Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (253)

Search Parameters:
Keywords = piezoelectric oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4052 KiB  
Article
ZnO/PVDF Nanogenerators with Hemisphere-Patterned PDMS for Enhanced Piezoelectric Performance
by Kibum Song and Keun-Young Shin
Polymers 2025, 17(15), 2041; https://doi.org/10.3390/polym17152041 - 26 Jul 2025
Viewed by 395
Abstract
In this study, we present a flexible piezoelectric nanogenerator based on a zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) nanocomposite electrospun onto a hemisphere-patterned PDMS substrate. The nanogenerator was fabricated by replicating a silicon mold with inverted hemispheres into PDMS, followed by direct electrospinning of [...] Read more.
In this study, we present a flexible piezoelectric nanogenerator based on a zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) nanocomposite electrospun onto a hemisphere-patterned PDMS substrate. The nanogenerator was fabricated by replicating a silicon mold with inverted hemispheres into PDMS, followed by direct electrospinning of ZnO-dispersed PVDF nanofibers. Varying the ZnO concentration from 0.6 to 1.4 wt% allowed us to evaluate its effect on structural, dielectric, and piezoelectric properties. The nanogenerator containing 0.8 wt% ZnO exhibited the thinnest fibers (371 nm), the highest β-phase fraction (85.6%), and the highest dielectric constant (35.8). As a result, it achieved the maximum output voltage of 7.30 V, with excellent signal consistency under an applied pressure of 5 N. Comparisons with pristine PVDF- and ZnO/PVDF-only devices demonstrated the synergistic effect of ZnO loading and patterned PDMS on the enhancement of piezoelectric output. The hemisphere-patterned PDMS substrate improved the mechanical strain distribution, interfacial contact, and charge collection efficiency. These results highlight the potential of ZnO/PVDF/PDMS hybrid nanogenerators for use in wearable electronics and self-powered sensor systems. Full article
(This article belongs to the Special Issue Recent Advances in Applied Polymers in Renewable Energy)
Show Figures

Graphical abstract

17 pages, 7181 KiB  
Article
Piezoelectric Effect of k-Carrageenan as a Tool for Force Sensor
by Vytautas Bučinskas, Uldis Žaimis, Dainius Udris, Jūratė Jolanta Petronienė and Andrius Dzedzickis
Sensors 2025, 25(15), 4594; https://doi.org/10.3390/s25154594 - 24 Jul 2025
Viewed by 211
Abstract
Natural polymers, polysaccharides, demonstrate piezoelectric behavior suitable for force sensor manufacturing. Carrageenan hydrogel film with α-iron oxide particles can act as a piezoelectric polysaccharide-based force sensor. The mechanical impact on the hydrogel caused by a falling ball shows the impact response time, which [...] Read more.
Natural polymers, polysaccharides, demonstrate piezoelectric behavior suitable for force sensor manufacturing. Carrageenan hydrogel film with α-iron oxide particles can act as a piezoelectric polysaccharide-based force sensor. The mechanical impact on the hydrogel caused by a falling ball shows the impact response time, which is measured in milliseconds. Repeating several experiments in a row shows the dynamics of fatigue, which does not reduce the speed of response to impact. Through the practical experiments, we sought to demonstrate how theoretical knowledge describes the hydrogel we elaborated, which works as a piezoelectric material. In addition to the theoretical basis, which includes the operation of the metal and metal oxide contact junction, the interaction between the metal oxide and the hydrogel surfaces, the paper presents the practical application of this knowledge to the complex hydrogel film. The simple calculations presented in this paper are intended to predict the hydrogel film’s characteristics and explain the results obtained during practical experiments. Carrageenan, as a low-cost and already widely used polysaccharide in various industries, is suitable for the production of low-cost force sensors in combination with iron oxide. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

