Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,058)

Search Parameters:
Keywords = physico-chemical differentiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1442 KiB  
Article
Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications
by Tereza Novotná, Jana Pavlačková, Robert Gál, Ladislav Šiška, Miroslav Fišera and Pavel Mokrejš
Molecules 2025, 30(15), 3293; https://doi.org/10.3390/molecules30153293 (registering DOI) - 6 Aug 2025
Abstract
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of [...] Read more.
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of this study is the enzymatic modification of red deer fat, leading to modification of its physicochemical properties, and the study of changes in phase transitions of modified fat, its structure, color, and texture. Hydrolysis was performed using sn-1,3-specific lipase at different water concentrations (10–30%) and reaction times (2–6 h). The results showed that there was a significant decrease in melting and crystallization temperatures with an increasing degree of hydrolysis, which was confirmed by differential scanning calorimetry. FTIR spectra revealed a decrease in the intensity of the ester bonds, indicating cleavage of triacylglycerols. Texture analysis of the modified fats confirmed a decrease in hardness of up to 50% and an increase in spreadability. The color parameter values remained within an acceptable range. The results show that enzymatic modification is an effective tool for targeted modification of red deer fat properties, and this expands the possibilities of its application in cosmetic matrices and food applications as functional lipids. Full article
Show Figures

Figure 1

27 pages, 1561 KiB  
Article
The Effect of a Pectin Coating with Gamma-Decalactone on Selected Quality Attributes of Strawberries During Refrigerated Storage
by Gabriela Kozakiewicz, Jolanta Małajowicz, Karolina Szulc, Magdalena Karwacka, Agnieszka Ciurzyńska, Anna Żelazko, Monika Janowicz and Sabina Galus
Coatings 2025, 15(8), 903; https://doi.org/10.3390/coatings15080903 (registering DOI) - 2 Aug 2025
Viewed by 211
Abstract
This study investigated the effect of an apple pectin coating enriched with gamma-decalactone (GDL) on the physicochemical and microbiological quality of strawberries over 9 days of refrigerated storage. Strawberries were coated with pectin solutions containing a plasticizer and emulsifier, with or without GDL, [...] Read more.
This study investigated the effect of an apple pectin coating enriched with gamma-decalactone (GDL) on the physicochemical and microbiological quality of strawberries over 9 days of refrigerated storage. Strawberries were coated with pectin solutions containing a plasticizer and emulsifier, with or without GDL, and compared to uncoated controls. The coatings were evaluated for their effects on fruit mass loss, pH, extract content (°Brix), firmness, color parameters (L*, a*, b*, C*, h*, ΔE), and microbial spoilage. The pectin coating limited changes in extract, pH, and color and slowed firmness loss. Notably, GDL-enriched coatings significantly reduced spoilage (14.29% after 9 days vs. 57.14% in the control) despite accelerating pulp softening. Extract content increased the most in the GDL group (from 9.92 to 12.00 °Brix), while mass loss reached up to 22.8%. Principal Component Analysis (PCA) confirmed coating type as a major factor differentiating sample quality over time. These findings demonstrate the potential of bioactive pectin-based coatings to enhance fruit preservation and support the development of active packaging strategies. Further studies should optimize coating composition and control the release kinetics of functional compounds. Full article
(This article belongs to the Special Issue Preparation and Applications of Bio-Based Polymer Coatings)
Show Figures

Graphical abstract

24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 - 1 Aug 2025
Viewed by 236
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

15 pages, 3303 KiB  
Article
Effect of Ozone on Nonwoven Polylactide/Natural Rubber Fibers
by Yulia V. Tertyshnaya, Svetlana G. Karpova and Maria V. Podzorova
Polymers 2025, 17(15), 2102; https://doi.org/10.3390/polym17152102 - 31 Jul 2025
Viewed by 140
Abstract
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber [...] Read more.
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber contents of 5, 10, and 15 wt.% were obtained, which were then subjected to ozone oxidation for 800 min. The effect of ozone treatment was estimated using various methods of physicochemical analysis. The visual effect was manifested in the form of a change in the color of PLA/NR fibers. The method of differential scanning calorimetry revealed a change in the thermophysical characteristics. The glass transition and cold crystallization temperatures of polylactide shifted toward lower temperatures, and the degree of crystallinity increased. It was found that in PLA/NR fiber samples, the degradation process predominates over the crosslinking process, as an increase in the melt flow rate by 1.5–1.6 times and a decrease in the correlation time determined by the electron paramagnetic resonance method were observed. The IR Fourier method recorded a change in the chemical structure during ozone oxidation. The intensity of the ether bond bands changed, and new bands appeared at 1640 and 1537 cm−1, which corresponded to the formation of –C=C– bonds. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

