Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = planetary gear system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8829 KB  
Article
Numerical and Experimental Investigations on Oil Supply Characteristics of a Multi-Passage Lubrication System for a Three-Stage Planetary Transmission in a Tracked Vehicle
by Jing Zhang, Peng Jin, Xiaozhou Hu and Yangmei Yuan
Technologies 2025, 13(12), 576; https://doi.org/10.3390/technologies13120576 - 8 Dec 2025
Viewed by 336
Abstract
The multi-passage lubrication system is adopted to meet the demand of the main heat generation parts (gears and bearings) in the three-stage planetary transmission system of a large tracked vehicle. As rotational speed increases, the flow regime inside the passages with multi-oil outlets [...] Read more.
The multi-passage lubrication system is adopted to meet the demand of the main heat generation parts (gears and bearings) in the three-stage planetary transmission system of a large tracked vehicle. As rotational speed increases, the flow regime inside the passages with multi-oil outlets becomes highly complex. Under high-speed conditions, the flow rate in Zone 2 decreases sharply, and some oil outlets even drop to zero, representing a 100% reduction amplitude, which results in an unstable oil supply for heat generation parts and even potential lubrication cut-off. In the present work, the lubrication characteristics of the oil supply system for the three-stage planetary transmission system are investigated by a combination of CFD (computational fluid dynamics) simulations and experiments. A complete CFD model of the multi-passage lubrication system is established, comprising a stationary oil passage, a main oil passage, and a three-stage variable-speed oil passage. A transient calculation method based on sliding mesh rotation domain control is used to simulate the oil-filling process in the oil passages, and the oil supply characteristics of the variable-speed oil passage are investigated. A test bench for the multi-stage planetary transmission system is designed and constructed to collect oil flow data from outlets of planetary gear sets. The comparison between simulated and experimental results confirms the validity of the proposed numerical method. Additionally, numerical simulations are conducted to investigate the effects of key factors, including input speed, oil supply pressure, and oil temperature, on the oil flow rate of outlets. The results indicate that the rotational speed is the major parameter affecting the oil flow rate at the oil passage outlets. This work provides a practical guidance for optimizing lubrication design in complex multi-stage planetary transmission systems. Full article
Show Figures

Figure 1

22 pages, 8292 KB  
Article
Energy Consumption Analysis of 2Z-X(B) Planetary Input-Coupled Hydro-Mechanical Tractor Transmission
by Fuxing Ge, Ying Kong, Fengping Liu, Nana Luo, Zhuo Jin, Yehui Zhao and Guangming Wang
Appl. Sci. 2025, 15(23), 12576; https://doi.org/10.3390/app152312576 - 27 Nov 2025
Viewed by 301
Abstract
The hydro-mechanical transmission (HMT) of continuously variable transmission tractors typically achieves speed regulation using a 2Z-X(A) planetary gear system. Long-term use of this setup has created a strong patent barrier, hindering further HMT structural innovation. This study systematically examines the energy consumption characteristics [...] Read more.
The hydro-mechanical transmission (HMT) of continuously variable transmission tractors typically achieves speed regulation using a 2Z-X(A) planetary gear system. Long-term use of this setup has created a strong patent barrier, hindering further HMT structural innovation. This study systematically examines the energy consumption characteristics of HMTs based on a 2Z-X(B) planetary gear set configuration, aiming to provide a theoretical reference for developing new HMT tractors. First, the powertrains of both 4-range and 2-range HMTs using this configuration are described. Next, a mathematical model of the 4-range HMT is developed, and its hydrostatic power portion, transmission efficiency, and fuel consumption are analyzed. Finally, the energy consumption characteristics of the 2-range HMT are compared with those of the 4-range HMT, highlighting their performance differences. Results indicate that HMTs based on the 2Z-X(B) planetary gear set exhibit similar efficiency characteristics to traditional systems, with a maximum efficiency exceeding 90%. The impact of efficiency on HMT fuel economy is greater than that of engine fuel consumption itself, suggesting that an efficiency-prioritized power matching control strategy is feasible. Full article
(This article belongs to the Special Issue State-of-the-Art Agricultural Science and Technology in China)
Show Figures

