Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,277)

Search Parameters:
Keywords = physical and thermal properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2448 KiB  
Article
Study on the Semi-Interpenetrating Polymer Network Self-Degradable Gel Plugging Agent for Deep Coalbed Methane
by Bo Wang, Zhanqi He, Jin Lin, Kang Ren, Zhengyang Zhao, Kaihe Lv, Yiting Liu and Jiafeng Jin
Processes 2025, 13(8), 2453; https://doi.org/10.3390/pr13082453 (registering DOI) - 3 Aug 2025
Abstract
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing [...] Read more.
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing a critical role in determining CBM output. However, during extended horizontal drilling, wellbore instability frequently occurs as a result of drilling fluid invasion into the coal formation, posing significant safety challenges. This instability is primarily caused by the physical intrusion of drilling fluids and their interactions with the coal seam, which alter the mechanical integrity of the formation. To address these challenges, interpenetrating and semi-interpenetrating network (IPN/s-IPN) hydrogels have gained attention due to their superior physicochemical properties. This material offers enhanced sealing and support performance across fracture widths ranging from micrometers to millimeters, making it especially suited for plugging applications in deep CBM reservoirs. A self-degradable interpenetrating double-network hydrogel particle plugging agent (SSG) was developed in this study, using polyacrylamide (PAM) as the primary network and an ionic polymer as the secondary network. The SSG demonstrated excellent thermal stability, remaining intact for at least 40 h in simulated formation water at 120 °C with a degradation rate as high as 90.8%, thereby minimizing potential damage to the reservoir. After thermal aging at 120 °C, the SSG maintained strong plugging performance and favorable viscoelastic properties. A drilling fluid containing 2% SSG achieved an invasion depth of only 2.85 cm in an 80–100 mesh sand bed. The linear viscoelastic region (LVR) ranged from 0.1% to 0.98%, and the elastic modulus reached 2100 Pa, indicating robust mechanical support and deformation resistance. Full article
Show Figures

Figure 1

14 pages, 6988 KiB  
Article
Effect of Substrate Temperature on the Structural, Morphological, and Infrared Optical Properties of KBr Thin Films
by Teng Xu, Qingyuan Cai, Weibo Duan, Kaixuan Wang, Bojie Jia, Haihan Luo and Dingquan Liu
Materials 2025, 18(15), 3644; https://doi.org/10.3390/ma18153644 (registering DOI) - 3 Aug 2025
Abstract
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning [...] Read more.
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results reveal a complex, non-monotonic response to temperature rather than a simple linear trend. As the substrate temperature increases, growth evolves from a mixed polycrystalline texture to a pronounced (200) preferred orientation. Morphological analysis shows that the film surface is smoothest at 150 °C, while the microstructure becomes densest at 200 °C. These structural variations directly modulate the optical constants: the refractive index attains its highest values in the 150–200 °C window, approaching that of bulk KBr. Cryogenic temperature (6 K) FTIR measurements further demonstrate that suppression of multi-phonon absorption markedly enhances the infrared transmittance of the films. Taken together, the data indicate that 150–200 °C constitutes an optimal process window for fabricating KBr films that combine superior crystallinity, low defect density, and high packing density. This study elucidates the temperature-driven structure–property coupling and offers valuable guidance for optimizing high-performance infrared and cryogenic optical components. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

21 pages, 2332 KiB  
Article
Evaluation of Spent Catalyst from Fluid Catalytic Cracking in Fly Ash and Blast Furnace Slag Based Alkali Activated Materials
by Yolanda Luna-Galiano, Domigo Cabrera-Gallardo, Mónica Rodríguez-Galán, Rui M. Novais, João A. Labrincha and Carlos Leiva Fernández
Recycling 2025, 10(4), 149; https://doi.org/10.3390/recycling10040149 - 1 Aug 2025
Viewed by 142
Abstract
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a [...] Read more.
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a AAM matrix offers several advantages: valorization of the material, reducing its disposal in landfills and the landfill cost, and minimizing the environmental impact. Mineralogical, physical and mechanical characterization were carried out. The durability of the specimens was studied by performing acid attack and thermal stability tests. Mass variation, compressive strength and porosity parameters were determined to assess the durability. BFS- and FA-based AAMs have a different chemical composition, which contribute to variations in microstructure and physical and mechanical properties. Acid neutralization capacity was also determined to analyse the acid attack results. Porosity, including the pore size distribution, and the acid neutralization capacity are crucial in explaining the resistance of the AAMs to sulfuric acid attack and thermal degradation. Herein, a novel route was explored, the use of SCFCC to enhance the durability of AAMs under harsh operating conditions since results show that the compositions containing SCFCC showed lower strength decay due to the lower macroporosity proportions in these compositions. Full article
Show Figures

