From Marshes to Mines: Germination and Establishment of Crinum bulbispermum on Gold Mine Tailings
Abstract
1. Introduction
2. Results
2.1. Spatial Distribution
2.2. Species Distribution Modelling
2.3. Standard Germination Tests
2.4. Establishment
2.5. Soil Analysis
3. Discussion
3.1. Species Distribution
3.2. Habitat Suitability
3.3. Germination and Establishment
4. Methods
4.1. Experimental Layout and Data Collection
4.1.1. Distribution Data Sources
4.1.2. Standard Germination Tests
4.1.3. Plant Establishment Trials
4.1.4. Soil Preparation
4.2. Data Analyses
4.2.1. Spatial Distribution
4.2.2. Species Distribution Modelling
4.2.3. Germination Trials
4.2.4. Establishment Trials
4.2.5. Soil Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Siebert, F.; te Beest, M.; Fynn, R.; Klimešová, J.; Morris, C.; Nkuna, S.; Siebert, S.; Fidelis, A. Past, Present, and Future of Forbs in Old-Growth Tropical and Subtropical Grasslands. Annu. Rev. Ecol. Evol. Syst. 2024, 55, 395–421. [Google Scholar] [CrossRef]
- Reyers, B.; Fairbanks, D.H.K.; Van Jaarsveld, A.S.; Thompson, M. Priority Areas for the Conservation of South African Vegetation: A Coarse-filter Approach. Divers. Distrib. 2001, 7, 79–95. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Soil Reclamation of Abandoned Mine Land by Revegetation: A Review. Int. J. Soil Sediment Water 2010, 3, 13. [Google Scholar]
- Mineral Council South Africa. Gold. Available online: https://www.mineralscouncil.org.za/sa-mining/gold (accessed on 27 July 2025).
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine Tailings Dams: Characteristics, Failure, Environmental Impacts, and Remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Atencio, E. Past, Present, and Future of Copper Mine Tailings Governance in Chile (1905–2022): A Review in One of the Leading Mining Countries in the World. Int. J. Environ. Res. Public Health 2022, 19, 13060. [Google Scholar] [CrossRef]
- CJMgrowers. Crinum bulbispermum. Available online: https://cjmgrowers.co.za/crinum-bulbispermum/ (accessed on 27 March 2023).
- Dold, B. Submarine Tailings Disposal (STD)—A Review. Minerals 2014, 4, 642–666. [Google Scholar] [CrossRef]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 663. [Google Scholar] [CrossRef]
- Egoh, B.N.; Reyers, B.; Rouget, M.; Richardson, D.M. Identifying Priority Areas for Ecosystem Service Management in South African Grasslands. J. Environ. Manag. 2011, 92, 1642–1650. [Google Scholar] [CrossRef]
- Veldman, J.W.; Overbeck, G.E.; Negreiros, D.; Mahy, G.; Le Stradic, S.; Fernandes, G.W.; Durigan, G.; Buisson, E.; Putz, F.E.; Bond, W.J. Where Tree Planting and Forest Expansion Are Bad for Biodiversity and Ecosystem Services. BioScience 2015, 65, 1011–1018. [Google Scholar] [CrossRef]
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Mu, M.; Saatchi, S.; Santoro, M.; Thurner, M.; et al. Global Covariation of Carbon Turnover Times with Climate in Terrestrial Ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef]
- Yang, Y.; Tilman, D.; Furey, G.; Lehman, C. Soil Carbon Sequestration Accelerated by Restoration of Grassland Biodiversity. Nat. Commun. 2019, 10, 718. [Google Scholar] [CrossRef]
