Physiological Response to Foliar Application of Antitranspirant on Avocado Trees (Persea americana) in a Mediterranean Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Physiological Measurements
2.3. Morphological and Physico-Chemical Analyses
2.4. Statistical Analysis
3. Results
3.1. Physiological Measurements and Climatic Site Characterization
3.2. Morphological and Physico-Chemical Traits
3.3. Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Villa-Rodríguez, J.A.; Molina-Corral, F.J.; Ayala-Zavala, J.F.; Olivas, G.I.; González-Aguilar, G.A. Effect of maturity stage on the content of fatty acids and antioxidant activity of ‘Hass’ avocado. Food Res. Int. 2011, 44, 1231–1237. [Google Scholar] [CrossRef]
- Duarte, P.F.; Chaves, M.A.; Borges, C.D.; Mendonça, C.R.B. Avocado: Characteristics, health benefits and uses. Ciciencia Rural 2016, 46, 747–754. [Google Scholar] [CrossRef]
- Stephen, J.; Radhakrishnan, M. Avocado (Persea americana Mill.) fruit: Nutritional value, handling and processing techniques, and health benefits. J. Food Process. Preserv. 2022, 46, e17207. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Dokou, Z. Water management and salinity adaptation approaches of Avocado trees: A review for hot-summer Mediterranean climate. Agric. Water Manag. 2021, 252, 106923. [Google Scholar] [CrossRef]
- Solomakhin, A.; Blanke, M. Can coloured hail nets improve taste (sugar, sugar: Acid ratio), consumer appeal (colouration) and nutritional value (anthocyanin, vitamin C) of apple fruit? LWT—Food Sci. Technol. 2010, 43, 1277–1284. [Google Scholar] [CrossRef]
- Tinyane, P.P.; Soundy, P.; Sivakumar, D. Growing ‘Hass’ avocado fruit under different coloured shade netting improves the marketable yield and affects fruit ripening. Sci. Hort. 2018, 230, 43–49. [Google Scholar] [CrossRef]
- Lazare, E.; Vitoshkin, S.; Alchanatis, H.; Reshef, V.; Ziv, G.; Simenski, D.; Dag, A.E. Canopy-cooling systems applied on avocado trees to mitigate heatwaves damages. Sci. Rep. 2022, 12, 12563. [Google Scholar] [CrossRef]
- Patanè, C.; Pellegrino, A.; Di Silvestro, I. Effects of calcium carbonate application on physiology, yield and quality of field-grown tomatoes in a semi-arid Mediterranean climate. Crop Pasture Sci. 2018, 69, 411–418. [Google Scholar] [CrossRef]
- Alon, E.; Shapira, O.; Azoulay-Shemer, T.; Rubinovich, L. Shading nets reduce canopy temperature and improve photosynthetic performance in ‘Pinkerton’ avocado trees during extreme heat events. Agronomy 2022, 12, 1360. [Google Scholar] [CrossRef]
- Boari, F.; Donadio, A.; Schiattone, M.I.; Cantore, V. Particle film technology: A supplemental tool to save water. Agric. Water Manag. 2015, 147, 154–162. [Google Scholar] [CrossRef]
- Glenn, D.M.; Erez, A.; Puterka, G.J.; Gundrum, P. Particle films affect carbon assimilation and yield in ‘Empire’ apple. J. Am. Soc. Hortic. Sci. 2003, 128, 356–362. [Google Scholar] [CrossRef]
- Jifon, J.L.; Syvertsen, J.P. Kaolin Particle Film Applications can increase photosynthesis and Water Use Efficiency of ‘Ruby Red’ Grape fruit Leaves. J. Am. Soc. Hortic. Sci. 2003, 128, 107–112. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Y.; Wang, Z.L.; Tian, X.L.; Han, X.; Wu, D.; Fei, Y.; Hui, M.; Li, H.; Wang, H. Effects of kaolin particle film coatings on the water-saving efficiency and fruit quality of Cabernet Sauvignon (Vitis vinifera L.) grape plants in the Ningxia region of China. Hortic. Environ. Biotechnol. 2023, 64, 421–435. [Google Scholar] [CrossRef]
