Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,305)

Search Parameters:
Keywords = photovoltaic converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1724 KB  
Article
Coordinated Power Control Strategy for PEDF Systems Based on Consensus Protocol
by Haoyu Chang, Weiqing Wang, Sizhe Yan, Zhenhu Liu and Menglin Zhang
Electronics 2026, 15(3), 618; https://doi.org/10.3390/electronics15030618 (registering DOI) - 31 Jan 2026
Abstract
Photovoltaic-storage direct current (DC) flexible (PEDF) systems are susceptible to DC bus voltage disturbances, with the constant power load (CPL) characteristics further exacerbating the risk of system instability. To address these challenges, a collaborative control scheme integrating distributed consensus and demand-side response (DSR) [...] Read more.
Photovoltaic-storage direct current (DC) flexible (PEDF) systems are susceptible to DC bus voltage disturbances, with the constant power load (CPL) characteristics further exacerbating the risk of system instability. To address these challenges, a collaborative control scheme integrating distributed consensus and demand-side response (DSR) based on a consensus protocol is proposed in this study. A fully distributed control architecture is constructed, wherein the upper layer achieves power coordination through voltage deviation of parallel DC/DC converters and neighborhood interaction, whilst the lower layer dynamically optimizes inter-unit power allocation via the DSR mechanism. Distributed state estimation (DSE) is incorporated to enhance voltage control accuracy. Simulations conducted in the MATLAB (R2022a)/Simulink environment demonstrate that the proposed strategy enables rapid stabilization of bus voltage under load step changes and photovoltaic fluctuation scenarios, with system disturbance rejection capability being effectively enhanced. The effectiveness of the approach in maintaining stable system operation and optimizing power distribution is validated. The results indicate that the voltage deviation of the PEDF system remains below 2% under compound disturbances, with the steady-state error being controlled within 2%. The proposed control strategy, through the integration of the power DSR mechanism, effectively improves the system’s anti-disturbance capability. Compared with conventional droop control methods, which typically result in voltage deviations of 3–5%, the proposed strategy achieves a reduction in voltage deviation of over 50%, demonstrating superior voltage regulation performance. Full article
Show Figures

Figure 1

21 pages, 3253 KB  
Article
Physics-Informed Neural Network-Based Intelligent Control for Photovoltaic Charge Allocation in Multi-Battery Energy Systems
by Akeem Babatunde Akinwola and Abdulaziz Alkuhayli
Batteries 2026, 12(2), 46; https://doi.org/10.3390/batteries12020046 - 30 Jan 2026
Viewed by 49
Abstract
The rapid integration of photovoltaic (PV) generation into modern power networks introduces significant operational challenges, including intermittent power production, uneven charge distribution, and reduced system reliability in multi-battery energy storage systems. Addressing these challenges requires intelligent, adaptive, and physically consistent control strategies capable [...] Read more.
The rapid integration of photovoltaic (PV) generation into modern power networks introduces significant operational challenges, including intermittent power production, uneven charge distribution, and reduced system reliability in multi-battery energy storage systems. Addressing these challenges requires intelligent, adaptive, and physically consistent control strategies capable of operating under uncertain environmental and load conditions. This study proposes a Physics-Informed Neural Network (PINN)-based charge allocation framework that explicitly embeds physical constraints—namely charge conservation and State-of-Charge (SoC) equalization—directly into the learning process, enabling real-time adaptive control under varying irradiance and load conditions. The proposed controller exploits real-time measurements of PV voltage, current, and irradiance to achieve optimal charge distribution while ensuring converter stability and balanced battery operation. The framework is implemented and validated in MATLAB/Simulink under Standard Test Conditions of 1000 W·m−2 irradiance and 25 °C ambient temperature. Simulation results demonstrate stable PV voltage regulation within the 230–250 V range, an average PV power output of approximately 95 kW, and effective duty-cycle control within the range of 0.35–0.45. The system maintains balanced three-phase grid voltages and currents with stable sinusoidal waveforms, indicating high power quality during steady-state operation. Compared with conventional Proportional–Integral–Derivative (PID) and Model Predictive Control (MPC) methods, the PINN-based approach achieves faster SoC equalization, reduced transient fluctuations, and more than 6% improvement in overall system efficiency. These results confirm the strong potential of physics-informed intelligent control as a scalable and reliable solution for smart PV–battery energy systems, with direct relevance to renewable microgrids and electric vehicle charging infrastructures. Full article
(This article belongs to the Special Issue Control, Modelling, and Management of Batteries)
Show Figures