- Buisson, E.; Fidelis, A.; Overbeck, G.E.; Schmidt, I.B.; Durigan, G.; Young, T.P.; Alvarado, S.T.; Arruda, A.J.; Boisson, S.; Bond, W.; et al. A Research Agenda for the Restoration of Tropical and Subtropical Grasslands and Savannas. Restor. Ecol. 2020, 29, e13292. [Google Scholar] [CrossRef]
- Siebert, F.; Dreber, N. Forb Ecology Research in Dry African Savannas: Knowledge, Gaps, and Future Perspectives. Ecol. Evol. 2019, 9, 7875–7891. [Google Scholar] [CrossRef]
- Snijman, D.A.; Linder, H.P. Phylogenetic Relationships, Seed Characters, and Dispersal System Evolution in Amaryllideae (Amaryllidaceae). Ann. Mo. Bot. Gard. 1996, 83, 362. [Google Scholar] [CrossRef]
- Verdoorn, I.C. The Genus Crinum in Southern Africa. Bothalia 1973, 11, 27–52. [Google Scholar] [CrossRef]
- Hale, S.L.; Koprowski, J.L. Ecosystem-Level Effects of Keystone Species Reintroduction: A Literature Review. Restor. Ecol. 2018, 26, 439–445. [Google Scholar] [CrossRef]
- Bryan, J.E. Bulbs; Timber Press: Portland, OR, USA, 1989; ISBN 9780881921014. [Google Scholar]
- Fangan, B.M.; Nordal, I. A Comparative Analysis of Morphology, Chloroplast-DNA and Distribution within the Genus Crinum (Amaryllidaceae). J. Biogeogr. 1993, 20, 55. [Google Scholar] [CrossRef]
- Fennell, C.W.; van Staden, J. Crinum Species in Traditional and Modern Medicine. J. Ethnopharmacol. 2001, 78, 15–26. [Google Scholar] [CrossRef]
- Nair, J.J.; van Staden, J. Pharmacological Studies of Crinum, Ammocharis, Amaryllis and Cyrtanthus Species of the South African Amaryllidaceae. S. Afr. J. Bot. 2022, 147, 238–244. [Google Scholar] [CrossRef]
- Clarke, V.C.; Marcelo-Silva, J.; Claassens, S.; Siebert, S.J. Crinum bulbispermum, a Medicinal Geophyte with Phytostabilization Properties in Metal-Enriched Mine Tailings. Plants 2023, 13, 79. [Google Scholar] [CrossRef]
- Hoekstra, J.M.; Boucher, T.M.; Ricketts, T.H.; Roberts, C. Confronting a Biome Crisis: Global Disparities of Habitat Loss and Protection. Ecol. Lett. 2004, 8, 23–29. [Google Scholar] [CrossRef]
- Peterson, A.T. Uses and Requirements of Ecological Niche Models and Related Distributional Models. Biodivers. Inform. 2006, 3, 59–72. [Google Scholar] [CrossRef]
- Norberg, A.; Abrego, N.; Blanchet, F.G.; Adler, F.R.; Anderson, B.J.; Anttila, J.; Araújo, M.B.; Dallas, T.; Dunson, D.; Elith, J.; et al. A Comprehensive Evaluation of Predictive Performance of 33 Species Distribution Models at Species and Community Levels. Ecol. Monogr. 2019, 89, e01370. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting Species Distribution: Offering More than Simple Habitat Models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction Risk from Climate Change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- Dalziell, E.L.; Lewandrowski, W.; Commander, L.E.; Elliott, C.P.; Erickson, T.E.; Tudor, E.P.; Turner, S.R.; Merritt, D.J. Invited Review: Seed Traits Inform the Germination Niche for Biodiverse Ecological Restoration. Seed Sci. Technol. 2022, 50, 103–124. [Google Scholar] [CrossRef]
- Ntloko, B.R.; Siebert, S.J.; Mokotjomela, T.M. Rehabilitation of Kimberlite Tailings in the Afro-Alpine Zone of Lesotho: Seed Germination and Plant Performance of Native Grassland Species across Different Topsoil Mixtures. Restor. Ecol. 2021, 30, e13528. [Google Scholar] [CrossRef]
- Shahid, S.A.; Zaman, M.; Heng, L.; Zaman, M.; Shahid, S.A.; Heng, L. Introduction to Soil Salinity, Sodicity and Diagnostics Techniques. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–42. ISBN 9783319961903. [Google Scholar]
