Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = plasma membrane repair

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2877 KiB  
Article
Functional Disruption of IQGAP1 by Truncated PALB2 in Two Cases of Breast Cancer: Implications for Proliferation and Invasion
by Natalia-Dolores Pérez-Rodríguez, Rita Martín-Ramírez, Rebeca González-Fernández, María del Carmen Maeso, Julio Ávila and Pablo Martín-Vasallo
Biomedicines 2025, 13(8), 1804; https://doi.org/10.3390/biomedicines13081804 - 23 Jul 2025
Viewed by 478
Abstract
Background/Objectives: Truncating mutations in PALB2, a critical component of the BRCA1-PALB2-BRCA2 homologous recombination repair complex, are associated with increased risk and aggressiveness of breast cancer. The consequences of PALB2 truncation on the expression, localization, and functional dynamics of the scaffold protein IQGAP1 [...] Read more.
Background/Objectives: Truncating mutations in PALB2, a critical component of the BRCA1-PALB2-BRCA2 homologous recombination repair complex, are associated with increased risk and aggressiveness of breast cancer. The consequences of PALB2 truncation on the expression, localization, and functional dynamics of the scaffold protein IQGAP1 were investigated in this study based on two cases of truncated PALB2 human breast invasive ductal carcinoma (IDC), specifically, c.1240C>T (p.Arg414*) and c.2257C>T (p.Arg753*). Methods: Using confocal microscopy, we examined co-expression patterns of IQGAP1 with PALB2, PCNA, CK7, and β-tubulin in tumor tissues from both control cancer and PALB2-mutated cases. Results: In PALB2-truncated tumors, IQGAP1 exhibited enhanced peripheral and plasma membrane localization with elevated co-localization levels compared to controls, suggesting altered cytoskeletal organization. PALB2 truncation increased nuclear and cytoplasmic N-terminal PALB2 immunoreactivity, indicating the presence of truncated isoforms disrupting the homologous recombination repair system. Co-expression analyses with PCNA revealed an inverse expression pattern between IQGAP1 and proliferation markers, suggesting S-phase cell cycle-dependent heterogeneity. Furthermore, the loss of IQGAP1 dominance over CK7 and β-tubulin in mutant tumors, along with persistent intercellular spacing, implied a loss of cell–cell cohesion and the acquisition of invasive traits. Conclusions: These data support a model where PALB2 truncation triggers a reorganization of IQGAP1 that disrupts its canonical structural functions and facilitates tumor progression via enhanced motility and impaired cell–cell interaction. IQGAP1 thus serves as both a functional effector and potential biomarker in PALB2-mutated IDC, opening novel paths for diagnosis and targeted therapeutic intervention. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

10 pages, 1139 KiB  
Article
Saccharomyces cerevisiae’s Response to Dysprosium Exposure
by Masao Kishida and Shizue Yoshihara
Appl. Sci. 2025, 15(8), 4426; https://doi.org/10.3390/app15084426 - 17 Apr 2025
Viewed by 287
Abstract
Lanthanide biosorption is important for recycling value-added materials. Previously, we analyzed dysprosium (Dy) absorption in screening strains of the unpopular yeast species Schizoblastosporion sp. However, it would be more desirable to use the well-known yeast Saccharomyces cerevisiae to make an easy-to-breed and efficient [...] Read more.
Lanthanide biosorption is important for recycling value-added materials. Previously, we analyzed dysprosium (Dy) absorption in screening strains of the unpopular yeast species Schizoblastosporion sp. However, it would be more desirable to use the well-known yeast Saccharomyces cerevisiae to make an easy-to-breed and efficient Dy-absorbing strain. Thus, we analyzed the physiological response and gene regulation of S. cerevisiae under Dy-absorbing conditions. The Dy content was measured using an inductively coupled plasma atomic emission spectrometer (ICP-AES). Transcriptional regulation was compared under Dy-absorbing and non-absorbing conditions through mRNA analysis and quantitative real-time polymerase chain reaction (qRT-PCR). In the yeast cells, approximately 40% of the Dy was located in the cell wall fraction, and the remaining 60% was located in the intracellular fraction. qRT-PCR analysis showed that the expression of four genes, NCW2, PIR1, CRH1, and OLE1, was upregulated, and that of ATP14 was downregulated. These results suggest that NCW2, PIR1, and CRH1 were responsible for cell wall rearrangement; OLE1 initiated repair of the oxidative damage to the membrane lipids; and intracellular oxidation was caused by an imperfect ATP14 product. Full article
(This article belongs to the Special Issue Bioprocessing and Fermentation Technology for Biomass Conversion)
Show Figures