Figure 1

20 pages, 1558 KB  
Article
An Approach to Multicriteria Optimization of the Three-Stage Planetary Gear Train
by Jelena Stefanović-Marinović, Marko Perić, Aleksandar Miltenović, Dragan Marinković and Žarko Ćojbašić
Machines 2025, 13(11), 978; https://doi.org/10.3390/machines13110978 - 23 Oct 2025
Viewed by 773
Abstract
Planetary gear trains offer numerous advantages over traditional gear systems, including high efficiency, the ability to handle large torque loads, and significant reductions in mass and size for the same torque capacity. However, their relatively complex design necessitates the use of optimization techniques [...] Read more.
Planetary gear trains offer numerous advantages over traditional gear systems, including high efficiency, the ability to handle large torque loads, and significant reductions in mass and size for the same torque capacity. However, their relatively complex design necessitates the use of optimization techniques to identify the most suitable configurations for specific applications. A key requirement for effective optimization is a mathematical model that accurately captures the essential operational characteristics of the system. Moreover, the optimization process must account for multiple, often conflicting, objectives. This paper focuses on the multicriteria optimization of a three-stage planetary gear train intended for use in a road vehicle winch. The development of the optimization model involves defining the objective functions, decision variables, and constraints. Optimization criteria were based on the following characteristics: overall volume, mass, transmission efficiency, and the production costs of the gear pairs. In addition to identifying the group of solutions that are Pareto optimal, the model employs the weighted coefficient method to select a single optimal solution from this set. The selected solution is then analyzed through simulation to assess potential gear failure scenarios. By combining optimization techniques with simulation and contact analysis, this study contributes to improving the reliability of planetary gear transmissions. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

32 pages, 51644 KB  
Article
Fault Diagnosis of Planetary Gear Carrier Cracks Based on Vibration Signal Model and Modulation Signal Bispectrum for Actuation Systems
by Xiaosong Lin, Niaoqing Hu, Zhengyang Yin, Yi Yang, Zihao Deng and Zuanbo Zhou
Actuators 2025, 14(10), 488; https://doi.org/10.3390/act14100488 - 9 Oct 2025
Viewed by 611
Abstract
Planetary gearbox serves as a key transmission component in planetary ball screw actuator systems. Under the action of alternating loads, the stress concentration locations of the planet carrier in actuators with planetary gear trains are prone to fatigue cracks, which can lead to [...] Read more.
Planetary gearbox serves as a key transmission component in planetary ball screw actuator systems. Under the action of alternating loads, the stress concentration locations of the planet carrier in actuators with planetary gear trains are prone to fatigue cracks, which can lead to catastrophic system breakdowns. However, due to the complex vibration transmission path and the interference of uninterested vibration components, the characteristic modulation signal is ambiguous, so it is challenging to diagnose this fault. Therefore, this paper proposes a new fault diagnosis method. Firstly, a vibration signal model is established to accurately characterize the amplitude and phase modulation effects caused by cracked carriers, providing theoretical guidance for fault feature identification. Subsequently, three novel sideband evaluators of the modulation signal bispectrum (MSB) and their parameter selection ranges are proposed to efficiently locate the optimal fault-related bifrequency signatures and reduce computational cost, leveraging the effects identified by the model. Finally, a novel health indicator, the mean absolute root value (MARV), is used to monitor the state of the planet carrier. The effectiveness of this method is verified by experiments on the planetary gearbox test rig. The results show that the robustness of the amplitude and phase modulation effect of the cracked carrier in the low-frequency band is significantly higher than that in the high-frequency band, and the initial carrier crack can be accurately identified using this phenomenon under different operating conditions. This study provides a reliable solution for the condition monitoring and health management of the actuation system, which is helpful to improve the safety and reliability of operation. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

