High-Temperature-Resistant High-Entropy Oxide Protective Coatings for Piezoelectric Thin Films
Abstract
1. Introduction
2. Experimental Details
2.1. Coating Preparation
2.2. Coating Characterization
3. Results and Discussion
3.1. Morphology and Chemical Composition Analysis
3.2. Microstructure
3.3. Mechanical Properties
3.4. High-Temperature Oxidation Behavior
- 1.
- The lattice distortion effect and sluggish diffusion effect hinder the diffusion of oxygen into the coating interior and the diffusion of coating elements towards the surface;
- 2.
- The formation of a dense Al2O3 layer on the coating surface protects the underlying coating from oxidation.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cegla, F.; Cawley, P.; Allin, J.; Davies, J. High-Temperature (>500 °C) Wall Thickness Monitoring Using Dry-Coupled Ultrasonic Waveguide Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011, 58, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Kazys, R.; Vaskeliene, V. High Temperature Ultrasonic Transducers: A Review. Sensors 2021, 21, 3200. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, J.; Gong, H.; Deng, X. A comprehensive review of loosening detection methods for threaded fasteners. Mech. Syst. Signal Process. 2022, 168, 108652. [Google Scholar] [CrossRef]
- Hou, R.; Hutson, D.; Kirk, K. Development of sputtered AlN thin-film ultrasonic transducers for durable high-temperature applications. Insight 2013, 55, 302–307. [Google Scholar] [CrossRef]
- Xu, T.; Wu, G.; ZHang, G.; Hao, Y. The compatibility of ZnO piezoelectric film with micromachining process. Sens. Actuators A-Phys. 2003, 104, 61–67. [Google Scholar] [CrossRef]
- Kazys, R.; Voleisis, A.; Sliteris, L.; Mazeika, L.; Van Nieuwenhove, R.; Kupschus, P.; Abderrahim, H. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 525–537. [Google Scholar] [CrossRef]
- Kim, T.; Kim, J.; Dalmau, R.; Schlesser, R.; Preble, E.; Jiang, X. High-Temperature Electromechanical Characterization of AlN Single Crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1880–1887. [Google Scholar] [CrossRef]
- Jiang, Y.; Jing, X.; Li, J.; Zeng, X.; Pelenovich, V.; Xu, C.; Xiong, Z.; Zhang, J.; Yang, B. Extreme high temperature tolerant AlN thin film ultrasonic transducer and its application for bolt preload measurement. J. Alloys Compd. 2025, 1027, 180498. [Google Scholar] [CrossRef]
- Chang, Y.; Weng, S.; Chen, C.; Fu, F. High temperature oxidation and cutting performance of AlCrN, TiVN and multilayered AlCrN/TiVN hard coatings. Surf. Coat. Technol. 2017, 332, 494–503. [Google Scholar] [CrossRef]
- Xiao, B.; Li, H.; Mei, H.; Dai, W.; Zuo, F.; Wu, Z.; Wang, Q. A study of oxidation behavior of AlTiN-and AlCrN-based multilayer coatings. Surf. Coat. Technol. 2018, 333, 229–237. [Google Scholar] [CrossRef]
- Song, J.; Sun, A.; Zhang, P.; Li, J. Microstructure, mechanical performance, thermal stability, and oxidation resistance of AlCrN/AlCrBN nano-multilayer coating. Surf. Coat. Technol. 2024, 493, 180498. [Google Scholar] [CrossRef]
- Du, G.; Li, C.; Li, J.; Wu, G.; Huang, Z.; Mao, A.; Ma, M.; Guo, Z.; Chen, Z. Research progress on high entropy oxide ceramics: Principles, preparation, and properties. J. Mater. Res. Technol. 2025, 35, 265–288. [Google Scholar] [CrossRef]
- Fracchia, M.; Coduri, M.; Ghigna, P.; Anselmi-Tamburini, U. Phase stability of high entropy oxides: A critical review. J. Eur. Ceram. Soc. 2024, 44, 585–594. [Google Scholar] [CrossRef]
- Kirnbauer, A.; Spadt, C.; Koller, C.M.; Kolozsvári, S.; Mayrhofer, P.H. High-entropy oxide thin films based on Al–Cr–Nb–Ta–Ti. Vacuum 2019, 168, 108850. [Google Scholar] [CrossRef]
- Chen, T.K.; Wong, M.S. Structure and properties of reactively-sputtered AlxCoCrCuFeNi oxide films. Thin Solid Film. 2007, 516, 141–146. [Google Scholar] [CrossRef]