Figure 1

12 pages, 1190 KiB  
Review
ESCRT Machinery in HBV Life Cycle: Dual Roles in Autophagy and Membrane Dynamics for Viral Pathogenesis
by Jia Li, Reinhild Prange and Mengji Lu
Cells 2025, 14(8), 603; https://doi.org/10.3390/cells14080603 - 16 Apr 2025
Cited by 1 | Viewed by 1079
Abstract
The endosomal sorting complexes required for transport (ESCRT) comprise a fundamental cellular machinery with remarkable versatility in membrane remodeling. It is multifunctional in the multivesicular body (MVB) biogenesis, exosome formation and secretion, virus budding, cytokinesis, plasma membrane repair, neuron pruning, and autophagy. ESCRT’s [...] Read more.
The endosomal sorting complexes required for transport (ESCRT) comprise a fundamental cellular machinery with remarkable versatility in membrane remodeling. It is multifunctional in the multivesicular body (MVB) biogenesis, exosome formation and secretion, virus budding, cytokinesis, plasma membrane repair, neuron pruning, and autophagy. ESCRT’s involvement in cellular mechanisms extends beyond basic membrane trafficking. By directly interacting with autophagy-related (ATG) proteins and facilitating autophagosome-lysosome fusion, ESCRT ensures cellular homeostasis. Dysregulation in ESCRT function has been implicated in cancer, neurodegenerative disorders, and infectious diseases, underscoring its critical role in numerous pathologies. Hepatitis B virus (HBV) is an enveloped virus that exploits ESCRT and autophagy pathways for viral replication, assembly, and secretion. This review synthesizes recent mechanistic insights into ESCRT’s multifaceted roles, particularly focusing on its interactions with autophagy formation and the HBV lifecycle. Full article
(This article belongs to the Section Autophagy)
Show Figures

Figure 1

40 pages, 4060 KiB  
Review
Mechanotransduction in Development: A Focus on Angiogenesis
by Simona Alibrandi, Carmela Rinaldi, Sergio Lucio Vinci, Alfredo Conti, Luigi Donato, Concetta Scimone, Antonina Sidoti and Rosalia D’Angelo
Biology 2025, 14(4), 346; https://doi.org/10.3390/biology14040346 - 27 Mar 2025
Cited by 1 | Viewed by 2189
Abstract
Cells respond to external mechanical cues and transduce these forces into biological signals. This process is known as mechanotransduction and requires a group of proteins called mechanosensors. This peculiar class of receptors include extracellular matrix proteins, plasma membrane proteins, the cytoskeleton and the [...] Read more.
Cells respond to external mechanical cues and transduce these forces into biological signals. This process is known as mechanotransduction and requires a group of proteins called mechanosensors. This peculiar class of receptors include extracellular matrix proteins, plasma membrane proteins, the cytoskeleton and the nuclear envelope. These cell components are responsive to a wide spectrum of physical cues including stiffness, tensile force, hydrostatic pressure and shear stress. Among mechanotransducers, the Transient Receptor Potential (TRP) and the PIEZO family members are mechanosensitive ion channels, coupling force transduction with intracellular cation transport. Their activity contributes to embryo development, tissue remodeling and repair, and cell homeostasis. In particular, vessel development is driven by hemodynamic cues such as flow direction and shear stress. Perturbed mechanotransduction is involved in several pathological vascular phenotypes including hereditary hemorrhagic telangiectasia. This review is conceived to summarize the most recent findings of mechanotransduction in development. We first collected main features of mechanosensitive proteins. However, we focused on the role of mechanical cues during development. Mechanosensitive ion channels and their function in vascular development are also discussed, with a focus on brain vessel morphogenesis. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

