Study on the Effects of Irrigation Amount on Spring Maize Yield and Water Use Efficiency Under Different Planting Patterns in Xinjiang
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Site
2.2. Experimental Design
2.3. Field Management
2.4. Measurement Indicators and Methods
2.4.1. Soil Moisture Measurement
2.4.2. Horizontal Wetting Front Migration Distance
2.4.3. Calculation of Root Proportion Within the Wetting Front (K)
2.4.4. Net Photosynthetic Rate Calculation
2.4.5. Leaf Area Index (LAI) Calculation
2.4.6. Calculation of Water Use Efficiency
2.4.7. Yield Measurement and Seed Examination
2.5. Data Processing and Analysis
3. Results and Analysis
3.1. Effects of Different Irrigation Volumes on Wetting Front Migration Distance and Root Proportion
3.2. Effects of Different Irrigation Levels on Net Photosynthetic Rate of Maize
3.3. Effects of Different Irrigation Treatments on Maize Leaf Area Index
3.4. Effects of Different Irrigation Amounts on Dry Matter Accumulation in Maize
3.5. Effects of Different Irrigation Amounts on Maize Water Use Efficiency
3.6. Effects of Different Irrigation Levels on Maize Yield and Its Components
4. Discussion
4.1. The Wide-Narrow Row Planting Technique Enhances the Concentrated Distribution of Maize Roots in the Wetting Front and Improves Water Use Efficiency
4.2. The Wide-Narrow Row Planting Technique Enhances the Absorption Rate of Phosphorus and Other Nutrients by Maize Roots
4.3. The Wide-Narrow Row Planting Technique Enhances Maize Leaf Photosynthetic Capacity and Promotes Dry Matter Accumulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, B. Origin and Distribution of Maize[M]//Maize; People’s Education Press: Beijing, China, 1960; p. 3. [Google Scholar]
- Tang, Q.; Su, Y.; Rong, T. Classification of Maize and Its Wild Relatives. J. Maize Sci. 2009, 17, 1–5. [Google Scholar]
- Campbell, B.M.; Vermeulen, S.J.; Aggarwal, P.K.; Corner-Dolloff, C.; Girvetz, E.; Loboguerrero, A.M.; Ramirez-Villegas, J.; Rosenstock, T.; Sebastian, L.; Thornton, P.K.; et al. Reducing risks to food security from climate change. Glob. Food Secur. 2016, 11, 34–43. [Google Scholar] [CrossRef]
- Huang, J.K.; Prayt, C.; Rozelle, S. Enhancing the crops to feed the poor. Nature 2002, 418, 678–684. [Google Scholar] [CrossRef]
- Li, S.; Zhao, J.; Dong, S.; Zhao, M.; Li, C.; Cui, Y.; Liu, y.; Gao, J.; Xue, J.; Wang, L.; et al. Research Progress and Prospects of Maize Cultivation in China. Sci. Agric. Sin. 2017, 50, 1941–1959. [Google Scholar]
- Tang, G.; He, H.; Yang, J.; Xu, W.L. Effects of Irrigation Quota on Physiological Traits and Yield of Drip-Irrigated Maize Under Plastic Mulch. Res. Soil. Water Conserv. 2014, 21, 293–297. [Google Scholar]
- Liu, F.; Liu, B.; Liu, J.; Du, X.; Kong, F.; Yuan, J. Effects of water-nitrogen interaction on water-fertilizer use efficiency and yield formation of maize in hilly areas of central Sichuan. Agric. Res. Arid. Areas 2021, 39, 200–206. [Google Scholar]
- Oktem, A. Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems. Agric. Water Manag. 2008, 95, 1003–1010. [Google Scholar] [CrossRef]
- Pan, J.; Li, X.; Li, T.; Qi, J. Effects of irrigation on root distribution and yield of dual-purpose corn. J. Arid. Land. Resour. Environ. 2012, 26, 200–203. [Google Scholar]