10 pages, 2670 KiB  
Article
High-Temperature-Resistant High-Entropy Oxide Protective Coatings for Piezoelectric Thin Films
by Huayong Hu, Jie Liu, Liqing Chao, Xiangdong Ma, Jun Zhang, Yanbing Zhang and Bing Yang
Coatings 2025, 15(8), 861; https://doi.org/10.3390/coatings15080861 - 22 Jul 2025
Viewed by 300
Abstract
By introducing oxygen doping, the structure of an AlCrNbSiTiN coating was optimized, and its high-temperature oxidation resistance was improved. As the oxygen content incorporated increases, the coating changes from an FCC structure to an amorphous or spinel structure. Meanwhile, stress relaxation occurred, and [...] Read more.
By introducing oxygen doping, the structure of an AlCrNbSiTiN coating was optimized, and its high-temperature oxidation resistance was improved. As the oxygen content incorporated increases, the coating changes from an FCC structure to an amorphous or spinel structure. Meanwhile, stress relaxation occurred, and the hardness of the coating dropped to 12 gpa. Oxygen-doped coatings exhibit excellent oxidation resistance; this is especially the case for oxidized coatings, whose structure remains stable up to 900 °C in an oxidizing environment. Full article
(This article belongs to the Special Issue Advanced Thin Films of High-Entropy Alloys)
Show Figures

Figure 1

81 pages, 10454 KiB  
Review
Glancing Angle Deposition in Gas Sensing: Bridging Morphological Innovations and Sensor Performances
by Shivam Singh, Kenneth Christopher Stiwinter, Jitendra Pratap Singh and Yiping Zhao
Nanomaterials 2025, 15(14), 1136; https://doi.org/10.3390/nano15141136 - 21 Jul 2025
Viewed by 373
Abstract
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic [...] Read more.
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic nanostructures, such as aligned, tilted, zigzag, helical, and multilayered nanorods, with tunable surface area and diffusion pathways optimized for gas detection. This review provides a comprehensive synthesis of recent advances in GLAD-based gas sensor design, focusing on how structural engineering and material integration converge to enhance sensor performance. Key materials strategies include the construction of heterojunctions and core–shell architectures, controlled doping, and nanoparticle decoration using noble metals or metal oxides to amplify charge transfer, catalytic activity, and redox responsiveness. GLAD-fabricated nanostructures have been effectively deployed across multiple gas sensing modalities, including resistive, capacitive, piezoelectric, and optical platforms, where their high aspect ratios, tailored porosity, and defect-rich surfaces facilitate enhanced gas adsorption kinetics and efficient signal transduction. These devices exhibit high sensitivity and selectivity toward a range of analytes, including NO2, CO, H2S, and volatile organic compounds (VOCs), with detection limits often reaching the parts-per-billion level. Emerging innovations, such as photo-assisted sensing and integration with artificial intelligence for data analysis and pattern recognition, further extend the capabilities of GLAD-based systems for multifunctional, real-time, and adaptive sensing. Finally, current challenges and future research directions are discussed, emphasizing the promise of GLAD as a scalable platform for next-generation gas sensing technologies. Full article
Show Figures

Graphical abstract

23 pages, 4929 KiB  
Article
Low Phase Noise, Dual-Frequency Pierce MEMS Oscillators with Direct Print Additively Manufactured Amplifier Circuits
by Liguan Li, Di Lan, Xu Han, Tinghung Liu, Julio Dewdney, Adnan Zaman, Ugur Guneroglu, Carlos Molina Martinez and Jing Wang
Micromachines 2025, 16(7), 755; https://doi.org/10.3390/mi16070755 - 26 Jun 2025
Cited by 1 | Viewed by 408
Abstract
This paper presents the first demonstration and comparison of two identical oscillator circuits employing piezoelectric zinc oxide (ZnO) microelectromechanical systems (MEMS) resonators, implemented on conventional printed-circuit-board (PCB) and three-dimensional (3D)-printed acrylonitrile butadiene styrene (ABS) substrates. Both oscillators operate simultaneously at dual frequencies (260 [...] Read more.
This paper presents the first demonstration and comparison of two identical oscillator circuits employing piezoelectric zinc oxide (ZnO) microelectromechanical systems (MEMS) resonators, implemented on conventional printed-circuit-board (PCB) and three-dimensional (3D)-printed acrylonitrile butadiene styrene (ABS) substrates. Both oscillators operate simultaneously at dual frequencies (260 MHz and 437 MHz) without the need for additional circuitry. The MEMS resonators, fabricated on silicon-on-insulator (SOI) wafers, exhibit high-quality factors (Q), ensuring superior phase noise performance. Experimental results indicate that the oscillator packaged using 3D-printed chip-carrier assembly achieves a 2–3 dB improvement in phase noise compared to the PCB-based oscillator, attributed to the ABS substrate’s lower dielectric loss and reduced parasitic effects at radio frequency (RF). Specifically, phase noise values between −84 and −77 dBc/Hz at 1 kHz offset and a noise floor of −163 dBc/Hz at far-from-carrier offset were achieved. Additionally, the 3D-printed ABS-based oscillator delivers notably higher output power (4.575 dBm at 260 MHz and 0.147 dBm at 437 MHz). To facilitate modular characterization, advanced packaging techniques leveraging precise 3D-printed encapsulation with sub-100 μm lateral interconnects were employed. These ensured robust packaging integrity without compromising oscillator performance. Furthermore, a comparison between two transistor technologies—a silicon germanium (SiGe) heterojunction bipolar transistor (HBT) and an enhancement-mode pseudomorphic high-electron-mobility transistor (E-pHEMT)—demonstrated that SiGe HBT transistors provide superior phase noise characteristics at close-to-carrier offset frequencies, with a significant 11 dB improvement observed at 1 kHz offset. These results highlight the promising potential of 3D-printed chip-carrier packaging techniques in high-performance MEMS oscillator applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