- Domingues Neto, F.J.; Carneiro, D.C.D.S.; Silva, M.D.S.; Tecchio, M.A.; Leonel, S.; Pimentel Junior, A.; Ono, E.O.; Rodrigues, J.D. Sun Protection as a Strategy for Managing Heat Stress in Avocado Trees. Plants 2024, 13, 2854. [Google Scholar] [CrossRef] [PubMed]
- Rotondi, A.; Bertazza, G.; Faccini, B.; Ferretti, G.; Morrone, L. Effect of different foliar particle films (kaolin and zeolitite) on chemical and sensory properties of olive oil. Agronomy 2022, 12, 3088. [Google Scholar] [CrossRef]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z. Shade netting on subtropical fruit: Effect on environmental conditions, tree physiology and fruit quality. Sci. Hort. 2019, 256, 108556. [Google Scholar] [CrossRef]
- Rensburg, E.V.; Enqelbrecht, A.H.P. Effect of calcium salts on susceptibility to browning of avocado fruit. J. Food Sci. 1986, 51, 1067–1068. [Google Scholar] [CrossRef]
- Roets, N.J.R.; De Meillon, S.; Kaiser, C.; Robbertse, P.J.; Owen, R.; Ehlers, R. Possible causes and measures to prevent excessive leaf abscission in the avocado (Persea americana Mill.) cultivar Ryan. SAAGA Yearb. 2006, 29, 21–36. [Google Scholar]
- Henao-Rojas, J.C.; Lopez, J.H.; Osorio, N.W.; Ramírez-Gil, J.G. Fruit quality in Hass avocado and its relationships with different growing areas under tropical zones. Rev. Ceres 2019, 66, 341–350. [Google Scholar] [CrossRef]
- Shapira, O.; Chernoivanov, S.; Neuberger, I.; Levy, S.; Rubinovich, L. Physiological characterization of young “hass” avocado plant leaves following exposure to high temperatures and low light intensity. Plants 2021, 10, 1562. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Patakas, A.; Kofidis, G.; Bosabalidis, A.; Nastou, A. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci. Hortic. 2002, 95, 39–50. [Google Scholar] [CrossRef]
- Glenn, D.M.; Prado, E.; Erez, A.; McFerson, J.; Puterka, G.J. A reflective processed kaolin particle film affects fruit temperature, radiation reflection and solar injury in apple. J. Amer. Soc. Hort. Sci. 2002, 127, 188–193. [Google Scholar] [CrossRef]
- Glenn, D.M. Particle film mechanisms of action that reduce the effect of environmental stress in ‘Empire’ apple. Amer. Soc. Hort. Sci. 2009, 134, 314–321. [Google Scholar] [CrossRef]
- Gullo, G.; Dattola, A.; Vonella, V.; Zappia, R. Effects of two reflective materials on gas exchange, yield, and fruit quality of sweet orange tree Citrus sinensis (L.) Osb. Eur. J. Agron. 2020, 118, 126071. [Google Scholar] [CrossRef]
- Goreta, S.; Leskovar, D.I.; Jifon, J.L. Gas exchange, water status, and growth of pepper seedlings exposed to transient water deficit stress are differentially altered by antitranspirants. J. Am. Soc. Hortic. Sci. 2007, 132, 603–610. [Google Scholar] [CrossRef]
- Alcaraz, M.L.; Thorp, T.G.; Hormaza, J.I. Phenological growth stages of avocado (Persea americana) according to the BBCH scale. Sci. Hortic. 2013, 164, 434–439. [Google Scholar] [CrossRef]
- Vanella, D.; Consoli, S.; Continella, A.; Chinnici, G.; Milani, M.; Cirelli, G.L.; D’amico, M.; Maesano, G.; Gentile, A.; La Spada, P.; et al. Environmental and Agro-Economic Sustainability of Olive Orchards Irrigated with Reclaimed Water under Deficit Irrigation. Sustainability 2023, 15, 15101. [Google Scholar] [CrossRef]