10 pages, 2756 KiB  
Brief Report
Enhancing Membrane Repair Using Recombinant MG53/TRIM72 (rhMG53) Reduces Neurotoxicity in Alzheimer’s Disease Models
by Hannah R. Bulgart, Miguel A. Lopez Perez and Noah Weisleder
Biomolecules 2025, 15(3), 418; https://doi.org/10.3390/biom15030418 - 15 Mar 2025
Viewed by 1010
Abstract
Alzheimer’s Disease (AD) is the most common neurodegenerative disease that involves neuronal cell death initiated by the breakdown of the plasma membrane. Amyloid beta (Aβ), a hallmark protein that contributes to AD pathogenesis, is known to interact directly with the plasma membrane and [...] Read more.
Alzheimer’s Disease (AD) is the most common neurodegenerative disease that involves neuronal cell death initiated by the breakdown of the plasma membrane. Amyloid beta (Aβ), a hallmark protein that contributes to AD pathogenesis, is known to interact directly with the plasma membrane and induce increased intracellular calcium levels, reactive oxygen species (ROS), and cell death. Our recent studies revealed that elevated levels of Aβ42 induce a plasma membrane repair defect in neurons that compromises this conserved cellular response that would normally repair the disruption. Here, we tested if recombinant MG53/TRIM72 protein (rhMG53), a therapeutic protein known to increase plasma membrane repair capacity, could enhance membrane repair in AD neurons. rhMG53 increased plasma membrane repair in ex vivo and in vitro tissue treated with Aβ42 or cerebrospinal fluid from AD patients, normalizing intracellular calcium levels, ROS, and cell death in treated cells. This study demonstrates that increasing plasma membrane repair can rescue neural cells from the neurotoxic effects of Aβ, indicating that elevating plasma membrane repair could be a viable therapeutic approach to reduce neuronal death in AD. Full article
Show Figures

Figure 1

19 pages, 2334 KiB  
Article
Glycosylation Regulation by TMEM230 in Aging and Autoimmunity
by Eleonora Piscitelli, Edoardo Abeni, Cristiana Balbino, Elena Angeli, Cinzia Cocola, Paride Pelucchi, Mira Palizban, Alberto Diaspro, Martin Götte, Ileana Zucchi and Rolland A. Reinbold
Int. J. Mol. Sci. 2025, 26(6), 2412; https://doi.org/10.3390/ijms26062412 - 7 Mar 2025
Cited by 2 | Viewed by 1350
Abstract
Aging is often a choice between developing cancer or autoimmune disorders, often due in part to loss of self-tolerance or loss of immunological recognition of rogue-acting tumor cells. Self-tolerance and cell recognition by the immune system are processes very much dependent on the [...] Read more.
Aging is often a choice between developing cancer or autoimmune disorders, often due in part to loss of self-tolerance or loss of immunological recognition of rogue-acting tumor cells. Self-tolerance and cell recognition by the immune system are processes very much dependent on the specific signatures of glycans and glycosylated factors present on the cell plasma membrane or in the stromal components of tissue. Glycosylated factors are generated in nearly innumerable variations in nature, allowing for the immensely diverse role of these factors in aging and flexibility necessary for cellular interactions in tissue functionality. In previous studies, we showed that differential expression of TMEM230, an endoplasmic reticulum (ER) protein was associated with specific signatures of enzymes regulating glycan synthesis and processing and glycosylation in rheumatoid arthritis synovial tissue using single-cell transcript sequencing. In this current study, we characterize the genes and pathways co-modulated in all cell types of the synovial tissue with the enzymes regulating glycan synthesis and processing, as well as glycosylation. Genes and biological and molecular pathways associated with hallmarks of aging were in mitochondria-dependent oxidative phosphorylation and reactive oxygen species synthesis, ER-dependent stress and unfolded protein response, DNA repair (UV response and P53 signaling pathways), and senescence, glycolysis and apoptosis regulation through PI3K-AKT-mTOR signaling have been shown to play important roles in aging or neurodegeneration (such as Parkinson’s and Alzheimer’s disease). We propose that the downregulation of TMEM230 and RNASET2 may represent a paradigm for the study of age-dependent autoimmune disorders due to their role in regulating glycosylation, unfolded protein response, and PI3K-AKT-mTOR signaling. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Autoimmune Disorders)
Show Figures