9 pages, 3564 KiB  
Communication
Pico-Dispensed Zinc Oxide Nanoparticles for Actuation of Microcantilevers: A Precise Deposition Approach
by Paweł Janus, Anna Katarzyna Piotrowska, Piotr Prokaryn, Andrzej Sierakowski, Jan Prokaryn and Rafał Dobrowolski
Sensors 2025, 25(12), 3689; https://doi.org/10.3390/s25123689 - 12 Jun 2025
Viewed by 2411
Abstract
This paper presents a cost-effective and versatile pico-dispensing technique as an efficient and straightforward approach for depositing zinc oxide nanoparticle (ZnO—NP) thin films on micromechanical devices (MEMS). Due to its piezoelectric properties, bulk ZnO is commonly used as a material for micro-/nanocantilever actuation. [...] Read more.
This paper presents a cost-effective and versatile pico-dispensing technique as an efficient and straightforward approach for depositing zinc oxide nanoparticle (ZnO—NP) thin films on micromechanical devices (MEMS). Due to its piezoelectric properties, bulk ZnO is commonly used as a material for micro-/nanocantilever actuation. The pico-dispensing process provides precise control over the deposition, allowing uniform and localized application of ZnO—NP on microcantilevers. Compared to traditional ZnO deposition techniques (e.g., sputtering or sol–gel), pico-dispensing of ZnO—NP offers advantages in simplicity, reduced material waste, and significantly lower costs. Furthermore, it is easy to tailor the composition and properties by incorporating nanoparticles of other materials. Experimental results demonstrate that ZnO—NP thin films deposited via pico-dispensing enable actuation with amplitudes of several nanometers and bandwidths up to 250 kHz, making them potentially suitable for actuation of micromechanical devices such as in dynamic AFM modes. Full article
Show Figures

Figure 1

26 pages, 5819 KiB  
Review
Hybrid Energy Harvesting Applications of ZnO Nanorods for Future Implantable and Wearable Devices
by Kathalingam Adaikalam and Hyun-Seok Kim
Micromachines 2025, 16(6), 605; https://doi.org/10.3390/mi16060605 - 22 May 2025
Viewed by 618
Abstract
The currently used electrical energy devices for portable applications are in limited life and need of frequent recharging, it is a big bottleneck for wireless and transportation systems. The scientific community is motivated to find innovative and efficient devices to convert environmental energy [...] Read more.
The currently used electrical energy devices for portable applications are in limited life and need of frequent recharging, it is a big bottleneck for wireless and transportation systems. The scientific community is motivated to find innovative and efficient devices to convert environmental energy into useful forms. Nanogenerator can mitigate this issue by harvesting ambient energy of different forms into useful electrical energy. Particularly flexible nanogenerators can efficiently convert ambient mechanical energy into electrical energy which can be fruitfully used for self-powered sensors and electronic appliances. Zinc oxide is an interesting photosensitive and piezoelectric material that is expected to play a vital role in the synergetic harvesting of environmental thermal, sound, mechanical, and solar energies. As ZnO can be synthesized using easy methods and materials at low cost, the conversion efficiencies of solar and other energy forms can increase considerably. ZnO is a versatile material with interesting semiconducting, optical, and piezoelectric properties; it can be used advantageously to harvest more than one type of ambient energy. The coupled semiconducting and piezoelectric properties of ZnO are attractive for fabricating nanogenerators capable of harvesting both ambient optical and mechanical energies simultaneously. These nanolevel conversion devices are much required to power remote and implantable devices without the need for additional power sources. The present review briefly discusses the principles and mechanisms of different energy harvesting abilities of ZnO nanorods and their composites by consolidating available literature. In addition, the developments taking place in nanogenerators of different kinds—such as photovoltaic, piezoelectric, pyroelectric, and triboelectrics for self-powered technology—and their progress in hybrid energy harvesting application is reviewed. Full article
Show Figures

