers in Biofluids Using a Reduced Graphene Oxide Field-Effect Transistor. Biosens. Bioelectron. 2020, 167, 112505. [Google Scholar] [CrossRef]
- Vu, C.-A.; Chen, W.-Y.; Yang, Y.-S.; Salehirozveh, H.W.-H. Improved Biomarker Quantification of Silicon Nanowire Field-Effect Transistor Immunosensors with Signal Enhancement by RNA Aptamer: Amyloid Beta as a Case Study. Sens. Actuators B Chem. 2021, 329, 129150. [Google Scholar] [CrossRef]
- Xue, J.; Yang, L.; Wang, H.; Yan, T.; Fan, D.; Feng, R.; Du, B.; Wei, Q.; Ju, H. Quench-Type Electrochemiluminescence Immunosensor for Detection of Amyloid β-Protein Based on Resonance Energy Transfer from Luminol@SnS2-Pd to Cu Doped WO3 Nanoparticles. Biosens. Bioelectron. 2019, 133, 192–198. [Google Scholar] [CrossRef]
- Carrico, Z.M.; Le, G.; Malinow, R. A Fluorescence Assay for Detecting Amyloid-β Using the Cytomegalovirus Enhancer/Promoter. J. Biol. Methods 2017, 4, e77. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Kang, J.; Ye, T.; Yang, Z.; Liu, Z.; Liu, Q.; Zhao, Y.; Liu, G.; Pan, J. Application of a Novel Coumarin-Derivative near-Infrared Fluorescence Probe to Amyloid-β Imaging and Inhibition in Alzheimer’s Disease. J. Lumin. 2023, 256, 119661. [Google Scholar] [CrossRef]
- Uniyal, A.; Srivastava, G.; Pal, A.; Taya, S.; Muduli, A. Recent Advances in Optical Biosensors for Sensing Applications: A Review. Plasmonics 2023, 18, 735–750. [Google Scholar] [CrossRef]
- Luo, H.; Tian, L.; Zhang, Y.; Wu, Y.; Li, B.; Liu, J. Recent Advances in Molecular and Nanoparticle Probes for Fluorescent Bioanalysis. Nano Res. 2024, 17, 6443–6474. [Google Scholar] [CrossRef]
- Kim, S.; Wark, A.W.; Lee, H.J. Femtomolar Detection of Tau Proteins in Undiluted Plasma Using Surface Plasmon Resonance. Anal. Chem. 2016, 88, 7793–7799. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Liu, L.; Harrington, M.G.; Wang, J.; Zhou, F. Regenerable and Simultaneous Surface Plasmon Resonance Detection of Aβ(1−40) and Aβ(1−42) Peptides in Cerebrospinal Fluids with Signal Amplification by Streptavidin Conjugated to an N-Terminus-Specific Antibody. Anal. Chem. 2010, 82, 10151–10157. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, K.-S.; Kim, W.M.; Sohn, Y.-S. Detection of Amyloid-Β42 Using a Waveguide-Coupled Bimetallic Surface Plasmon Resonance Sensor Chip in the Intensity Measurement Mode. PLoS ONE 2014, 9, e98992. [Google Scholar] [CrossRef] [PubMed]
- Palladino, P.; Aura, A.M.; Spoto, G. Surface Plasmon Resonance for the Label-Free Detection of Alzheimer’s β-Amyloid Peptide Aggregation. Anal. Bioanal. Chem. 2016, 408, 849–854. [Google Scholar] [CrossRef]
- Yi, X.; Feng, C.; Hu, S.; Li, H.; Wang, J. Surface Plasmon Resonance Biosensors for Simultaneous Monitoring of Amyloid-Beta Oligomers and Fibrils and Screening of Select Modulators. Analyst 2016, 141, 331–336. [Google Scholar] [CrossRef]
- Haes, A.J.; Chang, L.; Klein, W.L.; Van Duyne, R.P. Detection of a Biomarker for Alzheimer’s Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor. J. Am. Chem. Soc. 2005, 127, 2264–2271. [Google Scholar] [CrossRef]
- Vestergaard, M.; Kerman, K.; Kim, D.-K.; Hiep, H.M.; Tamiya, E. Detection of Alzheimer’s Tau Protein Using Localised Surface Plasmon Resonance-Based Immunochip. Talanta 2008, 74, 1038–1042. [Google Scholar] [CrossRef]
- Yao, H.; Wang, N.; Shi, Y.F.; Fang, S.; Wu, M.; Fan, H.; Zhang, Y.; Chong, H.; Wang, T.; Li, H.; et al. A Bifunctional TPE-Based Fluorescent Sensor for Liquid Viscosity and Amyloid β Measurements. New J. Chem. 2022, 47, 2932–2941. [Google Scholar] [CrossRef]
- Si, G.; Zhou, S.; Xu, G.; Wang, J.; Wu, B.; Zhou, S. A Curcumin-Based NIR Fluorescence Probe for Detection of Amyloid-Beta (Aβ) Plaques in Alzheimer’s Disease. Dye. Pigment. 2019, 163, 509–515. [Google Scholar] [CrossRef]
- Mars, A.; Hamami, M.; Bechnak, L.; Patra, D.; Raouafi, N. Curcumin-Graphene Quantum Dots for Dual Mode Sensing Platform: Electrochemical and Fluorescence Detection of APOe4, Responsible of Alzheimer’s Disease. Anal. Chim. Acta 2018, 1036, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Li, Q.; Zhang, X.X.; Liu, Y.; Jiang, J.; Cheng, S.; Yu, S.; Zhang, X.X.; Liu, F.; Li, Y.; et al. Applications of Carbon Dots for the Treatment of Alzheimer’s Disease. Int. J. Nanomed. 2022, 17, 6621–6638. [Google Scholar] [CrossRef]