Figure 1

18 pages, 4493 KB  
Article
A General FPGA-Based Accelerated Solver for Electromagnetic Transient Simulations
by Tian Liang, Xiaoshan Wu, Ligang Zhao and Qinxiong Huang
Electronics 2026, 15(3), 606; https://doi.org/10.3390/electronics15030606 - 29 Jan 2026
Viewed by 84
Abstract
The rising integration of renewable energy sources and power electronic converters in modern power grids imposes increasingly stringent requirements on electromagnetic transient (EMT) simulation in terms of both precision and computational speed. Conventional simulation tools face significant challenges in efficiently modeling large-scale systems [...] Read more.
The rising integration of renewable energy sources and power electronic converters in modern power grids imposes increasingly stringent requirements on electromagnetic transient (EMT) simulation in terms of both precision and computational speed. Conventional simulation tools face significant challenges in efficiently modeling large-scale systems with multi-timescale dynamics. To overcome these constraints, this paper presents a general-purpose accelerator for offline EMT simulation based on field-programmable gate array (FPGA) hardware. The proposed solver enhances computational performance by unifying component models and streamlining the accumulation calculation procedure, thereby substantially reducing FPGA processing latency and improving hardware resource utilization. Furthermore, a CPU-FPGA heterogeneous simulation framework is developed, capitalizing on the respective strengths of CPUs in handling complex control logic and FPGAs in executing parallel computations, to enable accelerated EMT simulation for generic, complex system models. The validity and efficiency of the proposed FPGA-based accelerator are demonstrated through a case study of a grid-connected photovoltaic system. Comparative evaluations against a CPU-only simulation platform confirm excellent agreement in results under both steady-state and transient operating conditions. Full article
Show Figures

Figure 1

19 pages, 1542 KB  
Article
Modeling and Validating Photovoltaic Park Energy Profiles for Improved Management
by Robert-Madalin Chivu, Mariana Panaitescu, Fanel-Viorel Panaitescu and Ionut Voicu
Sustainability 2026, 18(3), 1299; https://doi.org/10.3390/su18031299 - 28 Jan 2026
Viewed by 89
Abstract
This paper presents the design, modeling and experimental validation of an on-grid photovoltaic system with self-consumption, sized for the sustainable supply of a water pumping station. The system, composed of 68 photovoltaic panels, uses an architecture based on a Boost DC-DC converter controlled [...] Read more.
This paper presents the design, modeling and experimental validation of an on-grid photovoltaic system with self-consumption, sized for the sustainable supply of a water pumping station. The system, composed of 68 photovoltaic panels, uses an architecture based on a Boost DC-DC converter controlled by the Perturb and Observe algorithm, raising the operating voltage to a high-voltage DC bus to maximize the conversion efficiency. The study integrates dynamic performance analysis through simulations in the Simulink environment, testing the stability of the DC bus under sudden irradiance shocks, with rigorous experimental validation based on field production data. The simulation results, which indicate a peak DC power of approximately 34 kW, are confirmed by real monitoring data that records a maximum of 35 kW, the error being justified by the high efficiency of the panels and system losses. Long-term validation, carried out over three years of operation (2023–2025), demonstrates the reliability of the technical solution, with the system generating a total of 124.68 MWh. The analysis of energy flows highlights a degree of self-consumption of 60.08%, while the absence of chemical storage is compensated for by injecting the surplus of 49.78 MWh into the national grid, which is used as an energy buffer. The paper demonstrates that using the grid to balance night-time or meteorological deficits, in combination with a stabilized DC bus, represents an optimal technical-economic solution for critical pumping infrastructures, eliminating the maintenance costs of the accumulators and ensuring continuous operation. Full article
(This article belongs to the Special Issue Advanced Study of Solar Cells and Energy Sustainability)
Show Figures