Figure 1

15 pages, 5437 KiB  
Article
Evaluation of Physical Properties of Ti-Doped BiFeO3 Thin Films Deposited on Fluorine Tin Oxide and Indium Tin Oxide Substrates
by Anel Rocío Carrasco-Hernández, Armando Reyes-Rojas, Gabriel Rojas-George, Antonio Ramírez-De la Cruz and Hilda Esperanza Esparza-Ponce
Materials 2025, 18(10), 2395; https://doi.org/10.3390/ma18102395 - 21 May 2025
Viewed by 467
Abstract
BiFeO3 is a fascinating material with a rhombohedral crystal structure (R3c) at room temperature. This unique structure makes it suitable for use in solar cells, as the interaction of light with the polarized octahedral enhances electron movement. Evaluating its properties [...] Read more.
BiFeO3 is a fascinating material with a rhombohedral crystal structure (R3c) at room temperature. This unique structure makes it suitable for use in solar cells, as the interaction of light with the polarized octahedral enhances electron movement. Evaluating its properties on different substrates helps to identify the specific characteristics of thin films. The thin films presented in this work were deposited using reactive RF cathodic sputtering with a homemade 1-inch diameter ceramic target. Their morphology, phase composition, optical, piezoelectric, and ferroelectric properties were evaluated. Fluorine Tin Oxide (FTO) and Indium Tin Oxide (ITO) substrates were used for the presented thin films. The thin films deposited on FTO displayed the “butterfly” behavior typically associated with ferroelectric materials. A d33 value of 2.71 nm/V was determined using SSPFM-DART mode. In contrast, the thin films deposited on ITO at 550 °C reached a maximum saturation polarization of 40.89 μC/cm2 and a remnant polarization of 44.87 μC/cm2, which are the highest values recorded, but did not present the typical “butterfly” behavior. As the grain size increased, the influence of charge defects became more pronounced, leading to an increase in the leakage current. Furthermore, the presence of secondary phases also contributed to this behavior. Full article
(This article belongs to the Special Issue The Optical, Ferroelectric and Dielectric Properties of Thin Films)
Show Figures

Graphical abstract

14 pages, 9656 KiB  
Article
A CMOS-Based Power Management Circuit with a Reconfigurable Rectifier and an LDO Regulator for Piezoelectric Energy Harvesting in IoT Applications
by Suany E. Vázquez-Valdés, Primavera Argüelles-Lucho, Rosa M. Woo-García, Edith Osorio-de-la-Rosa, Francisco López-Huerta and Agustín L. Herrera-May
Nanoenergy Adv. 2025, 5(2), 7; https://doi.org/10.3390/nanoenergyadv5020007 - 14 May 2025
Viewed by 597
Abstract
The technological advances in internet of things (IoT) devices have raised the demand for cost-efficient and sustainable energy sources. Piezoelectric energy harvesters (PEHs) are promising low-cost and eco-friendly energy sources but require robust power management circuits (PMCs) for voltage conversion and regulation. This [...] Read more.
The technological advances in internet of things (IoT) devices have raised the demand for cost-efficient and sustainable energy sources. Piezoelectric energy harvesters (PEHs) are promising low-cost and eco-friendly energy sources but require robust power management circuits (PMCs) for voltage conversion and regulation. This work presents a complementary metal–oxide–semiconductor (CMOS)-based PMC, integrating a reconfigurable AC-DC rectifier and a low-dropout (LDO) voltage regulator designed using 0.18 µm Taiwan semiconductor manufacturing company (TSMC) CMOS technology. This design includes an intermediate coupling stage to reduce voltage drop and improve the transfer efficiency of the PMC. In addition, we develop numerical simulations of the PMC performance, achieving a voltage conversion efficiency (VCE) between 72.8% and 43.21% using input voltages from 0.7 V to 2.8 V with a 50 kΩ load resistance. Compared to previous designs, the proposed circuit demonstrates improved stability, reduced area (66.28 mm2), and extended operating voltage range, allowing its potential application for ultra-low-power IoT nodes. This PMC contributes to the development of autonomous systems with reduced battery dependency and enhanced sustainability. Full article
Show Figures