39 pages, 11725 KB  
Article
Research on Shape–Performance Integrated Monitoring Technology for Planetary Gearboxes Based on the Integration of Artificial Intelligence, Finite Element Analysis, and Multibody Dynamics Simulation
by Yanping Cui, Boshuo An, Zhe Wu, Ziao Shang and Xuanrui Zhang
Sensors 2025, 25(18), 5810; https://doi.org/10.3390/s25185810 - 17 Sep 2025
Viewed by 789
Abstract
To address gear tooth damage and the difficulty of acquiring performance data under high-speed and high-load operating conditions of planetary gearboxes, a digital twin-based system for operational state recognition and performance prediction is proposed, integrating morphological and functional characteristics. Driven by experimental data, [...] Read more.
To address gear tooth damage and the difficulty of acquiring performance data under high-speed and high-load operating conditions of planetary gearboxes, a digital twin-based system for operational state recognition and performance prediction is proposed, integrating morphological and functional characteristics. Driven by experimental data, the system incorporates finite element analysis, multibody dynamics simulation, artificial intelligence algorithms, and 3D visualization to achieve a virtual mapping of the gearbox’s geometric configuration, structural properties, and dynamic behavior. Structural performance is represented using finite element and dynamic simulation techniques combined with texture mapping, visualized through color gradients; dynamic performance is captured through multibody dynamics simulations and stored in a time-series database, presented as sequential images. The integrated system is constructed by combining a structural performance surrogate model, a system-driven model, and a dynamic performance database, enabling comprehensive functionality. Results demonstrate that the maximum error of the structural performance model is 3%, occurring only under specific working conditions, with negligible impact on the overall meshing performance evaluation of the sun gear. The maximum error in dynamic performance prediction is 1.68%, showing strong consistency with experimental data. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

26 pages, 4813 KB  
Article
Nonlinear Dynamics Analysis of the Wheel-Side Planetary Reducer with Tooth Wear for the In-Wheel Motored Electric Vehicle
by Dehua Shi, Le Sun, Qirui Zhang, Shaohua Wang, Kaimei Zhang, Chunfang Yin and Chun Li
Mathematics 2025, 13(17), 2885; https://doi.org/10.3390/math13172885 - 6 Sep 2025
Cited by 1 | Viewed by 815
Abstract
This paper investigates the nonlinear dynamics of the wheel-side planetary reducer, considering the tooth wear effect. The tooth wear model based on the Archard adhesion wear theory is established, and the impact of tooth wear on meshing stiffness and piecewise-linear backlash of the [...] Read more.
This paper investigates the nonlinear dynamics of the wheel-side planetary reducer, considering the tooth wear effect. The tooth wear model based on the Archard adhesion wear theory is established, and the impact of tooth wear on meshing stiffness and piecewise-linear backlash of the planetary gear system is discussed. Then, the torsional vibration model and dimensionless differential equations considering tooth wear for the wheel-side planetary reducer are established, in which meshing excitations include time-varying mesh stiffness (TVMS), piecewise-linear backlash, and transmission error. The dynamic responses are numerically solved using the fourth-order Runge–Kutta method. On this basis, the nonlinear dynamics, such as the bifurcation and chaos properties of the wheel-side planetary reducer with tooth wear, are analyzed. Simulation results demonstrate that the existence of tooth wear reduces meshing stiffness and increases backlash. The reduction in the meshing stiffness changes the bifurcation path and chaotic amplitude of the system, inducing chaotic phenomena more easily. The increase in the gear backlash causes a higher amplitude of the relative displacement and more severe vibration. Full article
(This article belongs to the Section C2: Dynamical Systems)
Show Figures