Figure 1

18 pages, 7990 KB  
Article
Multi-Objective Adaptive Unified Control Method for Photovoltaic Boost Converters Under Complex Operating Conditions
by Kai Wang, Mingrun Lei, Jiawei Ji, Xiaolong Hao and Haiyan Zhang
Energies 2026, 19(3), 665; https://doi.org/10.3390/en19030665 - 27 Jan 2026
Viewed by 110
Abstract
Photovoltaic (PV) systems are vital to contemporary renewable energy generation systems. However, complex operating conditions, such as variable loads, grid uncertainty, and unstable sunlight, pose a serious threat to the stability of the power system integrated with PV generation. To maintain stable operation [...] Read more.
Photovoltaic (PV) systems are vital to contemporary renewable energy generation systems. However, complex operating conditions, such as variable loads, grid uncertainty, and unstable sunlight, pose a serious threat to the stability of the power system integrated with PV generation. To maintain stable operation under such conditions, PV systems must dynamically regulate their power output through a boost converter, thereby preventing excessive DC bus voltage and power levels. This article first summarizes practical control requirements for PV systems under complex operating conditions and subsequently proposes a multi-objective control method for boost converters in PV applications to enhance system adaptability. The proposed strategy enables seamless transitions between operating modes, including DC-link voltage control, current control, power control, and maximum power point tracking (MPPT). The dynamic behavior of the control method during mode switching is theoretically analyzed. Simulation results verify the correctness of the analysis and demonstrate the effectiveness of the proposed method under challenging PV operating conditions. Full article
(This article belongs to the Special Issue Power Electronics-Based Modern DC/AC Hybrid Power Systems)
Show Figures

Figure 1

16 pages, 2368 KB  
Article
PSCAD-Based Analysis of Short-Circuit Faults and Protection Characteristics in a Real BESS–PV Microgrid
by Byeong-Gug Kim, Chae-Joo Moon, Sung-Hyun Choi, Yong-Sung Choi and Kyung-Min Lee
Energies 2026, 19(3), 598; https://doi.org/10.3390/en19030598 - 23 Jan 2026
Viewed by 191
Abstract
This paper presents a PSCAD-based analysis of short-circuit faults and protection characteristics in a real distribution-level microgrid that integrates a 1 MWh battery energy storage system (BESS) with a 500 kW power conversion system (PCS) and a 500 kW photovoltaic (PV) plant connected [...] Read more.
This paper presents a PSCAD-based analysis of short-circuit faults and protection characteristics in a real distribution-level microgrid that integrates a 1 MWh battery energy storage system (BESS) with a 500 kW power conversion system (PCS) and a 500 kW photovoltaic (PV) plant connected to a 22.9 kV feeder. While previous studies often rely on simplified inverter models, this paper addresses the critical gap by integrating actual manufacturer-defined control parameters and cable impedances. This allows for a precise analysis of sub-millisecond transient behaviors, which is essential for developing robust protection schemes in inverter-dominated microgrids. The PSCAD model is first verified under grid-connected steady-state operation by examining PV output, BESS power, and grid voltage at the point of common coupling. Based on the validated model, DC pole-to-pole faults at the PV and ESS DC links and a three-phase short-circuit fault at the low-voltage bus are simulated to characterize the fault current behavior of the grid, BESS and PV converters. The DC fault studies confirm that current peaks are dominated by DC-link capacitor discharge and are strongly limited by converter controls, while the AC three-phase fault is mainly supplied by the upstream grid. As an initial application of the model, an instantaneous current change rate (ICCR) algorithm is implemented as a dedicated DC-side protection function. For a pole-to-pole fault, the ICCR index exceeds the 100 A/ms threshold and issues a trip command within 0.342 ms, demonstrating the feasibility of sub-millisecond DC fault detection in converter-dominated systems. Beyond this example, the validated PSCAD model and associated data set provide a practical platform for future research on advanced DC/AC protection techniques and protection coordination schemes in real BESS–PV microgrids. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

