Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,475)

Search Parameters:
Keywords = plant drying rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1993 KiB  
Article
Supplementation of Calcium Through Seed Enrichment Technique Enhances Germinability and Early Growth of Timothy (Phleum pratense L.) Under Salinity Conditions
by Masahiro Akimoto and Li Ma
Agronomy 2025, 15(8), 1905; https://doi.org/10.3390/agronomy15081905 (registering DOI) - 7 Aug 2025
Abstract
Calcium ameliorates salt-related growth defects in plants. The objective of this study was to determine whether supplying calcium through a seed enrichment technique enhances the germinability and early growth of timothy (Phleum pratense L.) under saline conditions. For seed enrichment, timothy seeds [...] Read more.
Calcium ameliorates salt-related growth defects in plants. The objective of this study was to determine whether supplying calcium through a seed enrichment technique enhances the germinability and early growth of timothy (Phleum pratense L.) under saline conditions. For seed enrichment, timothy seeds were soaked in CaCl2 solutions at concentrations of 50 mM or 100 mM for 24 h at room temperature. Seeds treated with distilled water served as the control. Under distilled water conditions, germination rates among the seeds showed minimal variation, approximately 95% on average. However, in a 200 mM NaCl environment, the germination rate of the control seeds significantly decreased to 25%, while the germination rates of the Ca-enriched seeds remained high, exceeding 86%. Additionally, the Ca-enriched seeds germinated more quickly than the control seeds. When plants were grown with distilled water, the total dry matter weights did not differ significantly among the treatment types. However, under salt stress with 100 mM NaCl, the plants derived from Ca-enriched seeds thrived and exhibited higher dry matter weights compared to the control plants. The Ca-enriched seeds contained more soluble sugars and demonstrated higher catalase activity than the control seeds, and their corresponding plants accumulated less sodium under salt stress compared to the control plants. Seed enrichment is an effective technique for supplying calcium to timothy, and a concentration of 50 mM of CaCl2 in the treatment solution is sufficient to achieve salt tolerance. Full article
Show Figures

Figure 1

14 pages, 706 KiB  
Article
Study on the Effects of Irrigation Amount on Spring Maize Yield and Water Use Efficiency Under Different Planting Patterns in Xinjiang
by Ruxiao Bai, Haixiu He, Xinjiang Zhang and Qifeng Wu
Agriculture 2025, 15(15), 1710; https://doi.org/10.3390/agriculture15151710 (registering DOI) - 7 Aug 2025
Abstract
Planting patterns and irrigation amounts are key factors affecting maize yield. This study adopted a two-factor experimental design, with planting pattern as the main plot and irrigation amount as the subplot, to investigate the effects of irrigation levels under different planting patterns (including [...] Read more.
Planting patterns and irrigation amounts are key factors affecting maize yield. This study adopted a two-factor experimental design, with planting pattern as the main plot and irrigation amount as the subplot, to investigate the effects of irrigation levels under different planting patterns (including uniform row spacing and alternating wide-narrow row spacing) on spring maize yield and water use efficiency in Xinjiang. Through this approach, the study examined the mechanisms by which planting pattern and irrigation amount influence maize growth, yield formation, and water use efficiency. Experiments conducted at the Agricultural Science Research Institute of the Ninth Division of Xinjiang Production and Construction Corps demonstrated that alternating wide-narrow row spacing combined with moderate irrigation (5400 m3/hm2) significantly optimized maize root distribution, improved water use efficiency, and increased leaf area index and net photosynthetic rate, thereby promoting dry matter accumulation and yield enhancement. In contrast, uniform row spacing under high irrigation levels increased yield but resulted in lower water use efficiency. The study also found that alternating wide-narrow row spacing enhanced maize nutrient absorption from the soil, particularly phosphorus utilization efficiency, by improving canopy structure and root expansion. This pattern exhibited comprehensive advantages in resource utilization, providing a theoretical basis and technical pathway for achieving water-saving and high-yield maize production in arid regions, which holds significant importance for promoting sustainable agricultural development. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