- Chen, L.; Lin, J.; Yi, J.; Weng, Q.; Zhou, Y.; Han, Z.; Li, C.; Chen, J.; Zhang, Q. A Tyrosinase-Induced Fluorescence Immunoassay for Detection of Tau Protein Using Dopamine-Functionalized CuInS2/ZnS Quantum Dots. Anal. Bioanal. Chem. 2019, 411, 5277–5285. [Google Scholar] [CrossRef]
- Guo, W. A Silicomolybdate/Graphene/Poly(3,4-Ethylenedioxythiophene) Composite Film as a Sensor for Sensitive Determination of Persulfate. Int. J. Electrochem. Sci. 2020, 15, 915–928. [Google Scholar] [CrossRef]
- Iadecola, C.; Buckwalter, M.S.; Anrather, J. Immune Responses to Stroke: Mechanisms, Modulation, and Therapeutic Potential. J. Clin. Investig. 2020, 130, 2777–2788. [Google Scholar] [CrossRef]
- Gao, Y.; Wennmalm, S.; Winblad, B.; Schedin-Weiss, S.; Tjernberg, L.O. Live Cell FRET Imaging Reveals Amyloid β-Peptide Oligomerization in Hippocampal Neurons. Int. J. Mol. Sci. 2021, 22, 4530. [Google Scholar] [CrossRef]
- Takahashi, T.; Mihara, H. FRET Detection of Amyloid β-Peptide Oligomerization Using a Fluorescent Protein Probe Presenting a Pseudo-Amyloid Structure. Chem. Commun. 2012, 48, 1568–1570. [Google Scholar] [CrossRef]
- Guan, Y.; Cao, K.J.; Cantlon, A.; Elbel, K.; Theodorakis, E.A.; Walsh, D.M.; Yang, J.; Shah, J. V Real-Time Monitoring of Alzheimer’s-Related Amyloid Aggregation via Probe Enhancement–Fluorescence Correlation Spectroscopy. ACS Chem. Neurosci. 2015, 6, 1503–1508. [Google Scholar] [CrossRef]
- Schneider, M.; Walta, S.; Cadek, C.; Richtering, W.; Willbold, D. Fluorescence Correlation Spectroscopy Reveals a Cooperative Unfolding of Monomeric Amyloid-β 42 with a Low Gibbs Free Energy. Sci. Rep. 2017, 7, 2154. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, J.; Wang, F.; Wang, Y.; Lu, L.; Feng, C.; Xu, Z.; Zhang, W. Selective Amyloid β Oligomer Assay Based on Abasic Site-Containing Molecular Beacon and Enzyme-Free Amplification. Biosens. Bioelectron. 2016, 78, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jiao, Y.; Ding, Q.; Song, Y.; Ma, Q.; Ren, H.; Lu, K.; Jia, S.; Cui, J. A Bioinspired Fluorescent Probe Based on Metal–Organic Frameworks to Selectively Enrich and Detect Amyloid-β Peptide. Chem. Eng. J. 2023, 470, 144124. [Google Scholar] [CrossRef]
- Jiang, L.-F.; Chen, B.-C.; Chen, B.; Li, X.-J.; Liao, H.-L.; Huang, H.-M.; Guo, Z.-J.; Zhang, W.-Y.; Wu, L. Detection of Aβ Oligomers Based on Magnetic-Field-Assisted Separation of Aptamer-Functionalized Fe3O4 Magnetic Nanoparticles and BaYF5:Yb,Er Nanoparticles as Upconversion Fluorescence Labels. Talanta 2017, 170, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ding, C.; Li, C.; Wang, X. Advances in Fluorescent Probes for Detection and Imaging of Amyloid-β Peptides in Alzheimer’s Disease. Adv. Clin. Chem. 2021, 103, 135–190. [Google Scholar]
- Rezabakhsh, A.; Rahbarghazi, R.; Fathi, F. Surface Plasmon Resonance Biosensors for Detection of Alzheimer’s Biomarkers; an Effective Step in Early and Accurate Diagnosis. Biosens. Bioelectron. 2020, 167, 112511. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.U.; Song, S.; Kim, S.; Sim, S.J. A Shape-Code Nanoplasmonic Biosensor for Multiplex Detection of Alzheimer’s Disease Biomarkers. Biosens. Bioelectron. 2018, 101, 96–102. [Google Scholar] [CrossRef]
- Ly, T.N.T.N.; Park, S. High Performance Detection of Alzheimer’s Disease Biomarkers Based on Localized Surface Plasmon Resonance. J. Ind. Eng. Chem. 2020, 91, 182–190. [Google Scholar] [CrossRef]
- Kim, D.H.; Chegal, W.; Diware, M.S.; Choi, W.; Lee, N.H.; Cho, Y.J.; Cho, H.M. Ultrasensitive Detection of Beta-Amyloid 1–42 as a Relevant Biomarker for Alzheimer’s Disease in Serum. Sens. Actuators B Chem. 2023, 396, 134588. [Google Scholar] [CrossRef]
- Ghasemi, F.; Reza Hormozi-Nezhad, M.; Mahmoudi, M. Label-Free Detection of β-Amyloid Peptides (Aβ40 and Aβ42): A Colorimetric Sensor Array for Plasma Monitoring of Alzheimer’s Disease. Nanoscale 2018, 10, 6361–6368. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.; Zhang, C.; Lin, Y.; Lv, J.; Hu, S.; Zhang, S.; Li, M. Colorimetric Determination of Amyloid-β Peptide Using MOF-Derived Nanozyme Based on Porous ZnO-Co3O4 Nanocages. Microchim. Acta 2021, 188, 56. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Lu, S.; Chen, C.; Sun, J.; Yang, X. Colorimetric Sandwich Immunosensor for Aβ(1-42) Based on Dual Antibody-Modified Gold Nanoparticles. Sens. Actuators B Chem. 2017, 243, 792–799. [Google Scholar] [CrossRef]