Figure 1

14 pages, 1251 KiB  
Article
Fish Oil Supplement Mitigates Muscle Injury In Vivo and In Vitro: A Preliminary Report
by David W. Russ, Courtney Sehested, Kassidy Banford and Noah L. Weisleder
Nutrients 2024, 16(20), 3511; https://doi.org/10.3390/nu16203511 - 16 Oct 2024
Viewed by 2630
Abstract
Background: Following injury, older adults exhibit slow recovery of muscle function. Age-related impairment of sarcolemmal membrane repair may contribute to myocyte death, increasing the need for myogenesis and prolonging recovery. Dietary fish oil (FO) is a common nutritional supplement that may alter plasma [...] Read more.
Background: Following injury, older adults exhibit slow recovery of muscle function. Age-related impairment of sarcolemmal membrane repair may contribute to myocyte death, increasing the need for myogenesis and prolonging recovery. Dietary fish oil (FO) is a common nutritional supplement that may alter plasma membrane composition to enhance the response to membrane injury. Methods: We assessed effects of an 8-week dietary intervention on muscle contractile recovery in aged (22 mo.) rats on control (n = 5) or FO (control + 33 g/kg FO (45% eicosapentaenoic acid; 10% docosahexaenoic acid); n = 5) diets 1-week after contusion injury, as well as adult (8 mo., n = 8) rats on the control diet. Results: Recovery was reduced in aged rats on the control diet vs. adults (63 vs. 80%; p = 0.042), while those on the FO diet recovered similarly to (78%) adults. To directly assess sarcolemma injury, C2C12 cells were cultured in media with and without FO (1, 10, and 100 μg/mL; 24 or 48 h) and injured with an infrared laser in medium containing FM4-64 dye as a marker of sarcolemmal injury. FO reduced the area under the FM4-64 fluorescence-time curve at all concentrations after both 24 and 48 h supplementation. Conclusions: These preliminary data suggest FO might aid recovery of muscle function following injury in older adults by enhancing membrane resealing and repair. Full article
(This article belongs to the Special Issue Nutrition for Muscle Repair and Recovery)
Show Figures

Figure 1

15 pages, 3086 KiB  
Article
Local Shear Stress and Dyslipidemia Interfere with Actin Cyto-Skeleton and Lysosomal Organization Contributing to Vascular Fragility
by Natalia F. Do Couto, Augusto M. Lima, Luisa Rezende, Rodrigo Fraga-Silva, Weslley Fernandes-Braga, Lucas A. B. Michelin, Thiago Castro-Gomes, Nikolaos Stergiopulos and Luciana O. Andrade
J. Vasc. Dis. 2024, 3(4), 360-374; https://doi.org/10.3390/jvd3040028 - 5 Oct 2024
Viewed by 1572
Abstract
Shear stress is one of the major hemodynamic forces acting on the endothelium. However, it is not well known how endothelial cells (EC) respond mechanically to these stimuli in vivo. Here we investigated whether changes in biomechanics properties and shear stress could increase [...] Read more.
Shear stress is one of the major hemodynamic forces acting on the endothelium. However, it is not well known how endothelial cells (EC) respond mechanically to these stimuli in vivo. Here we investigated whether changes in biomechanics properties and shear stress could increase cell susceptibility to injury, contributing to vascular fragility. We surgically implanted a shear stress modifier device on the carotid artery of ApoE-knockout mice (ApoE−/−), which, due to its shape, causes a gradual stenosis in the vessel, resulting in distinct shear stress patterns. Our data show actin fibers accumulation in areas with higher lipid deposition in ApoE−/−, indicating that dyslipidemia might interfere with EC actin cytoskeleton organization. We also showed that both shear stress and dyslipidemia were important for EC susceptibility to injury. Furthermore, lysosomal distribution, an important organelle for plasma membrane repair, was altered in ApoE−/−, which could compromise EC’s ability to repair from damage. Therefore, dyslipidemia and variations in shear stress patterns not only affect cellular mechanics by compromising the actin cytoskeleton organization, but also enhance cell susceptibility to injury and alter vesicle trafficking in vascular cells. This may likely contribute to vascular fragility and thus to the initial steps of atherosclerosis development. Full article
(This article belongs to the Section Cardiovascular Diseases)
Show Figures

Figure 1

30 pages, 2340 KiB  
Review
Bio-Pathological Functions of Posttranslational Modifications of Histological Biomarkers in Breast Cancer
by Anca-Narcisa Neagu, Claudiu-Laurentiu Josan, Taniya M. Jayaweera, Hailey Morrissiey, Kaya R. Johnson and Costel C. Darie
Molecules 2024, 29(17), 4156; https://doi.org/10.3390/molecules29174156 - 2 Sep 2024
Cited by 3 | Viewed by 3242
Abstract
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound [...] Read more.
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell–cell and cell–extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial–mesenchymal/mesenchymal–epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers. Full article
Show Figures