Figure 1

8 pages, 1728 KB  
Proceeding Paper
Application of Gear Profile Shift Coefficients for Adjusting Dimensions and Assembly Conditions in AA Planetary Gear Trains
by Angel Alexandrov
Eng. Proc. 2025, 104(1), 51; https://doi.org/10.3390/engproc2025104051 - 27 Aug 2025
Viewed by 707
Abstract
This study explores the application of profile shift coefficients as a design strategy to eliminate the need for stepped planet gears in a specific type of planetary gear train, referred to as the AA gear train. By appropriately selecting gear tooth numbers and [...] Read more.
This study explores the application of profile shift coefficients as a design strategy to eliminate the need for stepped planet gears in a specific type of planetary gear train, referred to as the AA gear train. By appropriately selecting gear tooth numbers and applying compensating profile shifts to the two central gears, it is possible to equalize their diameters, enabling the use of simple single-step spur gears as planet gears. This significantly simplifies manufacturing, may improve power branching capabilities, and reduces the cost and volume. This paper outlines the geometric and functional limitations of this approach, including the practically allowable range of profile shift values and their impact on the tooth strength, contact ratio, and potential interference. Additionally, the influence of the planet count on assembly conditions and profile shift requirements is examined. The design may offer advantages in compactness and manufacturability (for moderate gear ratios) within a single stage. However, limitations in efficiency, power branching, and self-locking—especially at high ratios—must be considered. While the method provides a viable alternative to conventional stepped planet designs in certain cases, its applicability remains constrained by profile shift limitations and system-specific design compromises. Full article
Show Figures

Figure 1

18 pages, 4060 KB  
Article
Dynamic Coupling Analysis of a Combined Reducer Consisting of Spiral Bevel Gear and Planetary Gear Train
by Fang Li, Chuanyun Yu and Jianrun Zhang
Appl. Sci. 2025, 15(16), 9035; https://doi.org/10.3390/app15169035 - 15 Aug 2025
Viewed by 850
Abstract
The combined reducer consisting of spiral bevel gear pair and planetary gear train is widely used in the aerospace field, and its dynamic performance seriously affects the fatigue life of the gears. However, there has been little research on the dynamic performance analysis [...] Read more.
The combined reducer consisting of spiral bevel gear pair and planetary gear train is widely used in the aerospace field, and its dynamic performance seriously affects the fatigue life of the gears. However, there has been little research on the dynamic performance analysis of the combined gear reducer. In this paper, the coupling multibody dynamic models of spiral bevel gear pair and planetary gear train with and without bearing modules are established based on ADAMS software, respectively, and the influence of bearings on the dynamic performance of the coupling system is studied, and the analysis results are verified by experiments. The results demonstrate that the flexible bearings in the coupled system will induce a pronounced shaft swing that amplifies the combined reducer vibration. Because of the displacement of the sun gear, the meshing force of the planetary gear train fluctuates periodically at low frequency, which increases the maximum dynamic meshing force and is not conducive to its fatigue life. This low-frequency fluctuation can be greatly reduced by introducing additional bearings. In addition, dynamic testing confirms vibration spectral components include obvious shaft rotation frequencies except gear meshing frequencies, verifying the modeling accuracy and analytical methodology. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