- Zhang, G.Q.; Liu, C.W.; Xiao, C.H.; Xie, R.Z.; Ming, B.; Hou, P.; Liu, G.Z.; Xu, W.J.; Shen, D.P.; Wang, K.R.; et al. Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China. Field Crops Res. 2017, 211, 137–146. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; El-Baroudy, A.A.; Taha, A.M. Irrigation and fertigation scheduling under drip irrigation for maize crop in sandy soil. Int. Agrophysics 2016, 30, 47–55. [Google Scholar] [CrossRef]
- Liu, G.; Wang, K.; Liu, Y.; Wang, Q. Effects of Different Irrigation Modes on Summer Maize Production Traits and Water Use Efficiency in the Huang-Huai-Hai Plain; Water Saving Irrigation: Wuhan, China, 2021; pp. 48–54. [Google Scholar]
- Liu, Y.; Yang, G.; Zhang, J.; Song, J.; Li, N.; Duan, A. Experimental Study on Guiding Drip Irrigation of Cotton Under Plastic Film Using Meteorological Data. J. Irrig. Drain. 2008, 27, 37–40. [Google Scholar]
- Wang, J.; Li, J.; Li, J.; Sun, S.; Han, S. Research on the Wide-Narrow Row Ditch Irrigation Mode for Increasing Maize Yield. J. Northeast. Agric. Sci. 2025, 50, 16–23. [Google Scholar]
- Xue, J.; Xie, R.Z.; Zhang, W.F.; Wang, K.R.; Hou, P.; Ming, B.; Gou, L.; Li, S.K. Research progress on reduced lodging of high yield and density maize. J. Integr. Agric. 2017, 16, 2717–2725. [Google Scholar] [CrossRef]
- Chen, G.P.; Gao, J.L.; Zhao, M.; Dong, S.T.; Li, S.K.; Yang, Q.F.; Liu, Y.H.; Wang, L.C.; Xue, J.Q.; Liu, J.G.; et al. Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. Acta Agron. Sin. 2012, 38, 80–85. [Google Scholar] [CrossRef]
- Liu, G.Z.; Hou, P.; Xie, R.Z.; Ming, B.; Wang, K.R.; Xu, W.J.; Liu, W.M.; Yang, Y.S.; Li, S.K. Canopy characteristics of high-yield maize with yield potential of 22.5 tha−1. Field Crops Res. 2017, 213, 221–230. [Google Scholar] [CrossRef]
- Zhang, G.; Zheng, L. Key Technical Points of Wide-Narrow Row Planting and Cultivation for Corn. Agric. Mach. Mark. 2023, 59–60. [Google Scholar]
- Lin, Y. High-yield Cultivation Techniques for Summer Maize. Henan Agric. 2020, 19, 53. [Google Scholar]
- Wu, B. Experimental Demonstration Research on High-Yield Planting of Corn with Wide-Narrow Row Dense Planting. Hebei Agric. 2025, 5, 73–74. [Google Scholar]
- Inoue, Y. Synergy of remote sensing and modeling for estimating ecophysiological processes in plant production. Plant Prod. Sci. 2003, 6, 3–16. [Google Scholar] [CrossRef]
- Liu, B. Effects of Water Stress on Morphological Construction, Physiological Metabolism and Root Water Uptake in Maize Seedlings; Graduate University of Chinese Academy of Sciences (Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education): Beijing, China, 2008. [Google Scholar]
- Berard, R.G.; Thurtell, G.W. The interactive effects of increased evaporative demand and soil water on photosynthesis in maize. Can. J. Plant Sci. 1991, 71, 31–39. [Google Scholar] [CrossRef]
- Parthasarathi, T.; Vanitha, K.; Velu, G. Impact of soil moisture and plant population on yield components and yield of maize (Zea mays). Indian. J. Agric. Sci. 2014, 84, 711–713. [Google Scholar] [CrossRef]
- Bayabil, H.K.; Teshome, F.T.; Guzman, S.M.; Schaffer, B. Evapotranspiration Rates of Three Sweet Corn Cultivars under Different Irrigation Levels. HortTechnology 2023, 33, 16–26. [Google Scholar] [CrossRef]
- Zhang, G.; Shen, D.; Ming, B.; Xie, R.; Hou, P.; Xue, J.; Wang, K.; Li, S. Optimizing Planting Density to Increase Maize Yield and Water Use Efficiency and Economic Return in the Arid Region of Northwest China. Agriculture 2022, 12, 1322. [Google Scholar] [CrossRef]