- Deng, C.; Liu, H.; Zhang, M.; Deng, H.; Lei, C.; Shen, L.; Jiao, B.; Tu, Q.; Jin, Y.; Xiang, L.; et al. Light-Up Nonthiolated Aptasensor for Low-Mass, Soluble Amyloid-β 40 Oligomers at High Salt Concentrations. Anal. Chem. 2018, 90, 1710–1717. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hwang, I.; Cha, M.G.; Kim, H.; Yim, D.; Jeong, D.H.; Lee, Y.; Kim, J. Reaction Kinetics-Mediated Control over Silver Nanogap Shells as Surface-Enhanced Raman Scattering Nanoprobes for Detection of Alzheimer’s Disease Biomarkers. Small 2019, 15, 1900613. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, L.; Condorelli, M.; Puglisi, O.; Tempra, C.; Lolicato, F.; Compagnini, G.; La Rosa, C. Detection and Characterization at NM Concentration of Oligomers Formed by HIAPP, Aβ(1-40) and Their Equimolar Mixture Using SERS and MD Simulations. Phys. Chem. Chem. Phys. 2018, 20, 20588–20596. [Google Scholar] [CrossRef]
- Carlomagno, C.; Cabinio, M.; Picciolini, S.; Gualerzi, A.; Baglio, F.; Bedoni, M. SERS-based Biosensor for Alzheimer Disease Evaluation through the Fast Analysis of Human Serum. J. Biophotonics 2020, 13, e201960033. [Google Scholar] [CrossRef]
- Park, H.J.; Cho, S.; Kim, M.; Jung, Y.S. Carboxylic Acid-Functionalized, Graphitic Layer-Coated Three-Dimensional SERS Substrate for Label-Free Analysis of Alzheimer’s Disease Biomarkers. Nano Lett. 2020, 20, 2576–2584. [Google Scholar] [CrossRef]
- Song, L.; Lachno, D.R.; Hanlon, D.; Shepro, A.; Jeromin, A.; Gemani, D.; Talbot, J.A.; Racke, M.M.; Dage, J.L.; Dean, R.A. A Digital Enzyme-Linked Immunosorbent Assay for Ultrasensitive Measurement of Amyloid-β 1–42 Peptide in Human Plasma with Utility for Studies of Alzheimer’s Disease Therapeutics. Alzheimers Res. Ther. 2016, 8, 58. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Song, X.; Wang, H.; Wang, J.; Wang, Y.; Huang, J.; Yu, J. Robust and Universal SERS Sensing Platform for Multiplexed Detection of Alzheimer’s Disease Core Biomarkers Using PAapt-AuNPs Conjugates. ACS Sens. 2019, 4, 2140–2149. [Google Scholar] [CrossRef]
- Felix, F.S.; Angnes, L. Electrochemical Immunosensors—A Powerful Tool for Analytical Applications. Biosens. Bioelectron. 2018, 102, 470–478. [Google Scholar] [CrossRef]
- Wen, W.; Yan, X.; Zhu, C.; Du, D.; Lin, Y. Recent Advances in Electrochemical Immunosensors. Anal. Chem. 2017, 89, 138–156. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Kang, X.; Yang, X.; Chen, H.; Zhu, L.; Mao, T.; He, Y.; Liu, J.; Wang, Q.Q.; Zhou, X.; et al. Functionalized Graphene-Based Electrochemical Array Sensors for the Identification of Distinct Conformational States of Amyloid Beta in Alzheimer’s Disease. Biosens. Bioelectron. 2023, 222, 114927. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.S.; Tang, Y.; Mushfiq, M.; Ray, A.; Sampathkumaran, U.; Alam, M.M. Functionalized Carbon Nanotube-Based Microelectronic Sensor Array for Early Diagnosis of Alzheimer’s Disease. TechConnect Briefs 2018, 3, 114–117. [Google Scholar]
- Nair, R.V.; Yi, P.J.; Padmanabhan, P.; Gulyás, B.; Murukeshan, V.M. Au Nano-Urchins Enabled Localized Surface Plasmon Resonance Sensing of Beta Amyloid Fibrillation. Nanoscale Adv. 2020, 2, 2693–2698. [Google Scholar] [CrossRef]
- Li, Y.; Han, R.; Chen, M.; Yang, X.; Zhan, Y.; Wang, L.; Luo, X. Electrochemical Biosensor with Enhanced Antifouling Capability Based on Amyloid-like Bovine Serum Albumin and a Conducting Polymer for Ultrasensitive Detection of Proteins in Human Serum. Anal. Chem. 2021, 93, 14351–14357. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Gao, Y.; Yan, J.; Song, W. Integrating CuO/g-C3N4 p-n Heterojunctioned Photocathode with MoS2 QDs@Cu NWs Multifunctional Signal Amplifier for Ultrasensitive Detection of AβO. Biosens. Bioelectron. 2021, 176, 112945. [Google Scholar] [CrossRef] [PubMed]
- Rivas, L.; de la Escosura-Muñiz, A.; Pons, J.; Merkoçi, A. Alzheimer Disease Biomarker Detection Through Electrocatalytic Water Oxidation Induced by Iridium Oxide Nanoparticles. Electroanalysis 2014, 26, 1287–1294. [Google Scholar] [CrossRef]
- Toyos-Rodríguez, C.; Llamedo-González, A.; Pando, D.; García, S.; García, J.A.; García-Alonso, F.J.; de la Escosura-Muñiz, A. Novel Magnetic Beads with Improved Performance for Alzheimer’s Disease Biomarker Detection. Microchem. J. 2022, 175, 107211. [Google Scholar] [CrossRef]