20 pages, 10966 KB  
Article
Planetary Gear-Enhanced Electromagnetic and Triboelectric Self-Powered Sensing System for Corn Seeders
by Longgang Ma, Han Wu, Maoyuan Yin, Zhencan Yang, Dong Wang, Ruihua Zhang and Xinqing Xiao
Energies 2025, 18(16), 4236; https://doi.org/10.3390/en18164236 - 8 Aug 2025
Cited by 1 | Viewed by 736
Abstract
In response to issues such as traditional monitoring devices relying on external power sources and poor environmental adaptability during corn sowing, this paper designs a composite self-powered sensing system (EPTG) based on a planetary gear system coupled with a triboelectric nanogenerator (P-TENG) and [...] Read more.
In response to issues such as traditional monitoring devices relying on external power sources and poor environmental adaptability during corn sowing, this paper designs a composite self-powered sensing system (EPTG) based on a planetary gear system coupled with a triboelectric nanogenerator (P-TENG) and an electromagnetic generator (EMG). The system utilizes the speed-increasing characteristics of planetary gear systems and flexibly designs gear teeth to adapt to different working conditions, achieving multiple transmission ratio combinations to provide stable power input for composite power generation units and improving mechanical energy capture and conversion efficiency. Under typical operating conditions (with the seeder operating at an average speed of 25 rpm), the EPTG can consistently deliver 105 mW of power. Combined with low-power program design and a 900 mAh energy storage battery, it can reliably power the monitoring unit equipped with integrated infrared sensors and temperature/humidity sensors, enabling the system to operate on self-generated power. Monitoring data is wirelessly transmitted to a cloud platform for visualization and analysis, providing decision support for precise seeding. Experimental results show that EPTG operates stably with good durability. It provides a practical solution for energy self-sufficiency and operational precision in agricultural intelligent equipment, and may have application value in related areas. Full article
Show Figures

Figure 1

21 pages, 8352 KB  
Article
Research on Vibration Characteristics of Electric Drive Systems Based on Open-Phase Self-Fault-Tolerant Control
by Wenyu Bai, Yun Kuang, Zhizhong Xu, Yawen Wang and Xia Hua
Appl. Sci. 2025, 15(15), 8707; https://doi.org/10.3390/app15158707 - 6 Aug 2025
Viewed by 611
Abstract
This paper presents an electromechanical coupling model integrating an equivalent magnetic network (EMN) model of a dual three-phase permanent magnet synchronous motor (DTP-PMSM) with the dynamic model of a helical planetary gear transmission system. Using this model, this study analyzes the dynamic characteristics [...] Read more.
This paper presents an electromechanical coupling model integrating an equivalent magnetic network (EMN) model of a dual three-phase permanent magnet synchronous motor (DTP-PMSM) with the dynamic model of a helical planetary gear transmission system. Using this model, this study analyzes the dynamic characteristics of an electric drive system, specifically motor phase current, electromagnetic torque, and gear meshing force, under self-fault-tolerant control strategies. Simulation and experimental results demonstrate that the self-fault-tolerant control strategy enables rapid fault tolerance during open-phase faults, significantly reducing system fault recovery time. Meanwhile, compared to the open-phase faults conditions, the self-fault-tolerant control effectively suppresses most harmonic components within the system; only the second harmonic amplitude of the electromagnetic torque exhibited an increase. This harmonic disturbance propagates to the gear system through electromechanical coupling, synchronously amplifying the second harmonic amplitude in the gear system’s vibration response. This study demonstrates that self-fault-tolerant control strategies significantly enhance the dynamic response performance of the electric drive system under open-phase faults conditions. Furthermore, this study also investigates the electromechanical coupling mechanism through which harmonics generated by this strategy affect the gear system’s dynamic response, providing theoretical support for co-optimization electromechanical coupling design and fault-tolerant control in high-reliability electric drive transmission systems. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

22 pages, 4262 KB  
Article
Tribo-Dynamics of Dual-Star Planetary Gear Systems: Modeling, Analysis, and Experiments
by Jiayu Zheng, Yonggang Xiang, Changzhao Liu, Yixin Wang and Zonghai Mou
Sensors 2025, 25(15), 4709; https://doi.org/10.3390/s25154709 - 30 Jul 2025
Cited by 1 | Viewed by 859
Abstract
To address the unclear coupling mechanism between thermal elastohydrodynamic lubrication (TEHL) and dynamic behaviors in planetary gear systems, a novel tribo-dynamic model for dual-star planetary gears considering TEHL effects is proposed. In this model, a TEHL surrogate model is first established to determine [...] Read more.
To address the unclear coupling mechanism between thermal elastohydrodynamic lubrication (TEHL) and dynamic behaviors in planetary gear systems, a novel tribo-dynamic model for dual-star planetary gears considering TEHL effects is proposed. In this model, a TEHL surrogate model is first established to determine the oil film thickness and sliding friction force along the tooth meshing line. Subsequently, the dynamic model of the dual-star planetary gear transmission system is developed through coordinate transformations of the dual-star gear train. Finally, by integrating lubrication effects into both time-varying mesh stiffness and time-varying backlash, a tribo-dynamic model for the dual-star planetary gear transmission system is established. The study reveals that the lubricant film thickness is positively correlated with relative sliding velocity but negatively correlated with unit line load. Under high-speed conditions, a thickened oil film induces premature meshing contact, leading to meshing impacts. In contrast, under high-torque conditions, tooth deformation dominates meshing force fluctuations while lubrication influence diminishes. By establishing a test bench for the planetary gear transmission system, the obtained simulation conclusions are verified. This research provides theoretical and experimental support for the design of high-reliability planetary gear systems. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