Figure 1

16 pages, 1265 KiB  
Article
Enhancing Stability of Boesenbergia rotunda Bioactive Compounds: Microencapsulation via Spray-Drying and Its Physicochemical Evaluation
by Fahmi Ilman Fahrudin, Suphat Phongthai and Pilairuk Intipunya
Foods 2025, 14(15), 2699; https://doi.org/10.3390/foods14152699 (registering DOI) - 31 Jul 2025
Viewed by 183
Abstract
This study aimed to microencapsulate Boesenbergia rotunda (fingerroot) extract using maltodextrin (MD) and gum arabic (GA) as wall materials via spray-drying to improve powder physicochemical properties and protect bioactive compounds. MD and GA were employed as wall materials in varying ratios (MD:GA of [...] Read more.
This study aimed to microencapsulate Boesenbergia rotunda (fingerroot) extract using maltodextrin (MD) and gum arabic (GA) as wall materials via spray-drying to improve powder physicochemical properties and protect bioactive compounds. MD and GA were employed as wall materials in varying ratios (MD:GA of 1:0, 0:1, 1:1, 2:1, 1:2) to evaluate their effects on the physicochemical properties of the resulting microcapsules. Spray-dried microcapsules were evaluated for morphology, flowability, particle size distribution, moisture content, hygroscopicity, solubility, encapsulation efficiency, major bioactive compound retention, and thermal stability. The extract encapsulation using MD:GA at 1:1 ratio (MD1GA1) demonstrated a favorable balance, with high solubility (98.70%), low moisture content (8.69%), low hygroscopicity (5.08%), and uniform particle morphology, despite its moderate EE (75.06%). SEM images revealed spherical particles with fewer surface indentations in MD-rich formulations. Microencapsulation effectively retained pinostrobin and pinocembrin in all formulations with pinostrobin consistently retained at a higher value, indicating its higher stability. The balanced profile of physical and functional properties of fingerroot extract with MD1GA1 microcapsule makes it a promising candidate for food and nutraceutical applications. Full article
Show Figures

Graphical abstract

25 pages, 4584 KiB  
Review
A Review of the State of the Art on Ionic Liquids and Their Physical Properties During Heat Transfer
by Krzysztof Dutkowski, Marcin Kruzel, Małgorzata Smuga-Kogut and Marcin Walczak
Energies 2025, 18(15), 4053; https://doi.org/10.3390/en18154053 - 30 Jul 2025
Viewed by 279
Abstract
This paper presents information on ionic liquids (ILs) and explores their potential applications in heat exchange systems. Basic information on ionic liquids and their selected thermophysical properties is presented in a manner that facilitates their use in future research. The physical properties of [...] Read more.
This paper presents information on ionic liquids (ILs) and explores their potential applications in heat exchange systems. Basic information on ionic liquids and their selected thermophysical properties is presented in a manner that facilitates their use in future research. The physical properties of IL that are important in the area of heat exchange are described in detail, with particular emphasis on heat exchange in flow. Issues related to the melting point, specific heat, thermal conductivity coefficient, and viscosity of selected ionic liquids, as well as the effect of temperature on their changes, are discussed. The physical properties of IL are compared with the physical properties of water treated in heat exchange as a reference substance. The issues of creating aqueous solutions of ionic liquids and the effect of the amount of water on the physical properties of the resulting solution are discussed. It is demonstrated that selected ionic liquids can be considered an alternative to traditional working liquids commonly used in heat exchange systems. Full article
(This article belongs to the Special Issue Heat Transfer in Heat Exchangers: 2nd Edition)
Show Figures