Figure 1

14 pages, 27401 KiB  
Article
AfSwi6 Regulates the Stress Response, Chlamydospore Production, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys flagrans
by Shao-Xiang Linghu, Yu Zhang, Jia-Fang Zuo, Ming-He Mo and Guo-Hong Li
Microorganisms 2024, 12(9), 1765; https://doi.org/10.3390/microorganisms12091765 - 26 Aug 2024
Cited by 5 | Viewed by 1170
Abstract
Nematode-trapping (NT) fungi are a major resource for controlling parasitic nematodes. Arthrobotrys flagrans, as a typical NT fungus, can capture nematodes by producing three-dimensional nets. The APSES transcription factor Swi6 plays a vital role in fungal growth and the pathogenicity of pathogens. [...] Read more.
Nematode-trapping (NT) fungi are a major resource for controlling parasitic nematodes. Arthrobotrys flagrans, as a typical NT fungus, can capture nematodes by producing three-dimensional nets. The APSES transcription factor Swi6 plays a vital role in fungal growth and the pathogenicity of pathogens. In this study, we characterized AfSwi6 via gene disruption using the homologous recombinant method and transcriptome sequencing. Knockout of the AfSwi6 gene caused defects in mycelial growth, trap formation and pathogenicity, chlamydospore production, and stress response. Moreover, the transcriptome data indicated that AfSwi6 was related to DNA repair, stress response, and plasma membrane fusion. The result showed that AfSwi6 has a significant effect on trap development and chlamydospore production in A. flagrans. Full article
(This article belongs to the Special Issue Molecular Mechanism of Microbial Heat Adaptation)
Show Figures