- Modica, G.; Legua, P.; La Malfa, S.; Gentile, A.; Continella, A. Qualitative Traits and Antioxidant Properties of Blood Oranges Are Affected by the Genotype and the Climatic Conditions. Foods 2024, 13, 3137. [Google Scholar] [CrossRef]
- Modica, G.; Arcidiacono, F.; Puglisi, I.; Baglieri, A.; La Malfa, S.; Gentile, A.; Arbona, V.; Continella, A. Response to Water Stress of Eight Novel and Widely Spread Citrus Rootstocks. Plants 2025, 14, 773. [Google Scholar] [CrossRef]
- Brillante, L.; Belfiore, N.; Gaiotti, F.; Lovat, L.; Sansone, L.; Poni, S.; Tomasi, D. Comparing kaolin and pinolene to improve sustainable grapevine production during drought. PLoS ONE 2016, 11, e0156631. [Google Scholar] [CrossRef]
- Cantore, V.; Pace, B.; Albrizio, R. Kaolin-based particle film technology affects tomato physiology, yield and quality. Environ. Exp. Bot. 2009, 66, 279–288. [Google Scholar] [CrossRef]
- Allakhverdiev, I.S.; Kreslavski, V.D.; Klimov, V.V.; Los, A.D.; Carpentier, R.; Mohanty, P. Heat stress: An overview of molecular responses in photosynthesis. Photosynth. Res. 2008, 98, 541. [Google Scholar] [CrossRef] [PubMed]
- Arbona, V.; Manzi, M.; de Ollas, C.; Gómez-Cadenas, A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 4885–4911. [Google Scholar] [CrossRef]
- Van der Westhuizen, M.M.; Oosterhuis, D.M.; Berner, J.M.; Boogaers, N. Chlorophyll a fluorescence as an indicator of heat stress in cotton (Gossypium hirsutum L.). S. Afr. J. Plant Soil 2020, 37, 116–119. [Google Scholar] [CrossRef]
- Arief, M.A.A.; Kim, H.; Kurniawan, H.; Nugroho, A.P.; Kim, T.; Cho, B.K. Chlorophyll fluorescence imaging for early detection of drought and heat stress in strawberry plants. Plants 2023, 12, 1387. [Google Scholar] [CrossRef] [PubMed]
- Ou, C.; Du, X.; Shellie, K.; Ross, C.; Qian, M.C. Volatile compounds and sensory attributes of wine from cv. Merlot (Vitis vinifera L.) grown under differential levels of water deficit with or without a kaolin-based, foliar reflectant particle film. J. Agric. Food Chem. 2010, 58, 12890–12898. [Google Scholar] [CrossRef]
- Denaxa, N.K.; Roussos, P.A.; Damvakaris, T.; Stournaras, V. Comparative effects of exogenous glycine betaine, kaolin clay particles and Ambiol on photosynthesis, leaf sclerophylly indexes and heat load of olive cv. Chondrolia Chalkidikis under drought. Sci. Hortic. 2012, 137, 87–94. [Google Scholar] [CrossRef]
- Barreales, D.; Capitão, S.; Bento, A.A.; Casquero, P.A.; Ribeiro, A.C. Adapting almond production to climate change through deficit irrigation and foliar kaolin application in a mediterranean climate. Atmosphere 2023, 14, 1593. [Google Scholar] [CrossRef]
- Teker, T. A study of kaolin effects on grapevine physiology and its ability to protect grape clusters from sunburn damage. Sci. Hort. 2023, 311, 111824. [Google Scholar] [CrossRef]
- Nguyen, T.B.A.; Lefoulon, C.; Nguyen, T.H.; Blatt, M.R.; Carroll, W. Engineering stomata for enhanced carbon capture and water-use efficiency. Trends Plant Sci. 2023, 28, 1290–1309. [Google Scholar] [CrossRef]
- Chung, S.W.; Rho, H.; Lim, C.K.; Jeon, M.K.; Kim, S.; Jang, Y.J.; An, H.J. Photosynthetic response and antioxidative activity of ‘Hass’ avocado cultivar treated with short-term low temperature. Sci. Rep. 2022, 12, 11593. [Google Scholar] [CrossRef]