31 pages, 3629 KB  
Article
Optimizing Assembly Error Reduction in Wind Turbine Gearboxes Using Parallel Assembly Sequence Planning and Hybrid Particle Swarm-Bacteria Foraging Optimization Algorithm
by Sydney Mutale, Yong Wang and De Tian
Energies 2025, 18(15), 3997; https://doi.org/10.3390/en18153997 - 27 Jul 2025
Cited by 1 | Viewed by 902
Abstract
This study introduces a novel approach for minimizing assembly errors in wind turbine gearboxes using a hybrid optimization algorithm, Particle Swarm-Bacteria Foraging Optimization (PSBFO). By integrating error-driven task sequencing and real-time error feedback with the PSBFO algorithm, we developed a comprehensive framework tailored [...] Read more.
This study introduces a novel approach for minimizing assembly errors in wind turbine gearboxes using a hybrid optimization algorithm, Particle Swarm-Bacteria Foraging Optimization (PSBFO). By integrating error-driven task sequencing and real-time error feedback with the PSBFO algorithm, we developed a comprehensive framework tailored to the unique challenges of gearbox assembly. The PSBFO algorithm combines the global search capabilities of PSO with the local refinement of BFO, creating a unified framework that efficiently explores task sequencing, minimizing misalignment and torque misapplication assembly errors. The methodology results in a 38% reduction in total assembly errors, improving both process accuracy and efficiency. Specifically, the PSBFO algorithm reduced errors from an initial value of 50 to a final value of 5 across 20 iterations, with components such as the low-speed shaft and planetary gear system showing the most substantial reductions. The 50 to 5 error reduction represents a significant decrease in assembly errors from an unoptimized (50) to an optimized (5) sequence, achieved through the PSBFO algorithm, by minimizing dimensional deviations, torque mismatches, and alignment errors across 26 critical gearbox components. While the primary focus is on wind turbine gearbox applications, this approach has the potential for broader applicability in error-prone assembly processes in industries such as automotive and aerospace, warranting further validation in future studies. Full article
(This article belongs to the Special Issue Novel Research on Renewable Power and Hydrogen Generation)
Show Figures

Figure 1

26 pages, 3979 KB  
Article
Fault Diagnosis Method of Planetary Gearboxes Based on Multi-Scale Wavelet Packet Energy Entropy and Extreme Learning Machine
by Rui Meng, Junpeng Zhang, Ming Chen and Liangliang Chen
Entropy 2025, 27(8), 782; https://doi.org/10.3390/e27080782 - 24 Jul 2025
Cited by 1 | Viewed by 1185
Abstract
As critical components of planetary gearboxes, gears directly affect mechanical system reliability when faults occur. Traditional feature extraction methods exhibit limitations in accurately identifying fault characteristics and achieving satisfactory diagnostic accuracy. This research is concerned with the gear of the planetary gearbox and [...] Read more.
As critical components of planetary gearboxes, gears directly affect mechanical system reliability when faults occur. Traditional feature extraction methods exhibit limitations in accurately identifying fault characteristics and achieving satisfactory diagnostic accuracy. This research is concerned with the gear of the planetary gearbox and proposes a new approach termed multi-scale wavelet packet energy entropy (MSWPEE) for extracting gear fault features. The signal is split into sub-signals at three different scale factors. Following decomposition and reconstruction using the wavelet packet algorithm, the wavelet packet energy entropy for each node is computed under different operating conditions. A feature vector is formed by combining the wavelet packet energy entropy at different scale factors. Furthermore, this study proposes a method combining multi-scale wavelet packet energy entropy with extreme learning machine (MSWPEE-ELM). The experimental findings validate the precision of this approach in extracting features and diagnosing faults in sun gears with varying degrees of tooth breakage severity. Full article
Show Figures