Figure 1

20 pages, 2093 KiB  
Review
A Practical Guide Paper on Bulk and PLD Thin-Film Metals Commonly Used as Photocathodes in RF and SRF Guns
by Alessio Perrone, Muhammad Rizwan Aziz, Francisco Gontad, Nikolaos A. Vainos and Anna Paola Caricato
Chemistry 2025, 7(4), 123; https://doi.org/10.3390/chemistry7040123 - 30 Jul 2025
Viewed by 258
Abstract
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many [...] Read more.
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many applications. The investigation includes the photoemission, optical, chemical, mechanical, and physical properties of metallic materials used in photocathodes, with a particular focus on key performance parameters such as quantum efficiency, operational lifetime, chemical inertness, thermal emittance, response time, dark current, and work function. In addition to these primary attributes, this study examines essential parameters such as surface roughness, morphology, injector compatibility, manufacturing techniques, and the impact of chemical environmental factors on overall performance. The aim is to provide researchers with detailed insights to make well-informed decisions on materials and device selection. The holistic approach of this work associates, in tabular format, all photo-emissive, optical, mechanical, physical, and chemical properties of bulk and thin-film metallic photocathodes with experimental data, aspiring to provide unique tools for maximizing the effectiveness of laser cleaning treatment. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

30 pages, 3678 KiB  
Article
An Automated Method of Parametric Thermal Shaping of Complex Buildings with Buffer Spaces in a Moderate Climate
by Jacek Abramczyk, Wiesław Bielak and Ewelina Gotkowska
Energies 2025, 18(15), 4050; https://doi.org/10.3390/en18154050 - 30 Jul 2025
Viewed by 213
Abstract
This article presents a new method of parametric shaping of buildings with buffer spaces characterized by complex forms and effective thermal operation in the moderate climate of the Central Europe Plane. The parameterization of an elaborated thermal qualitative model of buildings with buffer [...] Read more.
This article presents a new method of parametric shaping of buildings with buffer spaces characterized by complex forms and effective thermal operation in the moderate climate of the Central Europe Plane. The parameterization of an elaborated thermal qualitative model of buildings with buffer spaces and its configuration based on computer simulations of thermal operation of many discrete models are the specific features of the method. The model uses various original building shapes and a new parametric artificial neural network (a) to automate the calculations and recording of results and (b) to predict a number of new buildings with buffer spaces characterized by effective thermal operation. The configuration of the parametric quantitative model was carried out based on the simulation results of 343 discrete models defined by means of ten independent variables grouping the properties of the building and buffer space related to their forms, materials and air circulation. The analysis performed for the adopted parameter variability ranges indicates a varied impact of these independent variables on the thermal operation of buildings located in a moderate climate. The infiltration and ventilation and physical properties of the windows and walls are the independent variables that most influence the energy savings utilized by the examined buildings with buffer spaces. The optimal values of these variables allow up to 50–60% of the energy supplied by the HVAC system to be saved. The accuracy and universality of the method will continuously be increased in future research by increasing the types and ranges of independent variables. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