24 pages, 5828 KiB  
Article
Removal of Rifampicin and Rifaximin Antibiotics on PET Fibers: Optimization, Modeling, and Mechanism Insight
by Elena Fasniuc-Pereu, Elena Niculina Drăgoi, Dumitru Bulgariu, Maria-Cristina Popescu and Laura Bulgariu
Polymers 2025, 17(15), 2089; https://doi.org/10.3390/polym17152089 - 30 Jul 2025
Viewed by 212
Abstract
The removal of antibiotics from aqueous media along with their recovery is still an open research topic, due to their practical and economical importance. Adsorption allows these two objectives to be achieved, provided that the adsorbent used is chemically and mechanically stable and [...] Read more.
The removal of antibiotics from aqueous media along with their recovery is still an open research topic, due to their practical and economical importance. Adsorption allows these two objectives to be achieved, provided that the adsorbent used is chemically and mechanically stable and has a low preparation cost. In this study, PET (polyethylene terephthalate) fibers, obtained by mechanically processing PET waste, were used for the adsorption of rifampicin (RIF) and rifaximin (RIX) antibiotics from aqueous media. The experimental adsorption capacity of PET fibers for the two antibiotics (RIF and RIX) was determined at different pH values (2.0–6.5), adsorbent dose (0.4–20.0 g/L), contact time (5–1440 min), initial antibiotic concentration (4.0–67.0 mg/L), and temperature (10, 22, and 50 °C); the experimental values of these parameters were analyzed using a neuro-evolutive technique (ANE) combining sequential deep learning (DL) models with a differential evolution algorithm. The obtained optimal ANN-DL algorithm was then used to obtain the optimal models for the adsorption of RIF and RIX on PET fibers, which should adequately describe the adsorption dynamics for both antibiotics. The adsorption processes are spontaneous and endothermic (ΔG < 0, ΔH > 0) and are described by the Langmuir model (R2 > 0.97) and the pseudo-second order kinetic model (R2 > 0.99). The retention of RIF and RIX on the surface of PET fibers occurs through physicochemical interactions, and the FTIR spectra and microscopic images support this hypothesis. The presence of inorganic anions in the aqueous solution leads to an increase in the adsorption capacities of RIF (max. 7.6 mg/g) and RIX (max. 3.6 mg/g) on PET fibers, which is mainly due to the ordering of water molecules in the solution. The experimental results presented in this study allowed for the development of the adsorption mechanism of RIF and RIX on PET fibers, highlighting the potential practical applications of these adsorption processes. Full article
Show Figures

Graphical abstract

25 pages, 4954 KiB  
Article
Local Fungi Promote Plant Growth by Positively Affecting Rhizosphere Metabolites to Drive Beneficial Microbial Assembly
by Deyu Dong, Zhanling Xie, Jing Guo, Bao Wang, Qingqing Peng, Jiabao Yang, Baojie Deng, Yuan Gao, Yuting Guo, Xueting Fa and Jianing Yu
Microorganisms 2025, 13(8), 1752; https://doi.org/10.3390/microorganisms13081752 - 26 Jul 2025
Viewed by 369
Abstract
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi [...] Read more.
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi (DK; F18-3) and commercially available bacteria (B0) were used as materials to explore their regulatory mechanisms for plant growth, soil physicochemical factors, microbial communities, and metabolic profiles in the field. Compared to bacterial treatments, local fungi treatments exhibited stronger ecological restoration efficacy. In addition, the DK and F18-3 strains, respectively, increased shoot and root biomass by 23.43% and 195.58% and significantly enhanced soil nutrient content and enzyme activity. Microbiome analysis further implied that, compared with the CK, DK treatment could significantly improve the α-diversity of fungi in the rhizosphere soil (the Shannon index increased by 14.27%) and increased the amount of unique bacterial genera in the rhizosphere soil of plants, totaling fourteen genera. Meanwhile, this aggregated the most biomarkers and beneficial microorganisms and strengthened the interactions among beneficial microorganisms. After DK treatment, twenty of the positively accumulated differential metabolites (DMs) in the plant rhizosphere were highly positively associated with six plant traits such as shoot length and root length, as well as beneficial microorganisms (e.g., Apodus and Pseudogymnoascus), but two DMs were highly negatively related to plant pathogenic fungi (including Cistella and Alternaria). Specifically, DK mainly inhibited the growth of pathogenic fungi through regulating the accumulation of D-(+)-Malic acid and Gamma-Aminobutyric acid (Cistella and Alternaria decreased by 84.20% and 58.53%, respectively). In contrast, the F18-3 strain mainly exerted its antibacterial effect by enriching Acidovorax genus microorganisms. This study verified the core role of local fungi in the restoration of mining areas in the Qinghai–Tibet Plateau and provided a new direction for the development of microbial agents for ecological restoration in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