21 pages, 3304 KB  
Article
Improved Linear Active Disturbance Rejection Control of Energy Storage Converter
by Zicheng He, Guangchen Liu, Guizhen Tian, Hongtao Xia and Yan Wang
Energies 2026, 19(3), 597; https://doi.org/10.3390/en19030597 - 23 Jan 2026
Viewed by 119
Abstract
To improve DC-bus voltage regulation of bidirectional DC/DC converters in photovoltaic–energy storage DC microgrids, this paper proposes an improved linear active disturbance rejection control (LADRC) strategy based on observation error reconstruction. In conventional LADRC, the linear extended state observer (LESO) is driven solely [...] Read more.
To improve DC-bus voltage regulation of bidirectional DC/DC converters in photovoltaic–energy storage DC microgrids, this paper proposes an improved linear active disturbance rejection control (LADRC) strategy based on observation error reconstruction. In conventional LADRC, the linear extended state observer (LESO) is driven solely by the output tracking error, which may lead to weakened disturbance excitation after rapid error convergence and thus degraded disturbance estimation performance. To address this limitation, an observation error reconstruction mechanism is introduced, in which a reconstructed error variable incorporating higher-order estimation deviation information is used to redesign the LESO update law. This modification fundamentally enhances the disturbance-driving mechanism without excessively increasing observer bandwidth, resulting in improved mid- and high-frequency disturbance estimation capability. The proposed method is analyzed in terms of disturbance estimation characteristics, frequency-domain behavior, and closed-loop stability. Comparative simulations and hardware-in-the-loop experiments under typical load and photovoltaic power step variations within the safe operating range demonstrate that the proposed LADRC–PI significantly outperforms conventional PI and LADRC–PI control. Experimental results show that the maximum DC-bus voltage fluctuation is reduced by over 60%, and the voltage recovery time is shortened by approximately 40–50% under the tested operating conditions. Full article
Show Figures

Figure 1

11 pages, 1564 KB  
Article
On Possibility of Converting Electricity Generation System Based on Fossil Fuels to Fully Renewable—Polish Case
by Andrzej Szlęk
Energies 2026, 19(2), 483; https://doi.org/10.3390/en19020483 - 19 Jan 2026
Viewed by 208
Abstract
The energy sector in all countries around the world is undergoing a transformation, with the main trend being the increasing share of renewable sources. Some countries, such as those in the European Union, have set themselves the goal of completely phasing out fossil [...] Read more.
The energy sector in all countries around the world is undergoing a transformation, with the main trend being the increasing share of renewable sources. Some countries, such as those in the European Union, have set themselves the goal of completely phasing out fossil fuels by 2050. Currently, the energy systems of European countries are far from this goal, and fossil fuels play a key role in balancing energy systems. This article presents a one-year simulation of a hypothetical Polish energy system based solely on renewable sources and utilizing biomethane, synthetic ammonia, and solid biomass as sources to ensure energy supply in the event of unfavorable weather conditions, which means a lack of wind and solar radiation. Six variants of these systems were analyzed, demonstrating the feasibility of such a system using only biogas as a stabilizing fuel. The required generating capacities of wind turbines, photovoltaic panels, and installations for converting biomethane, ammonia, and solid biomass into electricity were determined. Calculations were based on historical data recorded in 2024 in the Polish energy system. It was found that by increasing currently installed PV and wind turbines by a factor of 4.8 and installing 24 GW of ICE engines fueled with biomethane and an additional 10 GW of ORC modules, current electricity demand would be covered 100% by renewable energy sources. The same goal can be achieved without ORC modules by increasing the installed power of PV and wind turbines by a factor of 6.8. The novelty of this research is the application of the fully renewable concept of electricity generation systems to Polish reality using real-life data. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