12 pages, 2164 KiB  
Article
Preparation of Inverse-Loaded MWCNTs@Fe2O3 Composites and Their Impact on Glycidyl Azide Polymer-Based Energetic Thermoplastic Elastomer
by Shuo Pang, Yihao Lv, Shuxia Liu, Chao Sang, Bixin Jin and Yunjun Luo
Polymers 2025, 17(15), 2080; https://doi.org/10.3390/polym17152080 - 30 Jul 2025
Viewed by 172
Abstract
As a novel carbon material, multi-walled carbon nanotubes (MWCNTs) have attracted significant research interest in energetic applications due to their high aspect ratio and exceptional physicochemical properties. However, their inherent structural characteristics and poor dispersion severely limit their practical utilization in solid propellant [...] Read more.
As a novel carbon material, multi-walled carbon nanotubes (MWCNTs) have attracted significant research interest in energetic applications due to their high aspect ratio and exceptional physicochemical properties. However, their inherent structural characteristics and poor dispersion severely limit their practical utilization in solid propellant formulations. To address these challenges, this study developed an innovative reverse-engineering strategy that precisely confines MWCNTs within a three-dimensional Fe2O3 gel framework through a controllable sol-gel process followed by low-temperature calcination. This advanced material architecture not only overcomes the traditional limitations of MWCNTs but also creates abundant Fe-C interfacial sites that synergistically catalyze the thermal decomposition of glycidyl azide polymer-based energetic thermoplastic elastomer (GAP-ETPE). Systematic characterization reveals that the MWCNTs@Fe2O3 nanocomposite delivers exceptional catalytic performance for azido group decomposition, achieving a >200% enhancement in decomposition rate compared to physical mixtures while simultaneously improving the mechanical strength of GAP-ETPE-based propellants by 15–20%. More importantly, this work provides fundamental insights into the rational design of advanced carbon-based nanocomposites for next-generation energetic materials, opening new avenues for the application of nanocarbons in propulsion systems. Full article
(This article belongs to the Special Issue Eco-Friendly Polymeric Coatings and Adhesive Technology, 2nd Edition)
Show Figures

Figure 1

19 pages, 2688 KiB  
Article
Red Clay as a Raw Material for Sustainable Masonry Composite Ceramic Blocks
by Todorka Samardzioska, Igor Peshevski, Valentina Zileska Pancovska, Bojan Golaboski, Milorad Jovanovski and Sead Abazi
Sustainability 2025, 17(15), 6852; https://doi.org/10.3390/su17156852 - 28 Jul 2025
Viewed by 582
Abstract
The pursuit of sustainable construction practices has become imperative in the modern era. This paper delves into the research of the properties and application of a specific material called “red clay” from the locality “Crvena Mogila” in Macedonia. A series of laboratory tests [...] Read more.
The pursuit of sustainable construction practices has become imperative in the modern era. This paper delves into the research of the properties and application of a specific material called “red clay” from the locality “Crvena Mogila” in Macedonia. A series of laboratory tests were conducted to evaluate the physical, mechanical, and chemical properties of the material. The tested samples show that it is a porous material with low density, high water absorption, and compressive strength in range of 29.85–38.32 MPa. Samples of composite wall blocks were made with partial replacement of natural aggregate with red clay aggregate. Two types of blocks were produced with dimensions of 390 × 190 × 190 mm, with five and six holes. The average compressive strength of the blocks ranges from 3.1 to 4.1 MPa, which depends on net density and the number of holes. Testing showed that these blocks have nearly seven-times-lower thermal conductivity than conventional concrete blocks and nearly twice-lower conductivity than full-fired clay bricks. The general conclusion is that the tested red clay is an economically viable and sustainable material with favourable physical, mechanical, and thermal parameters and can be used as a granular aggregate in the production of composite ceramic blocks. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

17 pages, 2025 KiB  
Article
Retainment of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Properties from Oil-Fermented Cupriavidus necator Using Additional Ethanol-Based Defatting Process
by Tae-Rim Choi, Gaeun Lim, Yebin Han, Jong-Min Jeon, Shashi Kant Bhatia, Hyun June Park, Jeong Chan Joo, Hee Taek Kim, Jeong-Jun Yoon and Yung-Hun Yang
Polymers 2025, 17(15), 2058; https://doi.org/10.3390/polym17152058 - 28 Jul 2025
Viewed by 262
Abstract
Engineering of Cupriavidus necator could enable the production of various polyhydroxyalkanoates (PHAs); particularly, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HH)), a biopolymer with enhanced mechanical and thermal properties compared to poly(3-hydroxybutyrate) (PHB), can be efficiently produced from vegetable oils. However, challenges remain in the [...] Read more.
Engineering of Cupriavidus necator could enable the production of various polyhydroxyalkanoates (PHAs); particularly, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HH)), a biopolymer with enhanced mechanical and thermal properties compared to poly(3-hydroxybutyrate) (PHB), can be efficiently produced from vegetable oils. However, challenges remain in the recovery process, particularly in removing residual oil and minimizing degradation of the polymer structure during extraction steps. This study investigated the effects of ethanol-based defatting on the recovery and polymeric properties of P(3HB-co-3HH). The proposed method involves the addition of ethanol to the cell broth to effectively remove residual oil. Ethanol improved the separation of microbial cells from the broth, thereby streamlining the downstream recovery process. Using ethanol in the washing step increased the recovery yield and purity to 95.7% and 83.4%, respectively (compared to 87.4% and 76.2% for distilled water washing), representing improvements of 8.3% and 7.2%. Ethanol washing also resulted in a 19% higher molecular weight compared to water washing, indicating reduced polymer degradation. In terms of physical properties, the elongation at break showed a significant difference: 241.9 ± 27.0% with ethanol washing compared to water (177.7 ± 10.3%), indicating ethanol washing retains flexibility. Overall, an ethanol washing step for defatting could simplify the recovery steps, increase yield and purity, and retain mechanical properties, especially for P(3HB-co-3HH) from oils. Full article
Show Figures