22 pages, 3781 KiB  
Article
Enhancing Parenteral Nutrition via Supplementation with Antioxidant Lutein in Human Serum Albumin-Based Nanosuspension
by Izabela Żółnowska, Aleksandra Gostyńska-Stawna, Katarzyna Dominiak, Barbara Jadach and Maciej Stawny
Pharmaceutics 2025, 17(8), 971; https://doi.org/10.3390/pharmaceutics17080971 - 26 Jul 2025
Viewed by 475
Abstract
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein [...] Read more.
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein (an antioxidant carotenoid with vision-supportive and hepatoprotective properties) as a PN additive. Methods: An albumin–lutein nanosuspension (AlbLuteN) was synthesized using a modified nanoparticle albumin-bound (nabTM) technology and characterized physicochemically. The nanoformulation was added to four commercial PN admixtures to assess the supplementation safety throughout the maximum infusion period. Visual inspection and measurements of fat globules larger than 5 µm (PFAT5) and the mean hydrodynamic diameter (Z-average), zeta potential, pH, osmolality, and lutein content were performed to detect potential interactions and evaluate the physicochemical stability. Results: AlbLuteN consisted of uniform particles (Z-average of 133.5 ± 2.8 nm) with a zeta potential of −28.1 ± 1.8 mV, lutein content of 4.76 ± 0.39%, and entrapment efficiency of 84.4 ± 6.3%. Differential scanning calorimetry confirmed the amorphous state of lutein in the nanosuspension. AlbLuteN was successfully incorporated into PN admixtures, without visible phase separation or significant changes in physicochemical parameters. The PFAT5 and Z-average values remained within pharmacopeial limits over 24 h. No substantial shifts in zeta potential, pH, or osmolality were observed. The lutein content remained stable, with losses below 3%. Conclusions: AlbLuteN can be safely added to representative PN admixtures without compromising their stability. This approach offers a novel strategy for intravenous lutein delivery and may contribute to improving the nutritional profile of PN. Full article
Show Figures

Figure 1

23 pages, 3376 KiB  
Article
Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions
by Joanna Kolniak-Ostek, Agnieszka Kita, Davide Giacalone, Laura Vázquez-Araújo, Luis Noguera-Artiaga, Jessica Brzezowska and Anna Michalska-Ciechanowska
Foods 2025, 14(15), 2593; https://doi.org/10.3390/foods14152593 - 24 Jul 2025
Viewed by 338
Abstract
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders [...] Read more.
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders from both widely available fruits, such as apple and pear, chosen for their accessibility and economic relevance, and less commonly consumed fruits, such as Japanese quince, rosehip, and rhubarb, which are often discarded due to sour or astringent flavors. Processing these into powders helped mask undesirable sensory traits and enabled incorporation into beverage matrices. Physicochemical analyses confirmed their technological suitability, while high polyphenol content indicated potential health benefits. Importantly, no process contaminants (furfural, 5-hydroxymethyl-L-furfural, and acrylamide) were detected, supporting the powders’ safety for food use. The integrated application of an electronic tongue and nose enabled objective profiling of taste and aroma. The electronic tongue distinguished taste profiles across formulations, revealing matrix-dependent effects and interactions, particularly with trehalose, that influenced sweetness and bitterness. The electronic nose provided consistent aroma differentiation. Overall, the results highlight the potential of these underutilized plant powders as multifunctional ingredients in plant-based beverage development. They support product innovation aligned with consumer expectations for natural, health-promoting foods. Future work will include sensory validation with consumer panels. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