31 pages, 8880 KB  
Article
A Distributed Electric Vehicles Charging System Powered by Photovoltaic Solar Energy with Enhanced Voltage and Frequency Control in Isolated Microgrids
by Pedro Baltazar, João Dionísio Barros and Luís Gomes
Electronics 2026, 15(2), 418; https://doi.org/10.3390/electronics15020418 - 17 Jan 2026
Viewed by 276
Abstract
This study presents a photovoltaic (PV)-based electric vehicle (EV) charging system designed to optimize energy use and support isolated microgrid operations. The system integrates PV panels, DC/AC, AC/DC, and DC/DC converters, voltage and frequency droop control, and two energy management algorithms: Power Sharing [...] Read more.
This study presents a photovoltaic (PV)-based electric vehicle (EV) charging system designed to optimize energy use and support isolated microgrid operations. The system integrates PV panels, DC/AC, AC/DC, and DC/DC converters, voltage and frequency droop control, and two energy management algorithms: Power Sharing and SEWP (Spread Energy with Priority). The DC/AC converter demonstrated high efficiency, with stable AC output and Total Harmonic Distortion (THD) limited to 1%. The MPPT algorithm ensured optimal energy extraction under both gradual and abrupt irradiance variations. The DC/DC converter operated in constant current mode followed by constant voltage regulation, enabling stable power delivery and preserving battery integrity. The Power Sharing algorithm, which distributes PV energy equally, favored vehicles with a higher initial state of charge (SOC), while leaving low-SOC vehicles at modest levels, reducing satisfaction under limited irradiance. In contrast, SEWP prioritized low-SOC EVs, enabling them to achieve higher SOC values compared to the Power Sharing algorithm, reducing SOC dispersion and enhancing fairness. The integration of voltage and frequency droop controls allowed the station to support microgrid stability by limiting reactive power injection to 30% of apparent power and adjusting charging current in response to frequency deviation. Full article
(This article belongs to the Special Issue Recent Advances in Control and Optimization in Microgrids)
Show Figures

Figure 1

32 pages, 10354 KB  
Article
Advanced Energy Management and Dynamic Stability Assessment of a Utility-Scale Grid-Connected Hybrid PV–PSH–BES System
by Sharaf K. Magableh, Mohammad Adnan Magableh, Oraib M. Dawaghreh and Caisheng Wang
Electronics 2026, 15(2), 384; https://doi.org/10.3390/electronics15020384 - 15 Jan 2026
Viewed by 245
Abstract
Despite the growing adoption of hybrid energy systems integrating solar photovoltaic (PV), pumped storage hydropower (PSH), and battery energy storage (BES), comprehensive studies on their dynamic stability and interaction mechanisms remain limited, particularly under weak grid conditions. Due to the high impedance of [...] Read more.
Despite the growing adoption of hybrid energy systems integrating solar photovoltaic (PV), pumped storage hydropower (PSH), and battery energy storage (BES), comprehensive studies on their dynamic stability and interaction mechanisms remain limited, particularly under weak grid conditions. Due to the high impedance of weak grids, ensuring stability across varied operating scenarios is crucial for advancing grid resilience and energy reliability. This paper addresses these research gaps by examining the interaction dynamics between PV, PSH, and BES on the DC side and the utility grid on the AC side. The study identifies operating-region-dependent instability mechanisms arising from negative incremental resistance behavior and weak grid interactions and proposes a virtual-impedance-based active damping control strategy to suppress poorly damped oscillatory modes. The proposed controller effectively reshapes the converter output impedance, shifts unstable eigenmodes into the left-half plane, and improves phase margins without requiring additional hardware components or introducing steady-state power losses. System stability is analytically assessed using root-locus, Bode, and Nyquist criteria within a developed small-signal state-space model, and further validated through large-signal real-time simulations on an OPAL-RT platform. The main contributions of this study are threefold: (i) a comprehensive stability analysis of a utility-scale grid-connected hybrid PV–PSH–BES system under weak grid conditions, (ii) identification of operating-region-dependent instability mechanisms associated with DC–link interactions, and (iii) development and real-time validation of a practical virtual-impedance-based active damping strategy for enhancing system stability and grid integration reliability. Full article
(This article belongs to the Special Issue Advances in Power Electronics Converters for Modern Power Systems)
Show Figures