Figure 1

18 pages, 3731 KiB  
Article
Metabolomic and Proteomic Analyses to Reveal the Role of Plant-Derived Smoke Solution on Wheat under Salt Stress
by Setsuko Komatsu, Azzahrah Diniyah, Wei Zhu, Masataka Nakano, Shafiq Ur Rehman, Hisateru Yamaguchi, Keisuke Hitachi and Kunihiro Tsuchida
Int. J. Mol. Sci. 2024, 25(15), 8216; https://doi.org/10.3390/ijms25158216 - 27 Jul 2024
Cited by 5 | Viewed by 1679
Abstract
Salt stress is a serious problem, because it reduces the plant growth and seed yield of wheat. To investigate the salt-tolerant mechanism of wheat caused by plant-derived smoke (PDS) solution, metabolomic and proteomic techniques were used. PDS solution, which repairs the growth inhibition [...] Read more.
Salt stress is a serious problem, because it reduces the plant growth and seed yield of wheat. To investigate the salt-tolerant mechanism of wheat caused by plant-derived smoke (PDS) solution, metabolomic and proteomic techniques were used. PDS solution, which repairs the growth inhibition of wheat under salt stress, contains metabolites related to flavonoid biosynthesis. Wheat was treated with PDS solution under salt stress and proteins were analyzed using a gel-free/label-free proteomic technique. Oppositely changed proteins were associated with protein metabolism and signal transduction in biological processes, as well as mitochondrion, endoplasmic reticulum/Golgi, and plasma membrane in cellular components with PDS solution under salt stress compared to control. Using immuno-blot analysis, proteomic results confirmed that ascorbate peroxidase increased with salt stress and decreased with additional PDS solution; however, H+-ATPase displayed opposite effects. Ubiquitin increased with salt stress and decreased with additional PDS solution; nevertheless, genomic DNA did not change. As part of mitochondrion-related events, the contents of ATP increased with salt stress and recovered with additional PDS solution. These results suggest that PDS solution enhances wheat growth suppressed by salt stress through the regulation of energy metabolism and the ubiquitin-proteasome system related to flavonoid metabolism. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 5760 KiB  
Article
Vascular Endothelial Growth Factor C (VEGF-C) Sensitizes Lymphatic Endothelial Cells to Oxidative-Stress-Induced Apoptosis through DNA Damage and Mitochondrial Dysfunction: Implications for Lymphedema
by Lazina Hossain, Karina Pereira Gomes, Xiaoyan Yang, Emily Liu, Jacques Du Toit, Pierre-Yves von der Weid and Spencer Bruce Gibson
Int. J. Mol. Sci. 2024, 25(14), 7828; https://doi.org/10.3390/ijms25147828 - 17 Jul 2024
Cited by 4 | Viewed by 2610
Abstract
Secondary lymphedema is caused by damage to the lymphatic system from surgery, cancer treatment, infection, trauma, or obesity. This damage induces stresses such as oxidative stress and hypoxia in lymphatic tissue, impairing the lymphatic system. In response to damage, vascular endothelial growth factor [...] Read more.
Secondary lymphedema is caused by damage to the lymphatic system from surgery, cancer treatment, infection, trauma, or obesity. This damage induces stresses such as oxidative stress and hypoxia in lymphatic tissue, impairing the lymphatic system. In response to damage, vascular endothelial growth factor C (VEGF-C) levels increase to induce lymphangiogenesis. Unfortunately, VEGF-C often fails to repair the lymphatic damage in lymphedema. The underlying mechanism contributing to lymphedema is not well understood. In this study, we found that surgery-induced tail lymphedema in a mouse model increased oxidative damage and cell death over 16 days. This corresponded with increased VEGF-C levels in mouse tail lymphedema tissue associated with macrophage infiltration. Similarly, in the plasma of patients with secondary lymphedema, we found a positive correlation between VEGF-C levels and redox imbalance. To determine the effect of oxidative stress in the presence or absence of VEGF-C, we found that hydrogen peroxide (H2O2) induced cell death in human dermal lymphatic endothelial cells (HDLECs), which was potentiated by VEGF-C. The cell death induced by VEGF-C and H2O2 in HDLECs was accompanied by increased reactive oxygen species (ROS) levels and a loss of mitochondrial membrane potential. Antioxidant pre-treatment rescued HDLECs from VEGF-C-induced cell death and decreased ROS under oxidative stress. As expected, VEGF-C increased the number of viable and proliferating HDLECs. However, upon H2O2 treatment, VEGF-C failed to increase either viable or proliferating cells. Since oxidative stress leads to DNA damage, we also determined whether VEGF-C treatment induces DNA damage in HDLECs undergoing oxidative stress. Indeed, DNA damage, detected in the form of gamma H2AX (γH2AX), was increased by VEGF-C under oxidative stress. The potentiation of oxidative stress damage induced by VEFG-C in HDLECs was associated with p53 activation. Finally, the inhibition of vascular endothelial growth factor receptor-3 (VEGFR-3) activation blocked VEGF-C-induced cell death following H2O2 treatment. These results indicate that VEGF-C further sensitizes lymphatic endothelial cells to oxidative stress by increasing ROS and DNA damage, potentially compromising lymphangiogenesis. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 1623 KiB  
Review
Evidence and Perspectives for Choline Supplementation during Parenteral Nutrition—A Narrative Review
by Wolfgang Bernhard, Katrin A. Böckmann, Michaela Minarski, Cornelia Wiechers, Annegret Busch, Daniela Bach, Christian F. Poets and Axel R. Franz
Nutrients 2024, 16(12), 1873; https://doi.org/10.3390/nu16121873 - 14 Jun 2024
Cited by 4 | Viewed by 4039
Abstract
Choline is an essential nutrient, with high requirements during fetal and postnatal growth. Tissue concentrations of total choline are tightly regulated, requiring an increase in its pool size proportional to growth. Phosphatidylcholine and sphingomyelin, containing a choline headgroup, are constitutive membrane phospholipids, accounting [...] Read more.
Choline is an essential nutrient, with high requirements during fetal and postnatal growth. Tissue concentrations of total choline are tightly regulated, requiring an increase in its pool size proportional to growth. Phosphatidylcholine and sphingomyelin, containing a choline headgroup, are constitutive membrane phospholipids, accounting for >85% of total choline, indicating that choline requirements are particularly high during growth. Daily phosphatidylcholine secretion via bile for lipid digestion and very low-density lipoproteins for plasma transport of arachidonic and docosahexaenoic acid to other organs exceed 50% of its hepatic pool. Moreover, phosphatidylcholine is required for converting pro-apoptotic ceramides to sphingomyelin, while choline is the source of betaine as a methyl donor for creatine synthesis, DNA methylation/repair and kidney function. Interrupted choline supply, as during current total parenteral nutrition (TPN), causes a rapid drop in plasma choline concentration and accumulating deficit. The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) defined choline as critical to all infants requiring TPN, claiming its inclusion in parenteral feeding regimes. We performed a systematic literature search in Pubmed with the terms “choline” and “parenteral nutrition”, resulting in 47 relevant publications. Their results, together with cross-references, are discussed. While studies on parenteral choline administration in neonates and older children are lacking, preclinical and observational studies, as well as small randomized controlled trials in adults, suggest choline deficiency as a major contributor to acute and chronic TPN-associated liver disease, and the safety and efficacy of parenteral choline administration for its prevention. Hence, we call for choline formulations suitable to be added to TPN solutions and clinical trials to study their efficacy, particularly in growing children including preterm infants. Full article
Show Figures