17 pages, 5600 KiB  
Article
From Marshes to Mines: Germination and Establishment of Crinum bulbispermum on Gold Mine Tailings
by Vincent C. Clarke, Sarina Claassens, Dirk P. Cilliers and Stefan J. Siebert
Plants 2025, 14(15), 2443; https://doi.org/10.3390/plants14152443 - 7 Aug 2025
Abstract
The growth potential of Crinum bulbispermum was evaluated on gold mine tailings. The primary objectives were to model the species’ climatic niche in relation to gold mining regions, assess its germination success on tailings, and compare seedling survival and growth on tailings versus [...] Read more.
The growth potential of Crinum bulbispermum was evaluated on gold mine tailings. The primary objectives were to model the species’ climatic niche in relation to gold mining regions, assess its germination success on tailings, and compare seedling survival and growth on tailings versus other soil types. Species distribution modelling identified the South African Grassland Biome on the Highveld (1000+ m above sea level), where the majority of gold mines are located, as highly suitable for the species. Pot trials demonstrated above 85% germination success across all soil treatments, including gold mine tailings, indicating its potential for restoration through direct seeding. An initial seedling establishment rate of 100% further demonstrated the species’ resilience to mine tailings, which are often seasonally dry, nutrient-poor, and may contain potentially toxic metals. However, while C. bulbispermum was able to germinate and establish in mine tailings, long-term growth potential (over 12 months) was constrained by low organic carbon content (0.11%) and high salinity (194.50 mS/m). These findings underscore the critical role of soil chemistry and organic matter in supporting long-term plant establishment and growth on gold tailings. Building on previous research, this study confirms the ability of this thick-rooted geophyte to tolerate chemically extreme soil conditions. Crinum bulbispermum shows promise for phytostabilization and as a potential medicinal plant crop on tailings. However, future research on microbial community interactions and soil amendment strategies is essential to ensure its long-term sustainability. Full article
Show Figures

Figure 1

12 pages, 1362 KiB  
Article
Physiological Response to Foliar Application of Antitranspirant on Avocado Trees (Persea americana) in a Mediterranean Environment
by Giulia Modica, Fabio Arcidiacono, Stefano La Malfa, Alessandra Gentile and Alberto Continella
Horticulturae 2025, 11(8), 928; https://doi.org/10.3390/horticulturae11080928 - 6 Aug 2025
Abstract
Background: The implementation of advanced agronomical strategies, including the use of antitranspirant, in order to mitigate the negative effects of environmental stress, particularly heat stress on plants, has become a focal area of research in the Mediterranean basin. This region is characterized by [...] Read more.
Background: The implementation of advanced agronomical strategies, including the use of antitranspirant, in order to mitigate the negative effects of environmental stress, particularly heat stress on plants, has become a focal area of research in the Mediterranean basin. This region is characterized by hot and dry summer that affects plant physiology. Methods: The experiment was carried out in Sicily (South Italy) on 12-year-old avocado cv. Hass grafted onto Walter Hole rootstock. Two subplots each of forty homogenous trees were selected and treated (1) with calcium carbonate (DECCO Shield®) and (2) with water (control) at the following phenological phases: 711, 712 and 715 BBCH. The climatic parameters were recorded throughout the year. Physiological measurements (leaf transpiration, net photosynthesis, stomatal conductance, leaf water potential) were measured at 105, 131 and 168 days after full bloom. Fruit growth was monitored, and physico-chemical analyses were carried out at harvest. Results: The antitranspirant increased photosynthesis and stomatal conductance and reduced leaf transpiration (−26.1%). Fruit growth rate increased during summer, although no morphological and qualitative difference was observed at harvest. PCA highlighted the positive effect of the calcium carbonate on overall plant physiology. Conclusions: Antitranspirant foliar application reduced heat stress effects by improving physiological responses of avocado trees. Full article
Show Figures

Figure 1

15 pages, 1806 KiB  
Article
Drought and Shrub Encroachment Accelerate Peatland Carbon Loss Under Climate Warming
by Fan Lu, Boli Yi, Jun-Xiao Ma, Si-Nan Wang, Yu-Jie Feng, Kai Qin, Qiansi Tu and Zhao-Jun Bu
Plants 2025, 14(15), 2387; https://doi.org/10.3390/plants14152387 - 2 Aug 2025
Viewed by 185
Abstract
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input [...] Read more.
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input under these stressors remains poorly understood. We incubated peat from two depths with different degrees of decomposition, either alone or incubated with Sphagnum divinum shoots or Betula ovalifolia leaves, under five temperature levels and two moisture conditions in growth chambers. We found that drought and Betula addition increased CO2 emissions in both peat layers, while Sphagnum affected only shallow peat. Deep peat alone or with Betula exhibited higher Q10 than pure shallow peat. Drought increased the Q10 of both depths’ peat, but this effect disappeared with fresh litter addition. The CO2 production rate showed a positive but marginal correlation with microbial biomass carbon, and it displayed a rather similar responsive trend to warming as the microbial metabolism quotient. These results indicate that both deep and dry peat are more sensitive to warming, highlighting the importance of keeping deep peat buried and waterlogged to conserve existing carbon storage. Additionally, they further emphasize the necessity of Sphagnum moss recovery following vascular plant encroachment in restoring carbon sink function in peatlands. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