Figure 1

13 pages, 5645 KiB  
Article
Morphology-Dependent Behavior of PVDF/ZnO Composites: Their Fabrication and Application in Pressure Sensors
by Binbin Zhang, Wenhui Zhang, Wei Luo, Zhijie Liang, Yan Hong, Jianhui Li, Guoyun Zhou and Wei He
Sensors 2025, 25(9), 2936; https://doi.org/10.3390/s25092936 - 7 May 2025
Viewed by 746
Abstract
This study investigated the impact of zinc oxide’s (ZnO’s) morphology on the piezoelectric performance of polyvinylidene fluoride (PVDF) composites for flexible sensors. Rod-like (NR) and sheet-like (NS) ZnO nanoparticles were synthesized via hydrothermal methods and incorporated into PVDF through direct ink writing (DIW). [...] Read more.
This study investigated the impact of zinc oxide’s (ZnO’s) morphology on the piezoelectric performance of polyvinylidene fluoride (PVDF) composites for flexible sensors. Rod-like (NR) and sheet-like (NS) ZnO nanoparticles were synthesized via hydrothermal methods and incorporated into PVDF through direct ink writing (DIW). The structural analyses confirmed the successful formation of wurtzite ZnO and enhanced β-phase content in the PVDF/ZnO composites. At a degree of 15 wt% loading, the ZnO-NS nanoparticles achieved the highest β-phase fraction (81.3%) in PVDF due to their high specific surface area, facilitating dipole alignment and strain-induced crystallization. The optimized PVDF/ZnO-NS-15 sensor demonstrated superior piezoelectric outputs (4.75 V, 140 mV/N sensitivity) under a 27 N force, outperforming its ZnO-NR counterparts (3.84 V, 100 mV/N). The cyclic tests revealed exceptional durability (<5% signal attenuation after 1000 impacts) and a rapid response (<100 ms). The application trials validated their real-time motion-monitoring capabilities, including finger joint flexion detection. This work highlights the morphology-dependent interfacial polarization as a critical factor for high-performance flexible sensors, offering a scalable DIW-based strategy for wearable electronics. Full article
(This article belongs to the Special Issue Functional Nanomaterials in Sensing)
Show Figures

Graphical abstract

22 pages, 2259 KiB  
Review
Leading Techniques for Per- and Polyfluoroalkyl Substances (PFASs) Remediating in Water and Wastewater
by Zhenzhen Chen, Yaqian Zhao, Ting Wei and Cheng Shen
Water 2025, 17(9), 1319; https://doi.org/10.3390/w17091319 - 28 Apr 2025
Cited by 1 | Viewed by 1499
Abstract
Per- and polyfluoroalkyl substances (PFASs), a class of synthetic organic compounds since the 1940s, have become widespread and persistent environmental pollutants. Due to their high chemical stability, bioaccumulation potential, and extensive industrial and household applications, PFASs have drawn significant attention from researchers worldwide [...] Read more.
Per- and polyfluoroalkyl substances (PFASs), a class of synthetic organic compounds since the 1940s, have become widespread and persistent environmental pollutants. Due to their high chemical stability, bioaccumulation potential, and extensive industrial and household applications, PFASs have drawn significant attention from researchers worldwide in recent years, while PFASs have become a hot topic, and the publications are updated very quickly. Various remediation technologies, including adsorption, pyrolysis, biodegradation, and advanced oxidation, have been developed and treated as the leading techniques to mitigate PFAS contamination. Other alternative techniques are foam fractionation, constructed wetland, and piezoelectric ball milling. However, the effectiveness of these methods varies depending on their reaction mechanisms, operational conditions, and environmental factors. This review provides a comprehensive summary of the latest advancements in PFASs removal strategies, highlighting their advantages, limitations, and potential synergies. Furthermore, future research directions and technological developments are discussed to explore more efficient, sustainable, and cost-effective solutions for PFASs remediation. Full article
(This article belongs to the Special Issue Constructed Wetlands and Emerging Pollutants)
Show Figures