- Iglesias-Mayor, A.; Amor-Gutiérrez, O.; Novelli, A.; Fernández-Sánchez, M.-T.; Costa-García, A.; de la Escosura-Muñiz, A. Bifunctional Au@Pt/Au Core@shell Nanoparticles As Novel Electrocatalytic Tags in Immunosensing: Application for Alzheimer’s Disease Biomarker Detection. Anal. Chem. 2020, 92, 7209–7217. [Google Scholar] [CrossRef]
- Negahdary, M.; Heli, H. An Ultrasensitive Electrochemical Aptasensor for Early Diagnosis of Alzheimer’s Disease, Using a Fern Leaves-like Gold Nanostructure. Talanta 2019, 198, 510–517. [Google Scholar] [CrossRef]
- Liao, X.; Ge, K.; Cai, Z.; Qiu, S.; Wu, S.; Li, Q.; Liu, Z.; Gao, F.; Tang, Q. Hybridization Chain Reaction Triggered Poly Adenine to Absorb Silver Nanoparticles for Label-Free Electrochemical Detection of Alzheimer’s Disease Biomarkers Amyloid β-Peptide Oligomers. Anal. Chim. Acta 2022, 1192, 339391. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiao, M.; He, J.; Zhang, Y.; Liang, Y.; Liu, H.; Zhang, Z. Aptamer-Functionalized Carbon Nanotube Field-Effect Transistor Biosensors for Alzheimer’s Disease Serum Biomarker Detection. ACS Sens. 2022, 7, 2075–2083. [Google Scholar] [CrossRef]
- De Silva, T.; Fawzy, M.; Hasani, A.; Ghanbari, H.; Abnavi, A.; Askar, A.; Ling, Y.; Mohammadzadeh, M.R.; Kabir, F.; Ahmadi, R.; et al. Ultrasensitive Rapid Cytokine Sensors Based on Asymmetric Geometry Two-Dimensional MoS2 Diodes. Nat. Commun. 2022, 13, 7593. [Google Scholar] [CrossRef] [PubMed]
- Brazaca, L.C.; Moreto, J.R.; Martín, A.; Tehrani, F.; Wang, J.; Zucolotto, V. Colorimetric Paper-Based Immunosensor for Simultaneous Determination of Fetuin B and Clusterin toward Early Alzheimer’s Diagnosis. ACS Nano 2019, 13, 13325–13332. [Google Scholar] [CrossRef]
- Liu, C.; You, X.; Lu, D.; Shi, G.; Deng, J.; Zhou, T. Gelsolin Encountering Ag Nanorods/Triangles: An Aggregation-Based Colorimetric Sensor Array for in Vivo Monitoring the Cerebrospinal A$β$ 42 % as an Indicator of Cd 2+ Exposure-Related Alzheimer’s Disease Pathogenesis. ACS Appl. Bio Mater. 2020, 3, 7965–7973. [Google Scholar] [CrossRef]
- Cui, K.; Zhou, C.; Zhang, B.; Zhang, L.; Liu, Y.; Hao, S.; Tang, X.; Huang, Y.; Yu, J. Enhanced Catalytic Activity Induced by the Nanostructuring Effect in Pd Decoration onto Doped Ceria Enabling an Origami Paper Analytical Device for High Performance of Amyloid-$β$ Bioassay. ACS Appl. Mater. Interfaces 2021, 13, 33937–33947. [Google Scholar] [CrossRef]
- Khan, Z.A.; Park, S. AuNPs-Aβ-Ni-HRP Sandwich Assay: A New Sensitive Colorimetric Method for the Detection of Aβ 1-40. Talanta 2022, 237, 122946. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.U.; Kim, S.; Song, S.; Sim, S.J. A Nanoplasmonic Biosensor for Ultrasensitive Detection of Alzheimer’s Disease Biomarker Using a Chaotropic Agent. ACS Sens. 2019, 4, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.Z.J.; Zhang, Y.; Chen, Y.; Zhao, H.; Stephenson, M.C.; Ho, N.R.Y.; Chen, Y.; Chung, J.; Reilhac, A.; Loh, T.P.; et al. Subtyping of Circulating Exosome-Bound Amyloid β Reflects Brain Plaque Deposition. Nat. Commun. 2019, 10, 1144. [Google Scholar] [CrossRef]
- Garcia-Leis, A.; Sanchez-Cortes, S. Label-Free Detection and Self-Aggregation of Amyloid β-Peptides Based on Plasmonic Effects Induced by Ag Nanoparticles: Implications in Alzheimer’s Disease Diagnosis. ACS Appl. Nano Mater. 2021, 4, 3565–3575. [Google Scholar] [CrossRef]
- Wang, L.; Chen, H.; Ma, S.; Chang, M.; Zhang, X. Ultra-Sensitive SERS Detection of Aβ 1–42 for Alzheimer’s Disease Using Graphene Oxide/Gold Nanohybrids. Vib. Spectrosc. 2023, 129, 103614. [Google Scholar] [CrossRef]
- Wang, G.; Hao, C.; Ma, W.; Qu, A.; Chen, C.; Xu, J.; Xu, C.; Kuang, H.; Xu, L. Chiral Plasmonic Triangular Nanorings with SERS Activity for Ultrasensitive Detection of Amyloid Proteins in Alzheimer’s Disease. Adv. Mater. 2021, 33, 2102337. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Zheng, T.; Tian, Y. Simple Plasma Test Based on a MoSe2 SERS Platform for the Specific Diagnosis of Alzheimer’s Disease. Chem. Biomed. Imaging 2023, 1, 186–191. [Google Scholar] [CrossRef]
- Kim, H.J.; Ahn, H.; Kim, H.; Park, D.; Lee, J.S.; Lee, B.C.; Kim, J.; Yoon, D.S.; Hwang, K.S. Nanoparticle-Based Multiplex Biosensor Utilising Dual Dielectrophoretic Forces for Clinical Diagnosis of Alzheimer’s Disease. Sens. Actuators B Chem. 2022, 355, 131288. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, N.; Yang, X.; Ling, G.; Zhang, P. The Roles of Gold Nanoparticles in the Detection of Amyloid-β Peptide for Alzheimer’s Disease. Colloid Interface Sci. Commun. 2022, 46, 100579. [Google Scholar] [CrossRef]