16 pages, 3713 KiB  
Article
Synergistic Alleviation of Saline–Alkali Stress and Enhancement of Selenium Nutrition in Rice by ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase-Producing Serratia liquefaciens and Biogenically Synthesized Nano-Selenium
by Nina Zhu, Xinpei Wei, Xingye Pan, Benkang Xie, Shuquan Xin and Kai Song
Plants 2025, 14(15), 2376; https://doi.org/10.3390/plants14152376 - 1 Aug 2025
Viewed by 179
Abstract
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of [...] Read more.
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of S. liquefaciens with high ACC deaminase activity was isolated and used to biosynthesize SeNPs with stable physicochemical properties. Pot experiments showed that application of the composite inoculant (S3: S. liquefaciens + 40 mmol/L SeNPs) significantly improved seedling biomass (fresh weight +53.8%, dry weight +60.6%), plant height (+31.6%), and root activity under saline–alkali conditions. S3 treatment also enhanced panicle weight, seed-setting rate, and grain Se content (234.13 μg/kg), meeting national Se-enriched rice standards. Moreover, it increased rhizosphere soil N, P, and K availability and improved microbial α-diversity. This is the first comprehensive demonstration that a synergistic bioformulation of ACC deaminase PGPR and biogenic SeNPs effectively mitigates saline–alkali stress, enhances soil fertility, and enables safe Se biofortification in rice. Full article
(This article belongs to the Special Issue Nanomaterials in Plant Growth and Stress Adaptation—2nd Edition)
Show Figures

Figure 1

17 pages, 3308 KiB  
Article
Exogenous Melatonin Application Improves Shade Tolerance and Growth Performance of Soybean Under Maize–Soybean Intercropping Systems
by Dan Jia, Ziqing Meng, Shiqiang Hu, Jamal Nasar, Zeqiang Shao, Xiuzhi Zhang, Bakht Amin, Muhammad Arif and Harun Gitari
Plants 2025, 14(15), 2359; https://doi.org/10.3390/plants14152359 - 1 Aug 2025
Viewed by 234
Abstract
Maize–soybean intercropping is widely practised to improve land use efficiency, but shading from maize often limits soybean growth and productivity. Melatonin, a plant signaling molecule with antioxidant and growth-regulating properties, has shown potential in mitigating various abiotic stresses, including low light. This study [...] Read more.
Maize–soybean intercropping is widely practised to improve land use efficiency, but shading from maize often limits soybean growth and productivity. Melatonin, a plant signaling molecule with antioxidant and growth-regulating properties, has shown potential in mitigating various abiotic stresses, including low light. This study investigated the efficacy of applying foliar melatonin (MT) to enhance shade tolerance and yield performance of soybean under intercropping. Four melatonin concentrations (0, 50, 100, and 150 µM) were applied to soybean grown under mono- and intercropping systems. The results showed that intercropping significantly reduced growth, photosynthetic activity, and yield-related traits. However, the MT application, particularly at 100 µM (MT100), effectively mitigated these declines. MT100 improved plant height (by up to 32%), leaf area (8%), internode length (up to 41%), grain yield (32%), and biomass dry matter (30%) compared to untreated intercropped plants. It also enhanced SPAD chlorophyll values, photosynthetic rate, stomatal conductance, chlorophyll fluorescence parameters such as Photosystem II efficiency (ɸPSII), maximum PSII quantum yield (Fv/Fm), photochemical quenching (qp), electron transport rate (ETR), Rubisco activity, and soluble protein content. These findings suggest that foliar application of melatonin, especially at 100 µM, can improve shade resilience in soybean by enhancing physiological and biochemical performance, offering a practical strategy for optimizing productivity in intercropping systems. Full article
(This article belongs to the Special Issue The Physiology of Abiotic Stress in Plants)
Show Figures