Figure 1

20 pages, 8499 KiB  
Article
Characterization of Low-Temperature Waste-Wood-Derived Biochar upon Chemical Activation
by Bilge Yilmaz, Vasiliki Kamperidou, Serhatcan Berk Akcay, Turgay Kar, Hilal Fazli and Temel Varol
Forests 2025, 16(8), 1237; https://doi.org/10.3390/f16081237 - 27 Jul 2025
Viewed by 213
Abstract
Depending on the feedstock type and the pyrolysis conditions, biochars exhibit different physical, chemical, and structural properties, which highly influence their performance in various applications. This study presents a comprehensive characterization of biochar materials derived from the waste wood of pine (Pinus [...] Read more.
Depending on the feedstock type and the pyrolysis conditions, biochars exhibit different physical, chemical, and structural properties, which highly influence their performance in various applications. This study presents a comprehensive characterization of biochar materials derived from the waste wood of pine (Pinus sylvestris L.) and beech (Fagus sylvatica) after low-temperature pyrolysis at 270 °C, followed by chemical activation using zinc chloride. The resulting materials were thoroughly analyzed in terms of their chemical composition (FTIR), thermal behavior (TGA/DTG), structural morphology (SEM and XRD), elemental analysis, and particle size distribution. The successful modification of raw biomass into carbon-rich structures of increased aromaticity and thermal stability was confirmed. Particle size analysis revealed that the activated carbon of Fagus sylvatica (FSAC) exhibited a monomodal distribution, indicating high homogeneity, whereas Pinus sylvestris-activated carbon showed a distinct bimodal distribution. This heterogeneity was supported by elemental analysis, revealing a higher inorganic content in pine-activated carbon, likely contributing to its dimensional instability during activation. These findings suggest that the uniform morphology of beech-activated carbon may be advantageous in filtration and adsorption applications, while pine-activated carbon’s heterogeneous structure could be beneficial for multifunctional systems requiring variable pore architectures. Overall, this study underscored the potential of chemically activated biochar from lignocellulosic residues for customized applications in environmental and material science domains. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