- Wang, P.; Chen, S.; Guan, Y.; Li, Y.; Jiamali, A. An Electrochemical Sensing Platform Based on Gold Nanostars for the Detection of Alzheimer’s Disease Marker Aβ Oligomers (Aβo). Alex. Eng. J. 2023, 81, 1–6. [Google Scholar] [CrossRef]
- Hong, Q.; Jin, X.; Zhou, C.; Shao, J. Gold Nanoparticles with Amyloid-β Reduce Neurocell Cytotoxicity for the Treatment and Care of Alzheimer’s Disease Therapy. Gold. Bull. 2023, 56, 135–144. [Google Scholar] [CrossRef]
- Ranjan, P.; Khan, R. Electrochemical Immunosensor for Early Detection of β-Amyloid Alzheimer’s Disease Biomarker Based on Aligned Carbon Nanotubes Gold Nanocomposites. Biosensors 2022, 12, 1059. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Wu, J.; Chai, K.; Hu, X.; Hu, Y.; Shi, S.; Yao, T. A Turn-on Unlabeled Colorimetric Biosensor Based on Aptamer-AuNPs Conjugates for Amyloid-β Oligomer Detection. Talanta 2023, 260, 124649. [Google Scholar] [CrossRef]
- Liu, B.; Shen, H.; Hao, Y.; Zhu, X.; Li, S.; Huang, Y.; Qu, P.; Xu, M. Lanthanide Functionalized Metal–Organic Coordination Polymer: Toward Novel Turn-On Fluorescent Sensing of Amyloid β-Peptide. Anal. Chem. 2018, 90, 12449–12455. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Xu, S.; Guo, S.; Xue, Q.; Wang, H. Efficient Ratiometric Fluorescence Probe Based on Dual-Emission Luminescent Lanthanide Coordination Polymer for Amyloid β-Peptide Detection. Sens. Actuators B Chem. 2022, 352, 131052. [Google Scholar] [CrossRef]
- Li, B.; Zhang, G.; Tahirbegi, I.B.; Morten, M.J.; Tan, H. Monitoring Amyloid-β 42 Conformational Change Using a Spray-Printed Graphene Electrode. Electrochem. Commun. 2021, 123, 106927. [Google Scholar] [CrossRef]
- Zhao, J.-G.; Cao, J.; Wang, W.-Z. Peptide-Based Electrochemical Biosensors and Their Applications in Disease Detection. J. Anal. Test. 2022, 6, 193–203. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Boyd, B.J. Peptide-Based Biosensors. Talanta 2015, 136, 114–127. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, Y.G.; Kang, J.; Yang, S.H.; Kim, J.H.; Ghisaidoobe, A.B.T.; Kang, H.J.; Lee, S.-R.; Lim, M.H.; Chung, S.J. Monitoring Metal–Amyloid-β Complexation by a FRET-Based Probe: Design, Detection, and Inhibitor Screening. Chem. Sci. 2019, 10, 1000–1007. [Google Scholar] [CrossRef]
- Madhurantakam, S.; David, B.E.; Naqvi, A.; Lee, Z.J.; Abraham, J.T.; Vankamamidi, T.S.; Prasad, S. Advancements in Electrochemical Immunosensors towards Point-of-Care Detection of Cardiac Biomarkers. Anal. Methods 2024, 16, 6615–6633. [Google Scholar] [CrossRef]
- Sonuç Karaboga, M.N.; Sezgintürk, M.K. Analysis of Tau-441 Protein in Clinical Samples Using RGO/AuNP Nanocomposite-Supported Disposable Impedimetric Neuro-Biosensing Platform: Towards Alzheimer’s Disease Detection. Talanta 2020, 219, 121257. [Google Scholar] [CrossRef]
- Tao, D.; Shui, B.; Gu, Y.; Cheng, J.; Zhang, W.; Jaffrezic-Renault, N.; Song, S.; Guo, Z. Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and Its Preliminary Application in AD and Non-AD Patients’ Sera. Biosensors 2019, 9, 84. [Google Scholar] [CrossRef]
- Ben Hassine, A.; Raouafi, N.; Moreira, F.T.C. Novel Electrochemical Molecularly Imprinted Polymer-Based Biosensor for Tau Protein Detection. Chemosensors 2021, 9, 238. [Google Scholar] [CrossRef]
- Razzino, C.A.; Serafín, V.; Gamella, M.; Pedrero, M.; Montero-Calle, A.; Barderas, R.; Calero, M.; Lobo, A.O.; Yáñez-Sedeño, P.; Campuzano, S.; et al. An Electrochemical Immunosensor Using Gold Nanoparticles-PAMAM-Nanostructured Screen-Printed Carbon Electrodes for Tau Protein Determination in Plasma and Brain Tissues from Alzheimer Patients. Biosens. Bioelectron. 2020, 163, 112238. [Google Scholar] [CrossRef]
- Yola, B.B.; Karaman, C.; Özcan, N.; Atar, N.; Polat, İ.; Yola, M.L. Electrochemical Tau Protein Immunosensor Based on MnS/GO/PANI and Magnetite-incorporated Gold Nanoparticles. Electroanalysis 2022, 34, 1519–1528. [Google Scholar] [CrossRef]
- Derkus, B.; Acar Bozkurt, P.; Tulu, M.; Emregul, K.C.; Yucesan, C.; Emregul, E. Simultaneous Quantification of Myelin Basic Protein and Tau Proteins in Cerebrospinal Fluid and Serum of Multiple Sclerosis Patients Using Nanoimmunosensor. Biosens. Bioelectron. 2017, 89, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Ben Hassine, A.; Raouafi, N.; Moreira, F.T.C. Novel Biomimetic Prussian Blue Nanocubes-Based Biosensor for Tau-441 Protein Detection. J. Pharm. Biomed. Anal. 2023, 226, 115251. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.; Li, M.; Liu, Q.; Xu, T. Portable Vertical Graphene@Au-Based Electrochemical Aptasensing Platform for Point-of-Care Testing of Tau Protein in the Blood. Biosensors 2022, 12, 564. [Google Scholar] [CrossRef]