- Tibane, L.V.; Mamba, D. Ecological Risk of Trace Metals in Soil from Gold Mining Region in South Africa. J. Hazard. Mater. Adv. 2022, 7, 100118. [Google Scholar] [CrossRef]
- Johnson, S.D.; Raguso, R.A. The Longtongued Hawkmoth Pollinator Niche for Native and Invasive Plants in Africa. Ann. Bot. 2016, 117, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Mucina, L.; Rutherford, M.C. The Vegetation of South Africa, Lesotho and Swaziland; Strelitzia 19, South African National Biodiversity Institute: Pretoria, South Africa, 2006; ISBN 9781919976211. [Google Scholar]
- Guisan, A.; Zimmermann, N.E. Predictive Habitat Distribution Models in Ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Du Plessis, N.; Duncan, G.; Bayer, B.; Bodley, E. Bulbous Plants of Southern Africa; Tafelberg: Cape Town, South Africa, 1989; ISBN 9780624028109. [Google Scholar]
- Keener, B.; Diamond, A.; Davenport, L.; Davison, P.; Ginzbarg, S.; Hansen, C.; Major, C.; Spaulding, D.; Triplett, J.; Woods, M. Alabama Plant Atlas; Florida Center for Community Design and Research, University of West Alabama: Livingston, AL, USA, 2017. [Google Scholar]
- Franklin, J.; Miller, J.A. Mapping Species Distributions; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780511810602. [Google Scholar]
- Bradie, J.; Leung, B. A Quantitative Synthesis of the Importance of Variables Used in MaxEnt Species Distribution Models. J. Biogeogr. 2016, 44, 1344–1361. [Google Scholar] [CrossRef]
- Colloff, M.J.; Baldwin, D.S. Resilience of Floodplain Ecosystems in a Semi-Arid Environment. Rangel. J. 2010, 32, 305. [Google Scholar] [CrossRef]
- Clark, T.; Parsons, R.F. Ecology of Calostemma and Crinum (Amaryllidaceae) in the River Murray Area, South-Eastern Australia. Proc. R. Soc. Vic. New Ser. 1994, 106, 129–145. [Google Scholar]
- Favre, A.; Philippon, N.; Pohl, B.; Kalognomou, E.; Lennard, C.; Hewitson, B.; Nikulin, G.; Dosio, A.; Panitz, H.; CerezoMota, R. Spatial Distribution of Precipitation Annual Cycles over South Africa in 10 CORDEX Regional Climate Model Presentday Simulations. Clim. Dyn. 2016, 46, 1799–1818. [Google Scholar] [CrossRef]
- Cowling, R.M.; Esler, K.J.; Midgley, G.F.; Honig, M.A. Plant Functional Diversity, Species Diversity and Climate in Arid and Semiarid Southern Africa. J. Arid Environ. 1994, 27, 141–158. [Google Scholar] [CrossRef]
- Tshwene-Mauchaza, B.; Aguirre-Gutiérrez, J. Climatic Drivers of Plant Species Distributions across Spatial Grains in Southern Africa Tropical Forests. Front. For. Glob. Change 2019, 2, 69. [Google Scholar] [CrossRef]
- Carpenter, W.J.; Ostmark, E.R. Sensitivity of Seed Germination of Amaryllis to Light and Temperature. HortScience 1988, 23, 1002–1004. [Google Scholar] [CrossRef]
- Kiss, R.; Deák, B.; Tóth, K.; Lukács, K.; Rádai, Z.; Kelemen, A.; Miglécz, T.; Tóth, Á.; Godó, L.; Valkó, O. Co-Seeding Grasses and Forbs Supports Restoration of Species-Rich Grasslands and Improves Weed Control in Ex-Arable Land. Sci. Rep. 2022, 12, 21239. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013; ISBN 9781461446927. [Google Scholar]
- Parolin, P.; Ferreira, L.V.; Junk, W.J. Germination Characteristics and Establishment of Trees from Central Amazonian Floodplains. Trop. Ecol. 2003, 44, 155–167. [Google Scholar]