Figure 1

20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 198
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

30 pages, 4804 KiB  
Article
Deep Storage Irrigation Enhances Grain Yield of Winter Wheat by Improving Plant Growth and Grain-Filling Process in Northwest China
by Xiaodong Fan, Dianyu Chen, Haitao Che, Yakun Wang, Yadan Du and Xiaotao Hu
Agronomy 2025, 15(8), 1852; https://doi.org/10.3390/agronomy15081852 - 31 Jul 2025
Viewed by 246
Abstract
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects [...] Read more.
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects of irrigation amounts on agricultural yield and the mechanisms under deep storage irrigation. A three-year field experiment (2020–2023) was conducted in the Guanzhong Plain, according to five soil wetting layer depths (RF: 0 cm; W1: control, 120 cm; W2: 140 cm; W3: 160 cm; W4: 180 cm) with soil saturation water content as the irrigation upper limit. Results exhibited that, compared to W1, the W2, W3, and W4 treatments led to the increased plant height, leaf area index, and dry matter accumulation. Meanwhile, the W2, W3, and W4 treatments improved kernel weight increment achieving maximum grain-filling rate (Wmax), maximum grain-filling rate (Gmax), and average grain-filling rate (Gave), thereby enhancing the effective spikes (ES) and grain number per spike (GS), and thus increased wheat grain yield (GY). In relative to W1, the W2, W3, and W4 treatments increased the ES, GS, and GY by 11.89–19.81%, 8.61–14.36%, and 8.17–13.62% across the three years. Notably, no significant difference was observed in GS and GY between W3 and W4 treatments, but W4 treatment displayed significant decreases in ES by 3.04%, 3.06%, and 2.98% in the respective years. The application of a structural equation modeling (SEM) revealed that deep storage irrigation improved ES and GS by positively regulating Wmax, Gmax, and Gave, thus significantly increasing GY. Overall, this study identified the optimal threshold (W3 treatment) to maximize wheat yields by optimizing both the vegetative growth and grain-filling dynamics. This study provides essential support for the feasibility assessment of deep storage irrigation before flood seasons, which is vital for the balance and coordination of food security and water security. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

16 pages, 1659 KiB  
Article
Ricinus communis L. Leaf Extracts as a Sustainable Alternative for Weed Management
by Aline Mazoy Lopes, Lucas Kila Ribeiro, Maurício Ricardo de Melo Cogo, Lucas Mironuk Frescura, Marcelo Barcellos da Rosa, Alex Schulz, Flávio Dias Mayer, Ederson Rossi Abaide, Marcus Vinícius Tres and Giovani Leone Zabot
Sustainability 2025, 17(15), 6942; https://doi.org/10.3390/su17156942 - 30 Jul 2025
Viewed by 193
Abstract
Weeds pose a significant challenge to agricultural productivity, requiring control strategies that are both effective and environmentally sustainable. Therefore, this study evaluated the inhibitory potential of aqueous extracts from Ricinus communis L. leaves to manage the weeds Oryza sativa L. (weedy rice) and [...] Read more.
Weeds pose a significant challenge to agricultural productivity, requiring control strategies that are both effective and environmentally sustainable. Therefore, this study evaluated the inhibitory potential of aqueous extracts from Ricinus communis L. leaves to manage the weeds Oryza sativa L. (weedy rice) and Cyperus ferax. Extracts were obtained through pressurized liquid extraction using water as the solvent. Bioassays were conducted during pre- and post-emergence stages by foliar spraying 15 and 30 days after sowing (DAS). The effect of extraction time (1–30 min) on inhibitory efficacy was also assessed. Chemical profiles of the extracts were characterized using high-performance liquid chromatography. The extracts significantly inhibited seed germination, with suppression rates reaching 92.7%. Plant growth was also diminished, particularly with earlier treatments (at 15 DAS), resulting in reductions of up to 32% and 53% in shoot length, and 69% and 73% in total dry mass for O. sativa L. and C. ferax, respectively. Mortality rates of O. sativa L. and C. ferax reached 64% and 58%, respectively. Phenolic compounds were identified in the extracts, and higher concentrations were observed at shorter extraction times. These findings underscore the potential of R. communis L. leaf extracts as an ecologically sustainable alternative for weed management, providing an effective and natural approach that may reduce reliance on synthetic herbicides and mitigate their environmental impact. Full article
Show Figures