- Irmak, S.; Djaman, K.; Rudnick, D.R. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrig. Sci. 2016, 34, 271–286. [Google Scholar] [CrossRef]
- Zhao, Y.; Xue, Z.; Guo, H.; Mu, X.; Li, C. Effects of Tillage Methods and Straw Returning on Water Consumption Characteristics and Water Use Efficiency of Winter Wheat-Summer Maize. Sci. Agric. Sin. 2014, 47, 3359–3371. [Google Scholar]
- Bengal, A.; Dudley, L.M. Phosphorus Availability under Continuous Point Source Irrigation. Soil Sci. Soc. Am. J. 2003, 67, 1449–1456. [Google Scholar] [CrossRef]
- Yin, F.; Kang, J.; Huang, Z.; Zeng, D. Study on the Mobility and Utilization Rate of Phosphorus in Cotton Drip Irrigation with Special Fertilizer Using 32P Tracer. Acta Agric. Boreali-Occident. Sin. 2005, 14, 199–204. [Google Scholar]
- Li, W.; Zheng, J.; Wu, Y.; Luo, Y.; Zheng, H.; Li, R.; Liu, W. Effects of Planting Methods on Root Characteristics and Yield of Maize. Mod. Agric. Sci. Technol. 2014, 22, 24–25. [Google Scholar]
- Zhang, X.; Niu, S.; Ye, X.; Sui, S.J. Effects of Different Fertilization Treatments on Soil Physicochemical Properties and Yield of Spring Maize in Northern Liaoning. Southwest. China J. Agric. Sci. 2020, 33, 2013–2017. [Google Scholar]
- Yang, K.; Li, M.; Li, Z. Effects of Cultivation Methods and Population Structure on Dry Matter Accumulation and Yield Formation of Maize in Cold Regions. Chin. Agric. Sci. Bull. 2005, 11, 157–160. [Google Scholar]
- Wu, Z.; Zhang, Z.; Chen, Z.; Xu, K. Analysis of Canopy Structure and Photosynthetic Characteristics of Maize Population under Double-Row Planting on Wide Ridges. J. Maize Sci. 2005, 4, 62–65. [Google Scholar]
- Hu, Z.; Dai, Q.; Li, H.; Yan, Y.; Zhang, Y.; Yang, X.; Zhang, X.; Zhou, H.; Yao, Y. Response of ecosystem water-use efficiency to global vegetation greening. Catena 2024, 239. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Y.; Zheng, J.; Luo, Y.; Zheng, H.; Li, W. Effects of Different Tillage Methods on Maize Yield and Certain Physiological Mechanisms in Leaves. J. Maize Sci. 2009, 17, 112–115. [Google Scholar]
- Liu, T.; Song, F. Effects of Wide-Narrow Row Planting Pattern on Light Interception and Radiation Use Efficiency in Maize. Acta Agric. Boreali-Sin. 2011, 26, 118–123. [Google Scholar]
- Wang, Y.; Qi, X.; Liu, S.; Song, F.B.; Zhu, X.C.; Bu, X.F. Effects of wide-narrow row planting pattern on leaf senescence of maize at late growth stage. Soil. Crop 2016, 5, 211–214. [Google Scholar]
Irrigation Water Volume in 2023 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
treatment | June 14 | June 27 | July 5 | July 15 | July 26 | August 12 | August 14 | August 24 | September 11 | Total |
M1W1 | 600 | 450 | 450 | 450 | 525 | 450 | 450 | 450 | 375 | 4200 |
M1W2 | 750 | 600 | 600 | 600 | 675 | 600 | 600 | 525 | 450 | 5400 |
M1W3 | 900 | 750 | 750 | 750 | 900 | 750 | 750 | 600 | 450 | 6600 |
M2W1 | 600 | 450 | 450 | 450 | 525 | 450 | 450 | 450 | 375 | 4200 |
M2W2 | 750 | 600 | 600 | 600 | 675 | 600 | 600 | 525 | 450 | 5400 |
M2W3 | 900 | 750 | 750 | 750 | 900 | 750 | 750 | 600 | 450 | 6600 |
Irrigation water volume in 2024 | ||||||||||
treatment | June 10 | June 21 | July 1 | July 11 | July 23 | July 31 | August 12 | August 23 | September 8 | Total |
M1W1 | 600 | 450 | 450 | 450 | 525 | 450 | 450 | 450 | 375 | 4200 |
M1W2 | 750 | 600 | 600 | 600 | 675 | 600 | 600 | 525 | 450 | 5400 |
M1W3 | 900 | 750 | 750 | 750 | 900 | 750 | 750 | 600 | 450 | 6600 |
M2W1 | 600 | 450 | 450 | 450 | 525 | 450 | 450 | 450 | 375 | 4200 |