- Wei, J.; Qiu, Z.; Yu, D.; Yin, Y.; Tang, Q.; Liao, X.; Zhang, G.; Liu, Z.; Gao, F. DNAzyme-Driven Tripedal DNA Walker Triggered Hybridization Chain Reaction for Label-Free Electrochemical Detection of Alzheimer’s Tau Protein. Sens. Actuators B Chem. 2023, 384, 133656. [Google Scholar] [CrossRef]
- Nangare, S.; Patil, P. Poly(Allylamine) Coated Layer-by-Layer Assembly Decorated 2D Carbon Backbone for Highly Sensitive and Selective Detection of Tau-441 Using Surface Plasmon Resonance Biosensor. Anal. Chim. Acta 2023, 1271, 341474. [Google Scholar] [CrossRef] [PubMed]
- Ziu, I.; Laryea, E.T.; Alashkar, F.; Wu, C.G.; Martic, S. A Dip-and-Read Optical Aptasensor for Detection of Tau Protein. Anal. Bioanal. Chem. 2020, 412, 1193–1201. [Google Scholar] [CrossRef]
- Dai, Y.; Molazemhosseini, A.; Liu, C. A Single-Use, In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV). Biosensors 2017, 7, 10. [Google Scholar] [CrossRef]
- Er Zeybekler, S. Polydopamine-Coated Hexagonal Boron Nitride-Based Electrochemical Immunosensing of T-Tau as a Marker of Alzheimer’s Disease. Bioelectrochemistry 2023, 154, 108552. [Google Scholar] [CrossRef]
- Wang, S.X.; Acha, D.; Shah, A.J.; Hills, F.; Roitt, I.; Demosthenous, A.; Bayford, R.H. Detection of the Tau Protein in Human Serum by a Sensitive Four-Electrode Electrochemical Biosensor. Biosens. Bioelectron. 2017, 92, 482–488. [Google Scholar] [CrossRef]
- Jafari, S.; Faridbod, F.; Haji-Hashemi, H. An Electrochemical Genosensor for a Fragment of Apolipoprotein E Gene Based on Reduced Graphene and Cerium Oxide Nanocomposite. Anal. Bioanal. Electrochem. 2019, 11, 1625–1637. [Google Scholar]
- Kim, K.; Park, C.B.C.B. Femtomolar Sensing of Alzheimer’s Tau Proteins by Water Oxidation-Coupled Photoelectrochemical Platform. Biosens. Bioelectron. 2020, 154, 112075. [Google Scholar] [CrossRef] [PubMed]
- Hun, X.; Kong, X. An Enzyme Linked Aptamer Photoelectrochemical Biosensor for Tau-381 Protein Using AuNPs/MoSe2 as Sensing Material. J. Pharm. Biomed. Anal. 2021, 192, 113666. [Google Scholar] [CrossRef]
- Jalili, R.; Chenaghlou, S.; Khataee, A.; Khalilzadeh, B.; Rashidi, M.-R. An Electrochemiluminescence Biosensor for the Detection of Alzheimer’s Tau Protein Based on Gold Nanostar Decorated Carbon Nitride Nanosheets. Molecules 2022, 27, 431. [Google Scholar] [CrossRef]
- Karaboğa, M.N.S.; Sezgintürk, M.K. A Practical Approach for the Detection of Protein Tau with a Portable Potentiostat. Electroanalysis 2023, 35, e202200072. [Google Scholar] [CrossRef]
- Negahdary, M.; Buoro, R.M.; Bacil, R.P.; Santos, B.G.; Angnes, L. Design of an Electrochemical Aptasensor in the Presence of an Array of Gold Nanostructure and a GO-MWCNTs Nanocomposite: Application in Diagnosis of Alzheimer’s Disease. Microchim. Acta 2023, 190, 409. [Google Scholar] [CrossRef]
- Xia, N.; Wang, X.; Zhou, B.; Wu, Y.; Mao, W.; Liu, L. Electrochemical Detection of Amyloid-β Oligomers Based on the Signal Amplification of a Network of Silver Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 19303–19311. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gu, X.; Li, L.; Yu, B.; Lv, L.; Chen, Q.; Xu, M. An Excellent Electrochemical Aptasensor for Amyloid-β Oligomers Based on a Triple-Helix Aptamer Switch via Target-Triggered Signal Transduction DNA Displacement Events. Anal. Bioanal. Chem. 2021, 413, 3707–3716. [Google Scholar] [CrossRef]
- Xing, Y.; Feng, X.-Z.Z.; Zhang, L.; Hou, J.; Han, G.-C.C.; Chen, Z. A Sensitive and Selective Electrochemical Biosensor for the Determination of Beta-Amyloid Oligomer by Inhibiting the Peptide-Triggered in Situ Assembly of Silver Nanoparticles. Int. J. Nanomed. 2017, 12, 3171–3179. [Google Scholar] [CrossRef]
- Zhang, Y.; Figueroa-Miranda, G.; Lyu, Z.; Zafiu, C.; Willbold, D.; Offenhäusser, A.; Mayer, D. Monitoring Amyloid-β Proteins Aggregation Based on Label-Free Aptasensor. Sens. Actuators B Chem. 2019, 288, 535–542. [Google Scholar] [CrossRef]