Figure 1

23 pages, 8937 KiB  
Article
Robust Composites Based on Silicone Rubber for Self-Powered Piezoelectric Nanogenerators
by Vineet Kumar, Md Najib Alam, Siraj Azam and Sang Shin Park
Polymers 2025, 17(7), 977; https://doi.org/10.3390/polym17070977 - 3 Apr 2025
Viewed by 665
Abstract
Obtaining robust power density through piezoelectric nanogenerators (PENGs) is very challenging. Challenges include achieving good mechanical stability, optimum stiffness, reasonable voltage generation, limited heat dissipation, and power density as needed. This work focused exactly on these areas, and hybrid filler emerged as a [...] Read more.
Obtaining robust power density through piezoelectric nanogenerators (PENGs) is very challenging. Challenges include achieving good mechanical stability, optimum stiffness, reasonable voltage generation, limited heat dissipation, and power density as needed. This work focused exactly on these areas, and hybrid filler emerged as a promising candidate among the composites studied. For example, hybrid fillers exhibited optimized properties suitable for self-powered engineering applications. The composites fabricated in this work were based on titanium oxide (TiO2), molybdenum disulfide (MoS2), and silicone rubber (SR) as a host matrix. The results showed that TiO2 represents a good reinforcing filler, while MoS2 exerts a lubricating effect, improving the composites’ mechanical strength and elongation at break. For example, the compressive modulus at 8 per hundred parts of rubber (phr) was 2.39 MPa (TiO2), 1.62 MPa (MoS2), and 2.1 MPa (hybrid filler). Similarly, the hysteresis loss at 5 phr was 20.09 J/m (TiO2), 21.56 J/m (MoS2), and 20.48 J/m (hybrid filler). Moreover, the elongation at break at 8 phr was 150% (TiO2), 194% (MoS2), and 170% (hybrid filler). In the same way, the electro-mechanical properties obtained were also robust. For example, the voltage output was ~22 mV (TiO2), ~35 mV (MoS2), and ~46 mV (hybrid filler). Moreover, the PENGs developed in this work generated power. For example, the power density was ~0.55 pW/cm2 (TiO2), ~1.03 pW/cm2 (MoS2), and ~1.56 pW/cm2 (hybrid filler). Finally, the piezoelectric coefficient of the PENGs was 40 pC/N (TiO2), 112 pC/N (MoS2), and 160 pC/N (hybrid filler). These materials have a promising role in energy harvesting through self-powered nanogenerators for portable electronic systems. Finally, the low-power PENGs developed provide cost-effective voltage and power management circuits. This allows these PENGs to contribute to sustainable and self-sufficient electronic systems like pacemaker implants. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials, 2nd Edition)
Show Figures

Figure 1

12 pages, 4134 KiB  
Article
From Self-Cleaning to Self-Aware Solar Mirror Skin
by Anna Castaldo, Emilia Gambale and Giuseppe Vitiello
Appl. Sci. 2025, 15(7), 3696; https://doi.org/10.3390/app15073696 - 27 Mar 2025
Viewed by 348
Abstract
Self-cleaning coatings for solar mirrors aim to reduce water usage for cleaning, cut down on maintenance costs for solar fields, and lower the overall electricity production costs in concentrated solar power (CSP) systems. Various approaches have been developed for mirrors with back surface [...] Read more.
Self-cleaning coatings for solar mirrors aim to reduce water usage for cleaning, cut down on maintenance costs for solar fields, and lower the overall electricity production costs in concentrated solar power (CSP) systems. Various approaches have been developed for mirrors with back surface (BSM) and front surface (FSM) architectures, all sharing the characteristic that the self-cleaning coating serves as the outermost layer, acting as a “skin” that protects against fouling. A recent trend in this field is to enhance this “skin” with sensing capabilities, allowing it to self-monitor its performance in terms of soiling or failure, contributing to the digitalization of solar fields and CSP technology. Building on previous work with auxetic aluminum nitrides and ZnO transparent composites, which were developed to replace alumina as the self-cleaning layer in BSMs, this study explores the potential of adding sensing properties to these coatings. The approach leverages the piezoelectric properties of the materials, which can be linked to dust accumulation and surface soiling, as well as their electrical resistive behavior, which can help monitor potential failures. The promising d33 values of sputtered piezoelectric AlN and the tailored electrical properties of ZnO composites, combined with their self-cleaning effects and optical clarity across the full solar spectrum, suggest that these coatings could serve as an intelligent, self-aware skin for solar mirrors. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