- Chen, T.-K.; Wong, M.-S. Thermal stability of hard transparent AlxCoCrCuFeNi oxide thin films. Surf. Coat. Technol. 2008, 203, 495–500. [Google Scholar] [CrossRef]
- Castaldi, L.; Kurapov, D.; Reiter, A.; Shkover, V.; Schwaller, P.; Patscheider, J. Effect of the oxygen content on the structure, morphology and oxidation resistance of Cr-O-N coatings. Surf. Coat. Technol. 2008, 203, 545–549. [Google Scholar] [CrossRef]
- Khatibi, A.; Sjölen, J.; Greczynski, G.; Jensen, J.; Eklund, P.; Hultman, L. Structural and mechanical properties of Cr-Al-O-N thin films grown by cathodic arc deposition. ACTA Mater. 2012, 60, 6494–6507. [Google Scholar] [CrossRef]
- Ahmad, F.; Zhang, L.; Zheng, J.; Sidra, I.; Cai, F.; Zhang, S. Structural evolution and high-temperature tribological properties of AlCrON coatings deposited by multi-arc ion plating. Ceram. Int. 2020, 46, 24281–24289. [Google Scholar] [CrossRef]
- Stüber, M.; Albers, U.; Leiste, H.; Seemann, K.; Ziebert, C.; Ulrich, S. Magnetron sputtering of hard Cr-Al-N-O thin films. Surf. Coat. Technol. 2008, 203, 661–665. [Google Scholar] [CrossRef]
- Najafi, H.; Karimi, A.; Dessarzin, P.; Morstein, M. Correlation between anionic substitution and structural properties in AlCr(OxN1-x) coatings deposited by lateral rotating cathode arc PVD. Thin Solid Film. 2011, 520, 1597–1602. [Google Scholar] [CrossRef]
- Shen, Y.; Mai, Y. Effect of oxygen on residual stress and structural properties of tungsten nitride films grown by reactive magnetron sputtering. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2000, 76, 107–115. [Google Scholar] [CrossRef]
- Ye, J.; Ulrich, S.; Zlebert, C.; Stüber, M. Stress reduction of cubic boron nitride films by oxygen addition. Thin Solid Film. 2008, 517, 1151–1155. [Google Scholar] [CrossRef]
- Ebbinghaus, S.; Abicht, H.; Dronskowski, R.; Müller, T.; Reller, A.; Weidenkaff, A. Perovskite-related oxynitrides—Recent developments in synthesis, characterisation and investigations of physical properties. Prog. Solid State Chem. 2009, 37, 173–205. [Google Scholar] [CrossRef]
- Khatibi, A.; Palisaitis, J.; Höglund, C.; Eriksson, A.; Persson, P.; Jensen, J.; Birch, J.; Eklund, P.; Hultman, L. Face-centered cubic (Al1-xCrx)2O3. Thin Solid Film. 2011, 519, 2426–2429. [Google Scholar] [CrossRef]
- Shaha, K.; Ruess, H.; Rotert, S.; Baben, M.; Music, D.; Schneider, J. Nonmetal sublattice population induced defect structure in transition metal aluminum oxynitrides. Appl. Phys. Lett. 2013, 103, 221905. [Google Scholar] [CrossRef]
Coating | Gas Pressure/Pa | Current/A | Bias/V | Time/Min |
---|---|---|---|---|
N | 660 sccm N2/3.5 | Imax120, Imin80 | −150 | 150 |
O-30 | 660 sccm N2 + 30 sccm O2/3.8 | Imax120, Imin80 | −150 | 150 |
O-60 | 660 sccm N2 + 60 sccm O2/4.0 | Imax120, Imin80 | −150 | 150 |
O-100 | 660 sccm N2 + 100 sccm O2/4.3 | Imax120, Imin80 | −150 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Liu, J.; Chao, L.; Ma, X.; Zhang, J.; Zhang, Y.; Yang, B. High-Temperature-Resistant High-Entropy Oxide Protective Coatings for Piezoelectric Thin Films. Coatings 2025, 15, 861. https://doi.org/10.3390/coatings15080861
Hu H, Liu J, Chao L, Ma X, Zhang J, Zhang Y, Yang B. High-Temperature-Resistant High-Entropy Oxide Protective Coatings for Piezoelectric Thin Films. Coatings. 2025; 15(8):861. https://doi.org/10.3390/coatings15080861
Chicago/Turabian StyleHu, Huayong, Jie Liu, Liqing Chao, Xiangdong Ma, Jun Zhang, Yanbing Zhang, and Bing Yang. 2025. "High-Temperature-Resistant High-Entropy Oxide Protective Coatings for Piezoelectric Thin Films" Coatings 15, no. 8: 861. https://doi.org/10.3390/coatings15080861
APA StyleHu, H., Liu, J., Chao, L., Ma, X., Zhang, J., Zhang, Y., & Yang, B. (2025). High-Temperature-Resistant High-Entropy Oxide Protective Coatings for Piezoelectric Thin Films. Coatings, 15(8), 861. https://doi.org/10.3390/coatings15080861