- Silver, W.; Neff, J.; Mcgroddy, M.; Veldkamp, E.; Keller, M.; Junior, O. Effects of Soil Texture on below Ground Carbon and Nutrient Storage in a Lowland Amazon Forest Ecosystem. Ecosystems 2000, 3, 193–209. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil Organic Carbon Storage as a Key Function of Soils—A Review of Drivers and Indicators at Various Scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Miles, N.; Antwerpen, R.; Meyer, J. Soil Organic Matter Data: What Do They Mean? Proc. S. Afr. Sugar Technol. Assoc. 2008, 81, 324–332. [Google Scholar]
- Malepfane, N.; Muchaonyerwa, P.; Hughes, J.; Zengeni, R. Effects of Land Use and Site on Organic Carbon Fractions in Some Humic Soil Profiles of KwaZuluNatal, South Africa. S. Afr. J. Plant Soil 2023, 40, 142–148. [Google Scholar] [CrossRef]
- Du Preez, C.C.; Van Huyssteen, C.W.; Mnkeni, P.N.S. Land Use and Soil Organic Matter in South Africa 1: A Review on Spatial Variability and the Influence of Rangeland Stock Production. S. Afr. J. Sci. 2011, 107, 27–34. [Google Scholar] [CrossRef]
- Gerke, J. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, T.; Shi, L.; Kurganova, I.; Lopes de Gerenyu, V.; Kalinina, O.; Giani, L.; Kuzyakov, Y. Organic Carbon Accumulation and Microbial Activities in Arable Soils after Abandonment: A Chronosequence Study. Geoderma 2023, 435, 116496. [Google Scholar] [CrossRef]
- Bargali, S.S. Soil Microbial Biomass: A Crucial Indicator of Soil Health. Curr. Agric. Res. J. 2024, 12, 01–06. [Google Scholar] [CrossRef]
- Omokaro, G.O.; Osarhiemen, I.O.; Idama, V.; Airueghian, E.O.; West, S.T.; Igbigbi, F.E.; Nnake, D.C.; Obolokor, E.; Ahmed, A.; Omoshie, V.O. The Role of Organic Amendments and Their Impact on Soil Restoration: A Review. Asian J. Environ. Ecol. 2024, 23, 41–52. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.R.; Gill, S.P.; Kaundal, A.; Sandhu, D. Strategies for Combating Plant Salinity Stress: The Potential of Plant Growth-Promoting Microorganisms. Front. Plant Sci. 2024, 15, 1406913. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, P.; Kumar, R. Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of the Tools for Its Alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Ranwashe, F. Botanical Database of Southern Africa (BODATSA): Botanical Collections, Crinum bulbispermum, Occurrence Dataset, Version 1.27; South African National Biodiversity Institute: Pretoria, South Africa, 2022. [CrossRef]
- Fenner, M.; Thompson, K. The Ecology of Seeds; Cambridge University Press: Cambridge, UK, 2005; ISBN 9780521653688. [Google Scholar]
- Merow, C.; Smith, M.J.; Silander, J.A. A Practical Guide to MaxEnt for Modeling Species’ Distributions: What It Does, and Why Inputs and Settings Matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers. Distrib. 2010, 17, 43–57. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making Better Maxent Models of Species Distributions: Complexity, Overfitting and Evaluation. J. Biogeogr. 2013, 41, 629–643. [Google Scholar] [CrossRef]