11 pages, 6318 KiB  
Article
Polydimethylsiloxane-Zinc Oxide Nanorod-Based Triboelectric Nanogenerator for Compression Applications
by Shiyu Zhao, Guanghui Han, Huaxia Deng, Mengchao Ma and Xiang Zhong
Materials 2025, 18(7), 1392; https://doi.org/10.3390/ma18071392 - 21 Mar 2025
Cited by 2 | Viewed by 666
Abstract
In this study, to enhance the output performance of a contact-separation mode triboelectric nanogenerator (TENG), a zinc oxide nanorod (ZnO NR) film with piezoelectric properties was integrated into a Polydimethylsiloxane (PDMS) film as the dielectric layer. The working mechanism of the PDMS-ZnO NR-based [...] Read more.
In this study, to enhance the output performance of a contact-separation mode triboelectric nanogenerator (TENG), a zinc oxide nanorod (ZnO NR) film with piezoelectric properties was integrated into a Polydimethylsiloxane (PDMS) film as the dielectric layer. The working mechanism of the PDMS-ZnO NR-based TENG was theoretically analyzed in two stages: charge transfer during contact electrification on the material surface and charge movement in the electrostatic induction process. The output characteristics of the PDMS-ZnO NR-based TENG were investigated and compared with those of a PDMS-based TENG. The experimental results demonstrate that the PDMS-ZnO NR-based TENG reached an open-circuit voltage of 39.34 V, representing an increase of 64.5% compared to the PDMS-based TENG. The maximum output power of a 4 cm × 4 cm PDMS-ZnO NR-based TENG reached 82.2 μW. Using a specially designed energy-harvesting circuit, the generated electrical energy was stored in a capacitor, which was charged to 1.47 V within 1 min and reached 3 V in just 2.78 min. This voltage was sufficient to power over 20 LEDs and small sensors. Additionally, the TENG was integrated into the sole of footwear, where the electrical signals generated by compression could be utilized for step counting and gait analysis. Full article
Show Figures

Graphical abstract

15 pages, 6315 KiB  
Article
Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film
by Sangkwon Park and Hafiz Muhammad Abid Yaseen
Nanomaterials 2025, 15(5), 403; https://doi.org/10.3390/nano15050403 - 6 Mar 2025
Viewed by 983
Abstract
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low [...] Read more.
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO2), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix. The nanocomposite films were prepared by depositing molecularly thin films of P(VDF-TrFE) and nanofiller nanoparticles (NPs) spread at the air/water interface onto the indium tin oxide-coated polyethylene terephthalate (ITO-PET) substrate, and they were characterized by measuring their microstructures, crystallinity, β-phase contents, and piezoelectric coefficients (d33) using SEM, FT-IR, XRD, and quasi-static meter, respectively. Multiple PENGs incorporating various nanofillers within the polymer matrix were developed by assembling thin film-coated substrates into a sandwich-like structure. Their piezoelectric properties, such as open-circuit output voltage (VOC) and short-circuit current (ISC), were analyzed. As a result, the PENG containing 4 wt% PZT, which was named P-PZT-4, showed the best performance of VOC of 68.5 V with the d33 value of 78.2 pC/N and β-phase content of 97%. The order of the maximum VOC values for the PENGs of nanocomposite thin films containing various nanofillers was PZT (68.5 V) > rGO (64.0 V) > ZnO (50.9 V) > TiO2 (48.1 V). When the best optimum PENG was integrated into a simple circuit comprising rectifiers and a capacitor, it demonstrated an excellent two-dimensional power density of 20.6 μW/cm2 and an energy storage capacity of 531.4 μJ within 3 min. This piezoelectric performance of PENG with the optimized nanofiller type and content was found to be superior when it was compared with those in the literature. This PENG comprising nanocomposite thin film with optimized nanofiller type and content shows a potential application for a power source for low-powered electronics such as wearable devices. Full article
Show Figures

Figure 1

Back to TopTop