Figure 1

17 pages, 2601 KiB  
Article
Tree Selection of Vernicia montana in a Representative Orchard Cluster Within Southern Hunan Province, China: A Comprehensive Evaluation Approach
by Juntao Liu, Zhexiu Yu, Xihui Li, Ling Zhou, Ruihui Wang and Weihua Zhang
Plants 2025, 14(15), 2351; https://doi.org/10.3390/plants14152351 - 30 Jul 2025
Viewed by 332
Abstract
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from [...] Read more.
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from seedling forests grown in the Suxian District of Chenzhou City in southern Hunan Province, we conducted pre-selection, primary selection, and re-selection of Vernicia montana forest stands and took the nine trait indices of single-plant fruiting quantity, single-plant fruit yield, disease and pest resistance, fruit ripening consistency, fruit aggregation, fresh fruit single-fruit weight, fresh fruit seed rate, dry seed kernel rate, and seed kernel oil content rate as the optimal evaluation indexes and carried out cluster analysis and a comprehensive evaluation in order to establish a comprehensive evaluation system for superior Vernicia montana trees. The results demonstrated that a three-stage selection process—consisting of pre-selection, primary selection, and re-selection—was conducted using a comprehensive analytical approach. The pre-selection phase relied primarily on sensory evaluation criteria, including fruit count per plant, tree size, tree morphology, and fruit clustering characteristics. Through this rigorous screening process, 60 elite plants were selected. The primary selection was based on phenotypic traits, including single-plant fruit yield, pest and disease resistance, and uniformity of fruit ripening. From this stage, 36 plants were selected. Twenty plants were then selected for re-selection based on key performance indicators, such as fresh fruit weight, fresh fruit seed yield, dry seed kernel yield, and oil content of the seed kernel. Then the re-selected optimal trees were clustered and analyzed into three classes, with 10 plants in class I, 7 plants in class II, and 3 plants in class III. In class I, the top three superior plants exhibited outstanding performance across key traits: their fresh fruit weight per fruit, fresh fruit seed yield, dry seed yield, and seed kernel oil content reached 41.61 g, 42.80%, 62.42%, and 57.72%, respectively. Compared with other groups, these figures showed significant advantages: 1.17, 1.09, 1.12, and 1.02 times the average values of the 20 reselected superior trees; 1.22, 1.19, 1.20, and 1.08 times those of the 36 primary-selected superior trees; and 1.24, 1.25, 1.26, and 1.19 times those of the 60 pre-selected trees. Fruits counts per plant and the number of fruits produced per plant of the best three plants in class I were 885 and 23.38 kg, respectively, which were 1.13 and 1.18 times higher than the average of 20 re-selected superior trees, 1.25 and 1.30 times higher than the average of 36 first-selected superior trees, and 1.51 and 1.58 times higher than the average of 60 pre-selected superior trees. Class I superior trees, especially the top three genotypes, are suitable for use as mother trees for scion collection in grafting. The findings of this study provide a crucial foundation for developing superior clonal varieties of Vernicia montana through selective breeding. Full article
Show Figures