- Warren, D.L.; Wright, A.N.; Seifert, S.N.; Shaffer, H.B. Incorporating Model Complexity and Spatial Sampling Bias into Ecological Niche Models of Climate Change Risks Faced by 90 California Vertebrate Species of Concern. Divers. Distrib. 2014, 20, 334–343. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENM Eval: An R Package for Conducting Spatially Independent Evaluations and Estimating Optimal Model Complexity for Maxent Ecological Niche Models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Akaike, H. Maximum Likelihood Identification of Gaussian Autoregressive Moving Average Models. Biometrika 1973, 60, 255. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
Variable Name | Variable Description | Percentage Contribution (%) | Permutation Importance |
---|---|---|---|
Veg | Vegetation type | 39 | 24.6 |
bio 12 | Annual precipitation | 35.5 | 61.8 |
Distall | Distance to all rivers | 13.9 | 6.4 |
bio 11 | Mean temperature of coldest quarter | 6.2 | 2.9 |
Slope | Slope | 3 | 1.4 |
Disthigh | Distance to higher-order rivers | 1.4 | 1.2 |
bio 14 | Precipitation of driest month | 0.5 | 1.2 |
Elev | Elevation | 0.2 | 0 |
bio 3 | Isothermality (mean diurnal range (mean of monthly max temp − min temp))/Temperature annual range (max temperature of warmest month − min temperature of coldest month) (×100) | 0.2 | 0.5 |
Exchangeable Cations | ||||||||
---|---|---|---|---|---|---|---|---|
Sample | Ca | Mg | K | Na | CEC | S-value | BS (%) | pH (H2O) |
(cmol(+)/kg) | ||||||||
CS | 17.46 | 8.78 | 0.60 | 0.34 | 22.80 | 27.18 | 119.16 | 7.65 |
GR | 15.64 | 5.00 | 0.49 | 0.17 | 17.78 | 21.30 | 119.90 | 7.26 |
OF | 19.65 | 9.01 | 0.42 | 0.36 | 24.62 | 29.45 | 119.56 | 7.64 |
TS | 1.26 | 0.33 | 0.04 | 0.03 | 1.37 | 1.65 | 120.85 | 7.22 |
Nutrient Status | ||||||||
Sample | Ca | Mg | K | Na | P | C (%) | EC | pH (KCl) |
(mg/kg) | (mS/m) | |||||||
CS | 3499.07 | 1067.21 | 234.92 | 77.83 | 24.23 | 4.67 | 83.25 | 7.82 |
GR | 3133.57 | 607.16 | 192.93 | 40.07 | 9.86 | 4.91 | 111.50 | 7.93 |
OF | 3937.80 | 1094.86 | 165.54 | 83.04 | 25.18 | 5.47 | 87.50 | 7.65 |
TS | 252.05 | 39.83 | 15.09 | 6.53 | 24.99 | 0.11 | 194.50 | 7.79 |
Particle Size Distribution | ||||||||
Sample | >2 mm (%) | Very Coarse Sand | Coarse Sand | Medium Sand | Fine Sand | Very Fine | Silt | Clay |
Sand | ||||||||
CS | 1.66 | 2.78 | 3.19 | 6.52 | 10.51 | 8.74 | 33.55 | 34.70 |
GR | 34.15 | 6.58 | 5.09 | 11.33 | 23.29 | 17.47 | 26.39 | 9.86 |
OF | 1.85 | 3.01 | 3.03 | 7.57 | 9.37 | 8.39 | 35.83 | 32.81 |
TS | 29.48 | 9.26 | 7.46 | 8.62 | 25.69 | 33.57 | 12.77 | 2.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clarke, V.C.; Claassens, S.; Cilliers, D.P.; Siebert, S.J. From Marshes to Mines: Germination and Establishment of Crinum bulbispermum on Gold Mine Tailings. Plants 2025, 14, 2443. https://doi.org/10.3390/plants14152443
Clarke VC, Claassens S, Cilliers DP, Siebert SJ. From Marshes to Mines: Germination and Establishment of Crinum bulbispermum on Gold Mine Tailings. Plants. 2025; 14(15):2443. https://doi.org/10.3390/plants14152443
Chicago/Turabian StyleClarke, Vincent C., Sarina Claassens, Dirk P. Cilliers, and Stefan J. Siebert. 2025. "From Marshes to Mines: Germination and Establishment of Crinum bulbispermum on Gold Mine Tailings" Plants 14, no. 15: 2443. https://doi.org/10.3390/plants14152443
APA StyleClarke, V. C., Claassens, S., Cilliers, D. P., & Siebert, S. J. (2025). From Marshes to Mines: Germination and Establishment of Crinum bulbispermum on Gold Mine Tailings. Plants, 14(15), 2443. https://doi.org/10.3390/plants14152443