- Garner, L.C.; Lovatt, C.J. Physiological factors affecting flower and fruit abscission of ‘Hass’ avocado. Sci. Hortic. 2016, 199, 32–40. [Google Scholar] [CrossRef]
- Al-Saif, A.M.; Mosa, W.F.; Saleh, A.A.; Ali, M.M.; Sas-Paszt, L.; Abada, H.S.; Abdel-Sattar, M. Yield and fruit quality response of pomegranate (Punica granatum) to foliar spray of potassium, calcium and kaolin. Horticulturae 2022, 8, 946. [Google Scholar] [CrossRef]
- Dattola, A.; Gullo, G. Effect of two reflective materials on the physiological and production behaviour of bergamot (Citrus bergamia Risso et Poiteau) plants. Sci. Hortic. 2024, 338, 113636. [Google Scholar] [CrossRef]
- Thomas, A.L.; Muller, M.E.; Dodson, B.R.; Ellersieck, M.R.; Kaps, M. A kaolin-based particle film suppresses certain insect and fungal pests while reducing heat stress in apples. J. Am. Pomol. Soc. 2004, 58, 42–51. [Google Scholar]
- Méndez Hernández, C.; Grycz, A.; Rios Mesa, D.; Rodríguez Galdón, B.; Rodríguez-Rodríguez, E.M. The Quality Evaluation of Avocado Fruits (Persea americana Mill.) of Hass Produced in Different Localities on the Island of Tenerife, Spain. Foods 2024, 13, 1058. [Google Scholar] [CrossRef]
- Sharma, S. Heat stress effects in fruit crops: A review. Agric. Rev 2020, 41, 73–78. [Google Scholar] [CrossRef]
- Ozdemir, F.; Topuz, A. Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chem. 2004, 86, 79–83. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Rivero, R.M.; Martínez, V.; Gómez-Cadenas, A.; Arbona, V. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol. 2016, 16, 105. [Google Scholar] [CrossRef]
Dry Matter (%) | Weight (g) | Height (mm) | Diameter (mm) | Seed Weight (g) | Seed Height (mm) | Seed Diameter (mm) | |
---|---|---|---|---|---|---|---|
Control | 40.2 ± 1.0 | 115 b ± 32.3 | 92.8 ± 5.3 | 53.7 ± 2.5 | 15.2 ± 4.3 | 34.5 ± 3.0 | 26.6 ± 2.9 |
Treatment | 43.6 ± 0.2 | 122 a ± 16.1 | 91.7 ± 6.9 | 54.5 ± 3.7 | 16.7 ± 7.3 | 33.7 ± 3.9 | 27.5 ± 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modica, G.; Arcidiacono, F.; La Malfa, S.; Gentile, A.; Continella, A. Physiological Response to Foliar Application of Antitranspirant on Avocado Trees (Persea americana) in a Mediterranean Environment. Horticulturae 2025, 11, 928. https://doi.org/10.3390/horticulturae11080928
Modica G, Arcidiacono F, La Malfa S, Gentile A, Continella A. Physiological Response to Foliar Application of Antitranspirant on Avocado Trees (Persea americana) in a Mediterranean Environment. Horticulturae. 2025; 11(8):928. https://doi.org/10.3390/horticulturae11080928
Chicago/Turabian StyleModica, Giulia, Fabio Arcidiacono, Stefano La Malfa, Alessandra Gentile, and Alberto Continella. 2025. "Physiological Response to Foliar Application of Antitranspirant on Avocado Trees (Persea americana) in a Mediterranean Environment" Horticulturae 11, no. 8: 928. https://doi.org/10.3390/horticulturae11080928
APA StyleModica, G., Arcidiacono, F., La Malfa, S., Gentile, A., & Continella, A. (2025). Physiological Response to Foliar Application of Antitranspirant on Avocado Trees (Persea americana) in a Mediterranean Environment. Horticulturae, 11(8), 928. https://doi.org/10.3390/horticulturae11080928