Figure 1

24 pages, 13886 KiB  
Article
Complete Genome Analysis and Antimicrobial Mechanism of Burkholderia gladioli ZBSF BH07 Reveal Its Dual Role in the Biocontrol of Grapevine Diseases and Growth Promotion in Grapevines
by Xiangtian Yin, Chundong Wang, Lifang Yuan, Yanfeng Wei, Tinggang Li, Qibao Liu, Xing Han, Xinying Wu, Chaoping Wang and Xilong Jiang
Microorganisms 2025, 13(8), 1756; https://doi.org/10.3390/microorganisms13081756 - 28 Jul 2025
Viewed by 295
Abstract
Burkholderia gladioli is a multifaceted bacterium with both pathogenic and beneficial strains, and nonpathogenic Burkholderia species have shown potential as plant growth-promoting rhizobacteria (PGPRs) and biocontrol agents. However, the molecular mechanisms underlying their beneficial functions remain poorly characterized. This study systematically investigated the [...] Read more.
Burkholderia gladioli is a multifaceted bacterium with both pathogenic and beneficial strains, and nonpathogenic Burkholderia species have shown potential as plant growth-promoting rhizobacteria (PGPRs) and biocontrol agents. However, the molecular mechanisms underlying their beneficial functions remain poorly characterized. This study systematically investigated the antimicrobial mechanisms and plant growth-promoting properties of B. gladioli strain ZBSF BH07, isolated from the grape rhizosphere, by combining genomic and functional analyses, including whole-genome sequencing, gene annotation, phylogenetic and comparative genomics, in vitro antifungal assays, and plant growth promotion evaluations. The results showed that ZBSF BH07 exhibited broad-spectrum antifungal activity, inhibiting 14 grape pathogens with an average inhibition rate of 56.58% and showing dual preventive/curative effects against grape white rot, while also significantly promoting grape seedling growth with increases of 54.9% in plant height, 172.9% in root fresh weight, and 231.34% in root dry weight. Genomic analysis revealed an 8.56-Mb genome (two chromosomes and one plasmid) encoding 7431 genes and 26 secondary metabolite biosynthesis clusters (predominantly nonribosomal peptide synthetases), supporting its capacity for antifungal metabolite secretion, and functional analysis confirmed genes for indole-3-acetic acid (IAA) synthesis, phosphate solubilization, and siderophore production. These results demonstrate that ZBSF BH07 suppresses pathogens via antifungal metabolites and enhances grape growth through phytohormone regulation and nutrient acquisition, providing novel insights into the dual mechanisms of B. gladioli as a biocontrol and growth-promoting agent and laying a scientific foundation for developing sustainable grapevine disease management strategies. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

18 pages, 2565 KiB  
Article
Agronomic and Physicochemical Quality of Broccoli Cultivated Under Different Fertilizers and Phosphorus Rates
by Dinamar Márcia da Silva Vieira, Reginaldo de Camargo, Miguel Henrique Rosa Franco, Valdeci Orioli Júnior, Cintia Cristina de Oliveira, Arcângelo Loss, Fausto Antônio Domingos Júnior, Maytê Maria Abreu Pires de Melo Silva and José Luiz Rodrigues Torres
Horticulturae 2025, 11(8), 873; https://doi.org/10.3390/horticulturae11080873 - 25 Jul 2025
Viewed by 358
Abstract
The aim of this study was to evaluate the agronomic performance and physicochemical characteristics of broccoli grown under different doses and sources of special phosphorus (P) fertilizers and their residual effect on the soil, in Cerrado mineiro. A randomized block design arranged in [...] Read more.
The aim of this study was to evaluate the agronomic performance and physicochemical characteristics of broccoli grown under different doses and sources of special phosphorus (P) fertilizers and their residual effect on the soil, in Cerrado mineiro. A randomized block design arranged in a split-plot scheme was employed, where three P sources—T1 = Conventional monoammonium phosphate (CMP); T2 = Polymerized monoammonium phosphate (PCMP); T3 = Granulated organomineral fertilizer (GOF)—along with four P2O5 rates—1–0 (No P); 2–50% (200 kg ha−1 P2O5); 3–75% (300 kg ha−1 P2O5); and 4–100% (400 kg ha−1 P2O5)—were assessed. Evaluations included the number of leaves (NL), head fresh (HFM) and dry mass (HDM), yield (YLD), soil fertility at harvest, plant nutritional status, and the physicochemical quality of the harvested broccoli. It was observed that GOF provided the best agronomic performance (HFM, HDM and YLD) of the broccoli and the greatest residual effect in the soil compared to PCMP and CMP. The moisture, ash, protein, lipid, total titratable acid and ascorbic acid contents were not significantly (p < 0.05) affected by the fertilizers used, on the other hand, total soluble solids and hydrogen potential showed the highest and lowest values, respectively, with CMP. The best agronomic performance, the highest phosphorus content in the soil and plant and the best physical–chemical quality of the broccoli occurred at a dose of 100% (400 kg ha−1 of P2O5) of the recommendation for the crop in all three fertilizers evaluated. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