24 pages, 11000 KiB  
Article
Differences and Influencing Factors of Soil Bacterial Communities Under Different Forest Types on the Southern Slope of the Qilian Mountains
by Shuang Ji, Huichun Xie, Shaobo Du, Shaoxiong Zhang, Zhiqiang Dong, Hongye Li and Xunxun Qiu
Biology 2025, 14(8), 927; https://doi.org/10.3390/biology14080927 - 23 Jul 2025
Viewed by 216
Abstract
Understanding the distribution patterns of soil bacterial community structure and diversity across different forest types is essential for elucidating the mechanisms underlying microbial community assembly and its ecological drivers, particularly under the pressures of climate change. In this study, we examined six forest [...] Read more.
Understanding the distribution patterns of soil bacterial community structure and diversity across different forest types is essential for elucidating the mechanisms underlying microbial community assembly and its ecological drivers, particularly under the pressures of climate change. In this study, we examined six forest types—including four monocultures and two mixed-species stands—to systematically evaluate the structural composition, diversity metrics, and functional potential of soil bacterial communities. Significant differences in microbial structure and functional composition were observed among forest types. Mixed forests exhibited higher soil nutrient levels, more complex structures, and greater water retention capacity, resulting in significantly higher bacterial and functional diversity compared to monoculture forests. Bacterial diversity was greater in subsurface layers than in surface layers. Surface communities in monoculture forests showed relatively high structural heterogeneity, whereas deeper communities in mixed forests displayed more pronounced differentiation. The dominant bacterial phyla were mainly related to carbon and nitrogen metabolism, compound degradation, and anaerobic photosynthesis. Surface bacterial communities were primarily influenced by catalase activity, alkali-hydrolysable nitrogen, bulk density, and pH, whereas subsurface communities were largely controlled by pH, with supplementary regulation by nitrogen and potassium availability. Therefore, forest type and soil depth jointly influence the diversity, composition, and functional attributes of soil microbial communities by modulating soil physicochemical conditions. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