16 pages, 8409 KiB  
Article
Imaging of Laser-Induced Thermal Convection and Conduction in Artificial Vitreous Humor
by Jack Pelzel, Reese Anderson, Darin J. Ulness and Krys Strand
Biophysica 2025, 5(3), 31; https://doi.org/10.3390/biophysica5030031 - 27 Jul 2025
Viewed by 153
Abstract
This study extends the application of photothermal spectroscopy to explore heat transfer dynamics in biological fluids, focusing on the examination of artificial vitreous humor (VH) models of human VH and an endogenous sample of cervine (deer) VH. The research integrates previously established methods [...] Read more.
This study extends the application of photothermal spectroscopy to explore heat transfer dynamics in biological fluids, focusing on the examination of artificial vitreous humor (VH) models of human VH and an endogenous sample of cervine (deer) VH. The research integrates previously established methods for analyzing thermal lensing through photothermal deflection. By visualizing convective and conductive heat transfer processes in the artificial components of human VH, one gains insights into the dynamic behavior of heat transfer in the VH. Relevance extends to clinical cases where pathology requires replacement of endogenous VH with an artificial VH substitute. Several VH substitutes identified in the literature were chosen for this study based on their physical properties and relative abundance in the VH. Individual component fluids, and mixtures of these components, were analyzed at various concentrations based on their physiological concentration ranges in the human VH as they varied with age, sex, and certain disease states. By way of comparison to endogenous biological VH, a sample of VH obtained from a female white-tailed deer eye was analyzed, enhancing the understanding of heat transfer in artificial components of the VH compared to endogenous VH. There is a vast array of ophthalmological procedures that utilize an external heat source interacting with endogenous or artificial VH. The data found in this study will progress the understanding of heat transfer within artificial VH components in comparison to endogenous VH and contribute to the advancement of certain ophthalmological procedures. Full article
(This article belongs to the Special Issue Biomedical Optics: 3rd Edition)
Show Figures

Figure 1

14 pages, 2594 KiB  
Article
Low-Temperature Performance and Thermal Control of Asphalt Modified with Microencapsulated Phase-Change Materials
by Liming Zhang, Junmao Wang, Jinhua Wu, Ran Zhang, Yinchuan Guo, Hongbo Shen, Xinghua Liu and Kuncan Li
Coatings 2025, 15(8), 879; https://doi.org/10.3390/coatings15080879 - 26 Jul 2025
Viewed by 345
Abstract
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs [...] Read more.
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs were incorporated into asphalt through physical blending at various concentrations. The physical, thermal, and rheological properties of the asphalt were then systematically evaluated. Tests included penetration, softening point, ductility, thermogravimetric analysis (TGA), and dynamic shear rheometer (DSR). The addition of MPCMs increased penetration and ductility. It slightly reduced the softening point and viscosity. These changes suggest improved flexibility and workability at low temperatures. Rheological tests showed reductions in rutting and fatigue factors. This indicates better resistance to thermal and mechanical stresses. Bending Beam Rheometer (BBR) results further confirmed that MPCMs lowered creep stiffness and increased the m-value. These findings demonstrate improved crack resistance under cold conditions. Thermal cycling tests also showed that MPCMs delayed the cooling process and reduced temperature fluctuations. This highlights their potential to enhance both energy efficiency and the durability of asphalt pavements in cold regions. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

29 pages, 42729 KiB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Viewed by 315
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

21 pages, 4524 KiB  
Article
Rotational Influence on Wave Propagation in Semiconductor Nanostructure Thermoelastic Solid with Ramp-Type Heat Source and Two-Temperature Theory
by Sayed M. Abo-Dahab, Emad K. Jaradat, Hanan S. Gafel and Eslam S. Elidy
Axioms 2025, 14(8), 560; https://doi.org/10.3390/axioms14080560 - 24 Jul 2025
Viewed by 257
Abstract
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing [...] Read more.
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing a more accurate description of thermal and mechanical responses in semiconductor materials. The effects of rotation, ramp-type heating, and semiconductor properties on elastic wave propagation are analyzed theoretically. Governing equations are formulated and solved analytically, with numerical simulations illustrating the variations in thermal and elastic wave behavior. The key findings highlight the significant impact of rotation, nonlocal parameters e0a, and time derivative fractional order (FO) α on physical quantities, offering insights into the thermoelastic performance of semiconductor nanostructures under dynamic thermal loads. A comparison is made with the previous results to show the impact of the external parameters on the propagation phenomenon. The numerical results show that increasing the rotation rate Ω=5 causes a phase lag of approximately 22% in thermal and elastic wave peaks. When the thermoelectric coupling parameter ε3 is increased from 0.8×1042 to 1.2×1042. The temperature amplitude rises by 17%, while the carrier density peak increases by over 25%. For nonlocal parameter values ε=0.30.6, high-frequency stress oscillations are damped by more than 35%. The results contribute to the understanding of wave propagation in advanced semiconductor materials, with potential applications in microelectronics, optoelectronics, and nanoscale thermal management. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

Back to TopTop