Figure 1

11 pages, 670 KiB  
Review
Cellular Uptake and Cytotoxicity of Clostridium perfringens Iota-Toxin
by Masahiro Nagahama, Masaya Takehara, Soshi Seike and Yoshihiko Sakaguchi
Toxins 2023, 15(12), 695; https://doi.org/10.3390/toxins15120695 - 11 Dec 2023
Cited by 5 | Viewed by 3064
Abstract
Clostridium perfringens iota-toxin is composed of two separate proteins: a binding protein (Ib) that recognizes a host cell receptor and promotes the cellular uptake of a catalytic protein and (Ia) possessing ADP-ribosyltransferase activity that induces actin cytoskeleton disorganization. Ib exhibits the overall structure [...] Read more.
Clostridium perfringens iota-toxin is composed of two separate proteins: a binding protein (Ib) that recognizes a host cell receptor and promotes the cellular uptake of a catalytic protein and (Ia) possessing ADP-ribosyltransferase activity that induces actin cytoskeleton disorganization. Ib exhibits the overall structure of bacterial pore-forming toxins (PFTs). Lipolysis-stimulated lipoprotein receptor (LSR) is defined as a host cell receptor for Ib. The binding of Ib to LSR causes an oligomer formation of Ib in lipid rafts of plasma membranes, mediating the entry of Ia into the cytoplasm. Ia induces actin cytoskeleton disruption via the ADP-ribosylation of G-actin and causes cell rounding and death. The binding protein alone disrupts the cell membrane and induces cytotoxicity in sensitive cells. Host cells permeabilized by the pore formation of Ib are repaired by a Ca2+-dependent plasma repair pathway. This review shows that the cellular uptake of iota-toxin utilizes a pathway of plasma membrane repair and that Ib alone induces cytotoxicity. Full article
(This article belongs to the Special Issue ADP-Ribosylation and Beyond)
Show Figures

Figure 1

13 pages, 684 KiB  
Review
Mechanisms of Endothelial Cell Membrane Repair: Progress and Perspectives
by Duoduo Zha, Shizhen Wang, Paula Monaghan-Nichols, Yisong Qian, Venkatesh Sampath and Mingui Fu
Cells 2023, 12(22), 2648; https://doi.org/10.3390/cells12222648 - 17 Nov 2023
Cited by 4 | Viewed by 3683
Abstract
Endothelial cells are the crucial inner lining of blood vessels, which are pivotal in vascular homeostasis and integrity. However, these cells are perpetually subjected to a myriad of mechanical, chemical, and biological stresses that can compromise their plasma membranes. A sophisticated repair system [...] Read more.
Endothelial cells are the crucial inner lining of blood vessels, which are pivotal in vascular homeostasis and integrity. However, these cells are perpetually subjected to a myriad of mechanical, chemical, and biological stresses that can compromise their plasma membranes. A sophisticated repair system involving key molecules, such as calcium, annexins, dysferlin, and MG53, is essential for maintaining endothelial viability. These components orchestrate complex mechanisms, including exocytosis and endocytosis, to repair membrane disruptions. Dysfunctions in this repair machinery, often exacerbated by aging, are linked to endothelial cell death, subsequently contributing to the onset of atherosclerosis and the progression of cardiovascular diseases (CVD) and stroke, major causes of mortality in the United States. Thus, identifying the core machinery for endothelial cell membrane repair is critically important for understanding the pathogenesis of CVD and stroke and developing novel therapeutic strategies for combating CVD and stroke. This review summarizes the recent advances in understanding the mechanisms of endothelial cell membrane repair. The future directions of this research area are also highlighted. Full article
Show Figures

Figure 1

Back to TopTop