12 pages, 259 KiB  
Article
The Impact of Grafted Larvae and Collection Day on Royal Jelly’s Production and Quality
by Dimitrios Kanelis, Vasilios Liolios, Maria Anna Rodopoulou, Fotini Papadopoulou and Chrysoula Tananaki
Appl. Sci. 2025, 15(15), 8200; https://doi.org/10.3390/app15158200 - 23 Jul 2025
Viewed by 236
Abstract
Royal jelly (RJ), a secretion from nurse bees, is a key factor in honeybee caste differentiation and a high-value product in apitherapy. Despite its economic and biological importance, factors affecting its yield and composition remain insufficient. This study investigated the impact of grafted [...] Read more.
Royal jelly (RJ), a secretion from nurse bees, is a key factor in honeybee caste differentiation and a high-value product in apitherapy. Despite its economic and biological importance, factors affecting its yield and composition remain insufficient. This study investigated the impact of grafted larval age and sex and the collection day of RJ on its yield and physicochemical characteristics. Three independent experiments were conducted using strong Apis mellifera L. colonies. Larvae of different ages (first, second, and third) were grafted, and RJ was harvested 24, 48, and 72 h post grafting. Additionally, worker and drone larvae were used to assess the effect of larval sex. RJ was analyzed for moisture, protein, sugar, and 10-hydroxy-2-decenoic acid (10-had) content. Results showed that RJ yield significantly increased with collection day, with the third day being optimal. Protein content declined over time, while moisture content rose, although sugar levels and 10-HDA remained stable. Second-day larvae yielded the highest RJ volume without affecting composition. Larval sex did not significantly influence either RJ yield or composition. The results of this study may provide valuable insights into the quality determinants of royal jelly, enabling beekeepers to optimize production for both enhanced royal jelly yield and the rearing of higher-quality queen bees. Full article
(This article belongs to the Special Issue Advances in Honeybee and Their Biological and Environmental Threats)
19 pages, 23863 KiB  
Article
Topographic Habitat Drive the Change of Soil Fungal Community and Vegetation Soil Characteristics in the Rhizosphere of Kengyilia thoroldiana in the Sanjiangyuan Region
by Liangyu Lyu, Pei Gao, Zongcheng Cai, Fayi Li and Jianjun Shi
J. Fungi 2025, 11(7), 531; https://doi.org/10.3390/jof11070531 - 17 Jul 2025
Viewed by 361
Abstract
This study aims to reveal the impact mechanisms of five typical topographic habitats in the Sanjiangyuan region (sunny slope, depression, shady slope, mountain pass, and transitional zone) on the characteristics and functions of rhizosphere soil fungal communities of Kengyilia thoroldiana, and to [...] Read more.
This study aims to reveal the impact mechanisms of five typical topographic habitats in the Sanjiangyuan region (sunny slope, depression, shady slope, mountain pass, and transitional zone) on the characteristics and functions of rhizosphere soil fungal communities of Kengyilia thoroldiana, and to elucidate the association patterns between these communities and soil physicochemical factors. The species composition, diversity, molecular co-occurrence network, and FUNGuild function of microbial communities were investigated based on high-throughput sequencing technology. By combining the Mantel test and RDA analysis, the key habitat factors affecting the structure of the soil fungal community in the rhizosphere zone of Kengyilia thoroldiana were explored. The results showed that: ① The composition of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographical habitats showed significant differentiation characteristics: the number of OTUs in H2 (depression) and H5 (transitional zone) habitats was the highest (336 and 326, respectively). Habitats H2 showed a significant increase in the abundance of Ascomycota and Mortierellomycota and a significant decrease in the abundance of Basidiomycota compared to the other topographical habitats. ② The diversity and aggregation degree of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographical habitats showed differences. ③ Cluster analysis showed that the rhizosphere soil fungi in five topographical habitats of Kengyilia thoroldiana could be divided into two groups, with H2, H4 (mountain pass), and H5 habitats as one group (group 1) and H1 and H3 (shady slope) as one group (group 2). ④ The characteristics of the Kengyilia thoroldiana community and the physical and chemical properties of rhizosphere soil in five topographical habitats were significantly different, and the height, coverage, biomass, and soil nutrient content were the highest in H2 and H5 habitats, while lower in H1 and H3 habitats, with significant differences (p < 0.05). ⑤ Redundancy analysis showed that soil water content was the main driving factor to change the structure and function of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographic habitats in the Sanjiangyuan region. This study demonstrated that topographic habitats affected the species composition, functional pattern, and ecosystem service efficiency of the Kengyilia thoroldiana rhizosphere fungal community by mediating soil environmental heterogeneity, which provides microbial mechanistic insights for alpine meadow ecosystem protection. Full article
(This article belongs to the Special Issue Fungal Communities in Various Environments, 2nd Edition)
Show Figures