- Supraja, P.; Tripathy, S.; Singh, R.; Singh, V.; Chaudhury, G.; Singh, S.G. Towards Point-of-Care Diagnosis of Alzheimer’s Disease: Multi-Analyte Based Portable Chemiresistive Platform for Simultaneous Detection of β-Amyloid (1–40) and (1–42) in Plasma. Biosens. Bioelectron. 2021, 186, 113294. [Google Scholar] [CrossRef] [PubMed]
- Sung, W.-H.; Hung, J.-T.; Lu, Y.-J.; Cheng, C.-M. Paper-Based Detection Device for Alzheimer’s Disease—Detecting β-Amyloid Peptides (1–42) in Human Plasma. Diagnostics 2020, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- Police Patil, A.V.; Chuang, Y.-S.; Li, C.; Wu, C.-C. Recent Advances in Electrochemical Immunosensors with Nanomaterial Assistance for Signal Amplification. Biosensors 2023, 13, 125. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Sensor Type | Transducer/Material | Detection Limit | Linear Range | Sample Type | Reference |
---|---|---|---|---|---|---|
Aβ1–42 | Label-free immunosensor | Graphene/Pyr-NHS/SPE | 2.398 pM | 11 pM–55 nM | Human/mice plasma | [14] |
Aβ1–42 | Molecularly imprinted polymer | d-Ti3C2Tx MXene/MWCNTs | 0.3 fg/mL | 1–100 fg/mL | Human serum | [15] |
Aβ1–42 | Electrochemical peptide sensor | Microporous gold nanostructure (MGN-Au) | 0.2 pg/mL | 3–7000 pg/mL | Artificial CSF/serum | [16] |
Aβ1–42 | Impedimetric immunosensor | SnO2 nanofibers | 0.638 fg/mL | 1 fg/mL–1 ng/mL | Human plasma | [17] |
Aβ oligomers (AβO) | Aptasensor | Ferrocene-encapsulated Zn ZIF-8 | 0.23 pM | 0.3472–694.44 pM | Artificial CSF | [18] |
AβO | Aptasensor | AuPt alloy nanoparticles | 0.16 pg/mL | 0.5–10,000 pg/mL | Human serum | [19] |
Tau-381 | Aptamer-antibody sandwich | Cysteamine-stabilized AuNPs | 0.42 pM | 0.5–100 pM | Human serum | [20] |
Multiple biomarkers | Multiplexed immunosensor | Vertical graphene/carbon cloth (Au-VG/CC) | 3.5 pM (Aβ) | 10–2200 pM | Human serum | [21] |
Biomarkers | Strategy | Transducer | Samples | LOD | Linearity | References |
---|---|---|---|---|---|---|
Aβ1–42 | Vertical graphene nanosheets (VGS) functionalized with curcumin (CUR) honeycomb-derived vertical graphene nanosheets (HCVS) | CV/EIS | Buffer | 0.1 μg/mL | 0.1–10 μg/mL | [74] |
Aβ1–42 | EDC-NHS/6-mercaptohexanoic acid SAM, ICE electrode | EIS | PBS, serum | 100 pg/mL | 10−3–103 ng/mL | [25] |
Aβ1–42 | pDAN-modified SPGE with the anti-Aβ antibody | SWV/DPV | Plasma | 1.4 pg/mL | 1–103 pg/mL | [27] |
Aβ1–42 | Ab/AuNPs/PTH-MB[s]/Au/ GCE | CV | PBS Human serum Saliva | 17.3 pM 25.2 pM 23.8 pM | 0.508–13.7 nM 0.056–13.7 nM 0.056–41.2 nM | [32] |
Aβ1–42 | Electrochemical immunosensor, Halloysite nanotubes/polypyrrole | EIS | Human serum | 5.53 fg/mL | 50 fg mL−1–100 ng mL−1 | [35] |
Aβ | Electrochemical immunosensor, AuCuxO/m-CeO2 | i–t | Artificial cerebrospinal fluid | 0.036 pg/mL | 0.0001–10 ng/mL | [50] |
AβO | Electrochemical biosensor, CP4-Au | SWV | Buffer | 0.6 nM | 0.005–5 μM | [75] |
AβO | Biosensor, Peptide probe-Au | EIS | Serum | <1 pg/mL | 3.3~3300 pg/mL | [76] |
AβO | Electrochemical biosensor, Ppy-2-COOH/Au | EIS | Rat CSF | 10−4 pM | 10−7–10 nM | [72] |
AβO | Electrochemical sensor, Au dendrite-Ppy-3-COOH/Au | EIS | Mice brain | 1 aM | 10−9–10 nM | [77] |
AβO | Electrochemical peptide sensor, AuNPs-E-PTAA AuNPs-E-Ppy-2-COOHAuNPs-E-Ppy-3-COOH | EIS | Rat CSF | 10−6 nM 10−8 nM 10−9 nM | 10−6–103 nM 10−9–10 nM 10−9–103 nM | [78] |
AβO | Electrochemical aptasensor, bipedal DNA walker | EIS, DPV | Human serum | 46 fM | 0.1 pM–1 nM | [79] |
AβO | GO/AuNPs-PrPC biosensor | EIS | Artificial CSF/blood | 0.1 pM | 0.1 pM–10 nM | [80] |
AβO | CuNPs and AuNPs-modified vertical graphene/carbon cloth (Au-VG/CC) | DPV | Serum | 3.5 pM | 10–2200 pM | [81] |
Multiple Biomarkers | ||||||
miRNA-101; ApoE4; Tau; Aβ | Electrochemical sensor, gold nanodendrites | CV | Human serum | 91.4 pM; 5.91 × 10−11; 7.14 × 10−11; 8.6 × 10−12 mg/mL | 10−10–10−7 mg/mL | [82] |
Aβ42, T-tau | Aluminum oxide (AAO) nanopore chip | Optical sensor | CSF | 7.8 pg/mL 15.6 pg/mL | 31.25–250 pg/mL (Aβ42) 125–2000 pg/mL (T-tau) | [83] |
Ab1–40 Ab1–42 | HRP-Carbon fiber, Electrochemical | SWV | Rat CSF | 20.0 nM | 20–50 nM 20–140 nM | [84] |
Aβ1–40 Aβ1–42 | NH2-functionalized rGO/SPE | CV/DPV | Plasma | Aβ40: 9.51 fM Aβ42: 8.65 fM | Aβ40: 10 fM–10 pM Aβ42: 10 fM–50 pM | [85] |
Aβ40, Aβ42, t-tau441 | Interdigitated microelectrode biosensor | DEP | Human plasma | 85 fM, 133.64 fM, 14.27 fM | 10−1–10−3 pg/mL | [13] |
Aβ42, tau441, p-tau181 | Electrochemical, fluorimeter | Fluorescence labeling | Saliva, urine | 23 fM 14 fM 34 fM | 0–2500 fM | [86] |