Figure 1

19 pages, 5627 KB  
Article
Reliability Modeling of Wind Turbine Gearbox System Considering Failure Correlation Under Shock–Degradation
by Xiaojun Liu, Ziwen Wu, Yiping Yuan, Wenlei Sun and Jianxiong Gao
Sensors 2025, 25(14), 4425; https://doi.org/10.3390/s25144425 - 16 Jul 2025
Cited by 4 | Viewed by 1434
Abstract
To address traditional methods’ limitations in neglecting the interaction between random shock loads and progressive degradation, as well as failure correlations, this study proposes a dynamic reliability framework integrating Gamma processes, homogeneous Poisson processes (HPP), and mixed Copula functions. The framework develops a [...] Read more.
To address traditional methods’ limitations in neglecting the interaction between random shock loads and progressive degradation, as well as failure correlations, this study proposes a dynamic reliability framework integrating Gamma processes, homogeneous Poisson processes (HPP), and mixed Copula functions. The framework develops a wind turbine gearbox reliability model under shock–degradation coupling while quantifying failure correlations. Gamma processes characterize continuous degradation, with parameters estimated from P-S-N curves. Based on stress–strength interference theory, random shocks within damage thresholds are integrated to form a coupled reliability model. A Gumbel–Clayton–Frank mixed Copula with a multi-layer nested algorithm quantifies failure correlations, with correlation parameters estimated via the RSS principle and genetic algorithms. Validation using a 2 MW gearbox’s planetary gear-stage system covers four scenarios: natural degradation, shock–degradation coupling, and both scenarios with failure correlations. The results show that compared to independent assumptions, the model accelerates reliability decline, increasing failure rates by >37%. Relative to natural degradation-only models, failure rates rise by >60%, validating the model’s effectiveness and alignment with real-world operational conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

18 pages, 3047 KB  
Article
A Rotary Piezoelectric Electromagnetic Hybrid Energy Harvester
by Zhiyang Yao and Chong Li
Micromachines 2025, 16(7), 807; https://doi.org/10.3390/mi16070807 - 11 Jul 2025
Cited by 1 | Viewed by 1245
Abstract
To collect the energy generated by rotational motion in the natural environment, a piezoelectric electromagnetic hybrid energy harvester (HEH) based on a planetary gear system is proposed. The harvester combines piezoelectric and electromagnetic effects and is mainly used for collecting low-frequency rotational energy. [...] Read more.
To collect the energy generated by rotational motion in the natural environment, a piezoelectric electromagnetic hybrid energy harvester (HEH) based on a planetary gear system is proposed. The harvester combines piezoelectric and electromagnetic effects and is mainly used for collecting low-frequency rotational energy. The HEH has a compact structure and contains four sets of piezoelectric energy harvesters (PEHs) and electromagnetic energy harvesters (EMHs) inside. The working principle of the energy harvester is analyzed, its theoretical model is established, and a simulation analysis is conducted. To verify the effectiveness of the design, an experimental device is constructed. The results indicate that the HEH can generate an average output power of 250 mW under eight magnets and an external excitation frequency of 7 Hz. In actual power supply testing, the HEH can light up 60 LEDs and provide stable power supply for the temperature–humidity meter. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

Back to TopTop