Figure 1

17 pages, 3865 KiB  
Article
Epoxy Resin/Ionic Liquid Composite as a New Promising Coating Material with Improved Toughness and Antibiofilm Activity
by Sergiy Rogalsky, Olena Moshynets, Oleg Dzhuzha, Yevheniia Lobko, Anastasiia Hubina, Alina Madalina Darabut, Yaroslav Romanenko, Oksana Tarasyuk and Geert Potters
Coatings 2025, 15(7), 821; https://doi.org/10.3390/coatings15070821 - 14 Jul 2025
Viewed by 974
Abstract
Long-chain imidazolium-based ionic liquids (ILs) possess a broad-spectrum biological activity and are considered promising antifouling agents for protective coatings. A new hydrophobic IL, 1-dodecyl-3-methylimidazolium dodecylbenzenesulfonate (C12C1IM-DBS), has been synthesized, and a modified epoxy coating material containing 10, 20, and [...] Read more.
Long-chain imidazolium-based ionic liquids (ILs) possess a broad-spectrum biological activity and are considered promising antifouling agents for protective coatings. A new hydrophobic IL, 1-dodecyl-3-methylimidazolium dodecylbenzenesulfonate (C12C1IM-DBS), has been synthesized, and a modified epoxy coating material containing 10, 20, and 30 wt% of this IL was prepared by dissolution of C12C1IM-DBS in commercial DER 331 epoxy resin, followed by a curing phase with diethylenetriamine. Infrared analysis revealed physicochemical interactions between the hydroxyl groups of the resin and the IL. Spectrophotometric studies showed no release of C12C1IM-DBS after 30 days of exposure of the modified coatings to water. The plasticizing effect of the IL on the epoxy resin was established by differential scanning calorimetry analysis. The introduction of 10 and 20% C12C1IM-DBS into DER 331 reduced its glass transition temperature from 122.8 °C to 109.3 and 91.5 °C, respectively. The hardness of epoxy resin decreased by approximately 26% after the introduction of the IL. Moreover, DER 331/C12C1IM-DBS coatings on steel substrates showed significantly improved impact resistance compared to neat resin. The antibiofilm efficiency of DER 331/C12C1IM-DBS coatings was evaluated by assessing the capability of two biofilm-forming model strains, Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa PA01, to form attached biofilms on the surface. The IL effectively inhibited S. aureus surface-associated biofilm development even at the lowest content of 10%. On the contrary, an approximately 50% inhibition of biofilm metabolic activity was detected for DER 331/C12C1IM-DBS coatings containing 20% and 30% of the IL. Overall, the results of this study indicate that the hydrophobic IL C12C1IM-DBS is an efficient modifying additive for epoxy resins, which can significantly improve their operational properties for various industrial applications. Full article
Show Figures

Figure 1

12 pages, 3535 KiB  
Article
TiN-Ag Multilayer Protective Coatings for Surface Modification of AISI 316 Stainless Steel Medical Implants
by Božana Petrović, Dijana Mitić, Minja Miličić Lazić, Miloš Lazarević, Anka Trajkovska Petkoska, Ilija Nasov, Slavoljub Živković and Vukoman Jokanović
Coatings 2025, 15(7), 820; https://doi.org/10.3390/coatings15070820 - 14 Jul 2025
Viewed by 323
Abstract
Stainless steel (SS) is one of the materials most commonly utilized for fabrication of medical implants and its properties are often improved by deposition of protective coatings. This study investigates certain physico-chemical and biological properties of SS substrate coated with multilayer thin film [...] Read more.
Stainless steel (SS) is one of the materials most commonly utilized for fabrication of medical implants and its properties are often improved by deposition of protective coatings. This study investigates certain physico-chemical and biological properties of SS substrate coated with multilayer thin film consisting of titanium nitride and silver layers (TiN-Ag film). TiN-Ag films were deposited on the surface of AISI 316 SS substrate by a combination of cathodic arc evaporation and DC magnetron sputtering. SS substrate was analyzed by TEM, while deposited coatings were analyzed by SEM, EDS and wettability measurements. Also, mitochondrial activity assay, and osteogenic and chondrogenic differentiation were performed on dental pulp stem cells (DPSCs). SEM and EDS revealed excellent adhesion between coatings’ layers, with the top layer predominantly composed of Ag, which is responsible for antibacterial properties. TiN-Ag film exhibited moderately hydrophilic behaviour which is desirable for orthopedic implant applications. Biological assays revealed significantly higher mitochondrial activity and enhanced osteogenic and chondrogenic differentiation of DPSC on TiN-Ag films compared to TiN films. The newly designed TiN-Ag coatings showed a great potential for the surface modification of SS implants, and further detailed investigations will explore their suitability for application in clinical practice. Full article
Show Figures