24 pages, 9486 KiB  
Article
StMAPKK1 Enhances Thermotolerance in Potato (Solanum tuberosum L.) by Enhancing Antioxidant Defense and Photosynthetic Efficiency Under Heat Stress
by Xi Zhu, Yasir Majeed, Kaitong Wang, Xiaoqin Duan, Nengkang Guan, Junfu Luo, Haifei Zheng, Huafen Zou, Hui Jin, Zhuo Chen and Yu Zhang
Plants 2025, 14(15), 2289; https://doi.org/10.3390/plants14152289 - 24 Jul 2025
Viewed by 299
Abstract
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain [...] Read more.
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed cultivar-specific upregulation in potato (‘Atlantic’ and ‘Desiree’) leaves under heat stress (25 °C, 30 °C, and 35 °C). Transgenic lines overexpressing (OE) StMAPKK1 exhibited elevated antioxidant enzyme activity, including ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), mitigating oxidative damage. Increased proline and chlorophyll accumulation and reduced oxidative stress markers, hydrogen peroxide (H2O2) and malondialdehyde (MDA), indicate improved cellular redox homeostasis. The upregulation of key antioxidant and heat stress-responsive genes (StAPX, StCAT1/2, StPOD12/47, StFeSOD2/3, StMnSOD, StCuZnSOD1/2, StHSFA3 and StHSP20/70/90) strengthened the enzymatic defense system, enhanced thermotolerance, and improved photosynthetic efficiency, with significant improvements in net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs) under heat stress (35 °C) in StMAPKK1-OE plants. Superior growth and biomass (plant height, plant and its root fresh and dry weights, and tuber yield) accumulation, confirming the positive role of StMAPKK1 in thermotolerance. Conversely, RNA interference (RNAi)-mediated suppression of StMAPKK1 led to a reduction in enzymatic activity, proline content, and chlorophyll levels, exacerbating oxidative stress. Downregulation of antioxidant-related genes impaired ROS scavenging capacity and declines in photosynthetic efficiency, growth, and biomass, accompanied by elevated H2O2 and MDA accumulation, highlighting the essential role of StMAPKK1 in heat stress adaptation. These findings highlight StMAPKK1’s potential as a key genetic target for breeding heat-tolerant potato varieties, offering a foundation for improving crop resilience in warming climates. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

17 pages, 2629 KiB  
Article
Recovery of High-Alkali-Grade Feldspar Substitute from Phonolite Tailings
by Savas Ozun, Semsettin Ulutas and Sema Yurdakul
Processes 2025, 13(8), 2334; https://doi.org/10.3390/pr13082334 - 23 Jul 2025
Viewed by 281
Abstract
Phonolite is a fine-grained, shallow extrusive rock rich in alkali minerals and containing iron/titanium-bearing minerals. This rock is widely used as a construction material for building exteriors due to its excellent abrasion resistance and insulation properties. However, during the cutting process, approximately 70% [...] Read more.
Phonolite is a fine-grained, shallow extrusive rock rich in alkali minerals and containing iron/titanium-bearing minerals. This rock is widely used as a construction material for building exteriors due to its excellent abrasion resistance and insulation properties. However, during the cutting process, approximately 70% of the rock is discarded as tailing. So, this study aims to repurpose tailings from a phonolite cutting and sizing plant into a high-alkali ceramic raw mineral concentrate. To enable the use of phonolite tailings in ceramic manufacturing, it is necessary to remove coloring iron/titanium-bearing minerals, which negatively affect the final product. To achieve this removal, dry/wet magnetic separation processes, along with flotation, were employed both individually and in combination. The results demonstrated that using dry high-intensity magnetic separation (DHIMS) resulted in a concentrate with an Fe2O3 + TiO2 grade of 0.95% and a removal efficiency of 85%. The wet high-intensity magnetic separation (WHIMS) process reduced the Fe2O3 + TiO2 grade of the concentrate to 1.2%, with 70% removal efficiency. During flotation tests, both pH levels and collector concentration impacted the efficiency and Fe2O3 + TiO2 grade (%) of the concentrate. The lowest Fe2O3 + TiO2 grade of 1.65% was achieved at a pH level of 10 with a collector concentration of 2000 g/t. Flotation concentrates processed with DHIMS achieved a minimum Fe2O3 + TiO2 grade of 0.90%, while those processed with WHIMS exhibited higher Fe2O3 + TiO2 grades (>1.1%) and higher recovery rates (80%). Additionally, studies on flotation applied to WHIMS concentrates showed that collector concentration, pulp density, and conditioning time significantly influenced the Fe2O3 + TiO2 grade of the final concentrate. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

Back to TopTop