t-tau, p-tau181, Aβ42, and Aβ40 | Densed aligned CNT bio sensor | Resistance | Human plasma | 2.13, 2.20, 2.4, 2.72 fM | 101–104 fM | [87] |
Aβ40, Aβ42, T-tau, and P-tau181 | Electrochemical micro-workstation | DPV and chronoamperometry | Humam serum | 0.125, 0.089 pg/mL, 0.142 pg/mL, 0.176 pg/mL | 0.1–1000 pg/mL | [88] |
Aβ40, Aβ42, T-tau, P-tau181 | Electrochemical sensor, superwettable microdroplet array | DPV | Humam serum | 0.064, 0.012, 0.039, 0.041 pg/mL | 0.1–1000 pg/mL | [89] |
Aβ40, Aβ42, T-tau, P-tau181 | Electrochemical sensor, vertical graphene nano Au | DPV | Humam serum | 0.072, 0.089, 0.071, 0.051 pg/mL | 10 pg/mL–100 ng/mL | [28] |
Technique | Target | Medium | Detection Strategy | Antibody | LOD | Reference |
---|---|---|---|---|---|---|
SPR | Tau 381 | Buffer, Plasma | Sandwich | mAb | 10 fM | [98] |
Ab1–40 Ab1–42 | CSF | Sandwich | mAb | 20.0 pM | [99] | |
Ab1–42 | Buffer | Direct | mAb | 0.2 mM | [100] | |
ADDLs | Buffer | Sandwich | mAb | 280 nM | [101] | |
ADDLs | Buffer | Direct | mAb | n.d. | [102] | |
LSPR | ADDLs | Human brain Cells and CSF | Sandwich | mAb | 10.0 pM | [103] |
Tau | Buffer | Direct | mAb, protein G oriented | 0.2 pM | [104] |
Nanomaterials | Technique | Detection Target | Linear Range | LOD | Sample Type | References |
---|---|---|---|---|---|---|
IrO2 NPs | Electrocatalytic WOR | APOE | 100–1000 ng/mL | 68 ng/mL | Human plasma | [141] |
Au NPs | Chronoamperometry | Tau | 50 and 750 ng/mL | 63 ng/mL | Human serum | [142] |
Au/Pt/Au NPs | Chronoamperometry | p53 | 50 and 1000 nM | 66 nM | Human plasma | [143] |
Au nanostructure | DPV | Aβ | 0.002–1.28 ng/ mL | 0.4 pg/mL | Human serum and artificial cerebrospinal fluid | [144] |
Ag NPs | LSV | AβO | 1 pM–10 nM | 430 fM | AD patients and healthy person serum | [145] |
CNTs | △i/i | Aβ40 and Aβ42 | 100–104 fM | 55 aM and 45 aM | Human serum | [146] |
MoS2 | current-voltage (I-V) | TNF-a | 10 Fm–1 nM | 10 fM | Human serum | [147] |
AuNPs | Colorimetric | Fetuin B | 0.1–500 nmol/L | 0.24 nmol/L | Blood | [148] |
Clusterin | 0.1–250 nmol/L | 0.12 nmol/L | ||||
Ag NTs | Colorimetric | Aβ40 and Aβ42 | 10–300 nM | 20 nM | Rat CSF | [149] |
CuCo-CeO2-Pd | Colorimetric DPV | Aβ | 1.0 pM–100 nM | 0.05 pM | CSF and Serum | [150] |
Au NPs | Colorimetric | Aβ1–40 | 0 nM–10 nM | 0.22 nM | Human serum | [151] |
ZnO-Co3O4 nanocages | Colorimetric | Aβ | 5–150 nM | 3.5 nM | Rat CSF | [125] |
Au NPs | Colorimetric SERs | p-tau396,404 | 100 ng/mL–1.5 pg/mL | 1.5 pg/mL | Plasma and whole Blood | [152] |
Au NRs | LSPR | tau | 101 to 108 fM | 103 fM | CSF | [153] |
Au NPs | LSPR | Aβ | 0.5–20 μM | - | Buffer | [154] |
Au NPs | SERS | Aβ1–42 Tau protein | 1 × 10–1 to 1 × 104 nM | 4.2 × 10–4 pM and 3.7 × 10–2 nM | Artificial CSF | [133] |
Au NPs/GO | SERS | Aβ1–42 monomer and fibrils | 0.1–1 ng/mL | 0.0232 ng/mL and 0.0192 ng/mL | CSF, blood | [155] |
Ag NGSs | SERs | Aβ40 and Aβ42 | 0–1000 pg/mL | 0.25 pg/mL 0.32 pg/mL | Human serum | [128] |
Pt/Au TNRs | SERs | Aβ42 monomer and fibrils | 0.1 to 1000 × 10−12 m | 0.045 × 1012 M and 4 × 10−15 M | Human CSF | [156] |
MoSe2 | SERs | BD-tau | 0.05–200.00 pM | 0.028 pM | Mouse plasma samples | [157] |
Au NPs | Multiplex | Aβ Tau | 0.01–100 pg/mL 0.01–1000 pg/mL | 2.2 fM 0.2 fM | AD patients and NCs plasma | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benjamin, S.R.; Lima, F.d.; Nunes, P.I.G.; Dutra, R.F.; Andrade, G.M.d.; Oriá, R.B. Advanced Biosensing Technologies: Leading Innovations in Alzheimer’s Disease Diagnosis. Chemosensors 2025, 13, 220. https://doi.org/10.3390/chemosensors13060220
Benjamin SR, Lima Fd, Nunes PIG, Dutra RF, Andrade GMd, Oriá RB. Advanced Biosensing Technologies: Leading Innovations in Alzheimer’s Disease Diagnosis. Chemosensors. 2025; 13(6):220. https://doi.org/10.3390/chemosensors13060220
Chicago/Turabian StyleBenjamin, Stephen Rathinaraj, Fábio de Lima, Paulo Iury Gomes Nunes, Rosa Fireman Dutra, Geanne Matos de Andrade, and Reinaldo B. Oriá. 2025. "Advanced Biosensing Technologies: Leading Innovations in Alzheimer’s Disease Diagnosis" Chemosensors 13, no. 6: 220. https://doi.org/10.3390/chemosensors13060220
APA StyleBenjamin, S. R., Lima, F. d., Nunes, P. I. G., Dutra, R. F., Andrade, G. M. d., & Oriá, R. B. (2025). Advanced Biosensing Technologies: Leading Innovations in Alzheimer’s Disease Diagnosis. Chemosensors, 13(6), 220. https://doi.org/10.3390/chemosensors13060220