Figure 1

32 pages, 6617 KiB  
Article
Hyaluronan-Containing Injectable Magnesium–Calcium Phosphate Cements Demonstrated Improved Performance, Cytocompatibility, and Ability to Support Osteogenic Differentiation In Vitro
by Natalia S. Sergeeva, Polina A. Krokhicheva, Irina K. Sviridova, Margarita A. Goldberg, Dinara R. Khayrutdinova, Suraya A. Akhmedova, Valentina A. Kirsanova, Olga S. Antonova, Alexander S. Fomin, Ivan V. Mikheev, Aleksander V. Leonov, Pavel A. Karalkin, Sergey A. Rodionov, Sergey M. Barinov, Vladimir S. Komlev and Andrey D. Kaprin
Int. J. Mol. Sci. 2025, 26(14), 6624; https://doi.org/10.3390/ijms26146624 - 10 Jul 2025
Viewed by 454
Abstract
Due to their biocompatibility, biodegradability, injectability, and self-setting properties, calcium–magnesium phosphate cements (MCPCs) have proven to be effective biomaterials for bone defect filling. Two types of MCPC powders based on the magnesium whitlockite or stanfieldite phases with MgO with different magnesium contents (20 [...] Read more.
Due to their biocompatibility, biodegradability, injectability, and self-setting properties, calcium–magnesium phosphate cements (MCPCs) have proven to be effective biomaterials for bone defect filling. Two types of MCPC powders based on the magnesium whitlockite or stanfieldite phases with MgO with different magnesium contents (20 and 60%) were synthesised. The effects of magnesium ions (Mg2+) on functional properties such as setting time, temperature, mechanical strength, injectability, cohesion, and in vitro degradation kinetics, as well as cytocompatibility in the MG-63 cell line and the osteogenic differentiation of BM hMSCs in vitro, were analysed. The introduction of NaHA into the cement liquid results in an increase in injectability of up to 83%, provides a compressive strength of up to 22 MPa, and shows a reasonable setting time of about 20 min without an exothermic reaction. These cements had the ability to support MG-63 cell adhesion, proliferation, and spread and the osteogenic differentiation of BM hMSCs in vitro, stimulating ALPL, SP7, and RUNX2 gene expression and ALPL production. The combination of the studied physicochemical and biological properties of the developed cement compositions characterises them as bioactive, cytocompatible, and promising biomaterials for bone defect reconstruction. Full article
Show Figures

Graphical abstract

35 pages, 9217 KiB  
Article
Comparative Physicochemical and Pharmacotechnical Evaluation of Three Topical Gel-Cream Formulations
by Ramona Pârvănescu, Cristina Trandafirescu, Adina Magdalena Musuc, Emma Adriana Ozon, Daniela C. Culita, Raul-Augustin Mitran, Cristina-Ionela Stănciulescu and Codruța Șoica
Gels 2025, 11(7), 532; https://doi.org/10.3390/gels11070532 - 9 Jul 2025
Viewed by 532
Abstract
In the context of modern dermocosmetic development, multifunctional topical gel-cream formulations must be efficient for both therapeutic efficacy and cosmetic applications. This study presents a comparative physicochemical and pharmacotechnical analysis of three topical gel-cream formulations developed by Brand Chanand®: Acne Control [...] Read more.
In the context of modern dermocosmetic development, multifunctional topical gel-cream formulations must be efficient for both therapeutic efficacy and cosmetic applications. This study presents a comparative physicochemical and pharmacotechnical analysis of three topical gel-cream formulations developed by Brand Chanand®: Acne Control Cleanser (ACC), Acne Face Cream (AFC), and Gentle Cream Cleanser Serum Control, Regenerating, Hydrating, Calming (IRC). Each formulation is enriched with a specific blend of bioactive compounds, including botanical oils, vitamins, and proteins, designed to treat acne, to support skin regeneration, and to maintain the skin barrier. A multidisciplinary approach was used, including Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR), differential scanning calorimetry (DSC), rheological evaluation, pH and density determination, spreadability analysis, and oxidative stability testing to evaluate the products. Antioxidant capacity was assessed through multiple in vitro assays. The results demonstrated that all three gel-cream formulations exhibit pseudoplastic rheological behaviour, suitable for topical application. AFC showed the highest oxidative stability and antioxidant activity, while IRC presented superior spreadability and cosmetic efficacy, likely due to its complex composition. ACC displayed faster absorption and was ideal for targeted use on oily or acne-prone skin. The differences observed in the stability and performance suggest that the ingredient synergy, base composition, and solubility profiles show notable variations in dermato-cosmetic formulations. These findings highlight the formulation–performance relationship in topical gel-cream formulations and support the development of new cosmetic products tailored for sensitive and acne-prone skin. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents (2nd Edition))
Show Figures

Figure 1

Back to TopTop