M2W2 | 750 | 600 | 600 | 600 | 675 | 600 | 600 | 525 | 450 | 5400 |
M2W3 | 900 | 750 | 750 | 750 | 900 | 750 | 750 | 600 | 450 | 6600 |
Year | Modes | Drip Irrigation | Migration Distance of Wetting Front | Proportion of Root System in Wetting Front |
---|---|---|---|---|
2023 | M1 | W1 | 19.2 c | 0.84 b |
W2 | 23.3 b | 0.91 ab | ||
W3 | 26.6 a | 0.96 a | ||
Average | 23.0 | 0.90 | ||
M2 | W1 | 19.4 c | 0.69 b | |
W2 | 24.1 b | 0.78 ab | ||
W3 | 27.2 a | 0.85 a | ||
Average | 23.6 | 0.77 | ||
2024 | M1 | W1 | 19.7 c | 0.88 b |
W2 | 24.0 b | 0.93 ab | ||
W3 | 26.9 a | 0.97 a | ||
Average | 23.5 | 0.93 | ||
M2 | W1 | 19.6 c | 0.71 b | |
W2 | 24.7 b | 0.77 ab | ||
W3 | 27.5 a | 0.86 a | ||
Average | 23.9 | 0.78 |
Year | Modes | Drip Irrigation | Plant Number (hm−2) | Ear Number (hm−2) | Spike Grain Number | Weight of 1000-Kernels (g) | Yields (t.hm−2) |
---|---|---|---|---|---|---|---|
2023 | M1 | W1 | 85,500 a | 81,000 c | 467.19 c | 352.07 c | 13.32 d |
W2 | 90,000 a | 89,500 b | 517.51 b | 376.08 ab | 17.42 c | ||
W3 | 90,000 a | 90,000 ab | 554.19 a | 386.4 ab | 19.28 b | ||
Average | 88,500 | 86,833 | 512.96 | 371.52 | 16.67 | ||
M2 | W1 | 89,000 a | 88,500 b | 487.27 c | 375.19 b | 16.17 c | |
W2 | 88,500 a | 94,500 a | 540.37 ab | 395.82 ab | 20.20 a | ||
W3 | 90,500 a | 94,500 a | 553.40 a | 396.77 a | 20.74 a | ||
Average | 89,333 | 92,500 | 527.01 | 389.26 | 19.04 | ||
2024 | M1 | 97,000 a | 87,500 d | 451.33 c | 349.41 d | 13.79 c | |
97,500 a | 95,000 ab | 517.33 b | 377.64 bc | 18.56 b | |||
97,500 a | 94,500 b | 545.67 ab | 393.07 abc | 20.26 a | |||
Average | 97,333 | 92,333 | 504.78 | 373.37 | 17.54 | ||
M2 | 97,000 a | 91,000 c | 514.67 b | 375.19 c | 17.58 b | ||
97,500 a | 98,000 a | 543.00 ab | 395.82 ab | 21.04 a | |||
97,500 a | 96,500 ab | 555.00 a | 399.57 a | 21.39 a | |||
Average | 97,333 | 95,167 | 537.56 | 390.19 | 20.01 | ||
Year(Y) | 71.84 ** | 29.64 ** | 0.04 ns | 0.72 ns | 14.47 ** | ||
Sources of variation | Modes(M) | 0.18 ns | 32.11 ** | 16.73 ** | 21.36 ** | 100.63 ** | |
drip Irrigation(W) | 1.09 ns | 39.50 ** | 55.12 ** | 24.87 ** | 172.58 ** | ||
Y’M | 0.18 ns | 3.57 ns | 2.68 ns | 0.02 ns | 0.05 ns | ||
Y’W | 0.54 ns | 0.31 ns | 0.22 ns | 0.23 ns | 0.05 ns | ||
M’W | 0.54 ns | 0.78 ns | 3.57 * | 1.58 ns | 6.12 * | ||
Y’M’W | 0.54 ns | 0.16 ns | 1.18 ns | 0.07 ns | 0.75 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, R.; He, H.; Zhang, X.; Wu, Q. Study on the Effects of Irrigation Amount on Spring Maize Yield and Water Use Efficiency Under Different Planting Patterns in Xinjiang. Agriculture 2025, 15, 1710. https://doi.org/10.3390/agriculture15151710
Bai R, He H, Zhang X, Wu Q. Study on the Effects of Irrigation Amount on Spring Maize Yield and Water Use Efficiency Under Different Planting Patterns in Xinjiang. Agriculture. 2025; 15(15):1710. https://doi.org/10.3390/agriculture15151710
Chicago/Turabian StyleBai, Ruxiao, Haixiu He, Xinjiang Zhang, and Qifeng Wu. 2025. "Study on the Effects of Irrigation Amount on Spring Maize Yield and Water Use Efficiency Under Different Planting Patterns in Xinjiang" Agriculture 15, no. 15: 1710. https://doi.org/10.3390/agriculture15151710
APA StyleBai, R., He, H., Zhang, X., & Wu, Q. (2025). Study on the Effects of Irrigation Amount on Spring Maize Yield and Water Use Efficiency Under Different Planting Patterns in Xinjiang. Agriculture, 15(15), 1710. https://doi.org/10.3390/agriculture15151710