Figure 1

39 pages, 7296 KB  
Article
Innovative Smart, Autonomous, and Flexible Solar Photovoltaic Cooking Systems with Energy Storage: Design, Experimental Validation, and Socio-Economic Impact
by Bilal Zoukarh, Mohammed Hmich, Abderrafie El Amrani, Sara Chadli, Rachid Malek, Olivier Deblecker, Khalil Kassmi and Najib Bachiri
Energies 2026, 19(2), 408; https://doi.org/10.3390/en19020408 - 14 Jan 2026
Viewed by 250
Abstract
This work presents the design, modeling, and experimental validation of an innovative, highly autonomous, and economically viable photovoltaic solar cooker, integrating a robust battery storage system. The system combines 1200 Wp photovoltaic panels, a control block with DC/DC power converters and digital control [...] Read more.
This work presents the design, modeling, and experimental validation of an innovative, highly autonomous, and economically viable photovoltaic solar cooker, integrating a robust battery storage system. The system combines 1200 Wp photovoltaic panels, a control block with DC/DC power converters and digital control for intelligent energy management, and a thermally insulated heating plate equipped with two resistors. The objective of the system is to reduce dependence on conventional fuels while overcoming the limitations of existing solar cookers, particularly insufficient cooking temperatures, the need for continuous solar orientation, and significant thermal losses. The optimization of thermal insulation using a ceramic fiber and glass wool configuration significantly reduces heat losses and increases the thermal efficiency to 64%, nearly double that of the non-insulated case (34%). This improvement enables cooking temperatures of 100–122 °C, heating element surface temperatures of 185–464 °C, and fast cooking times ranging from 20 to 58 min, depending on the prepared dish. Thermal modeling takes into account sheet metal, strengths, and food. The experimental results show excellent agreement between simulation and measurements (deviation < 5%), and high converter efficiencies (84–97%). The integration of the batteries guarantees an autonomy of 6 to 12 days and a very low depth of discharge (1–3%), allowing continuous cooking even without direct solar radiation. Crucially, the techno-economic analysis confirmed the system’s strong market competitiveness. Despite an Initial Investment Cost (CAPEX) of USD 1141.2, the high performance and low operational expenditure lead to a highly favorable Return on Investment (ROI) of only 4.31 years. Compared to existing conventional and solar cookers, the developed system offers superior energy efficiency and optimized cooking times, and demonstrates rapid profitability. This makes it a sustainable, reliable, and energy-efficient home solution, representing a major technological leap for domestic cooking in rural areas. Full article
Show Figures

Figure 1

41 pages, 6791 KB  
Article
Integrated Biogas–Hydrogen–PV–Energy Storage–Gas Turbine System: A Pathway to Sustainable and Efficient Power Generation
by Artur Harutyunyan, Krzysztof Badyda and Łukasz Szablowski
Energies 2026, 19(2), 387; https://doi.org/10.3390/en19020387 - 13 Jan 2026
Viewed by 319
Abstract
The increasing penetration of variable renewable energy sources intensifies grid imbalance and challenges the reliability of small-scale power systems. This study addresses these challenges by developing and analyzing a fully integrated hybrid energy system that combines biogas upgrading to biomethane, photovoltaic (PV) generation, [...] Read more.
The increasing penetration of variable renewable energy sources intensifies grid imbalance and challenges the reliability of small-scale power systems. This study addresses these challenges by developing and analyzing a fully integrated hybrid energy system that combines biogas upgrading to biomethane, photovoltaic (PV) generation, hydrogen production via alkaline electrolysis, hydrogen storage, and a gas-steam combined cycle (CCGT). The system is designed to supply uninterrupted electricity to a small municipality of approximately 4500 inhabitants under predominantly self-sufficient operating conditions. The methodology integrates high-resolution, full-year electricity demand and solar resource data with detailed process-based simulations performed using Aspen Plus, Aspen HYSYS, and PVGIS-SARAH3 meteorological inputs. Surplus PV electricity is converted into hydrogen and stored, while upgraded biomethane provides dispatchable backup during periods of low solar availability. The gas-steam combined cycle enables flexible and efficient electricity generation, with hydrogen blending supporting dynamic turbine operation and further reducing fossil fuel dependency. The results indicate that a 10 MW PV installation coupled with a 2.9 MW CCGT unit and a hydrogen storage capacity of 550 kg is sufficient to ensure year-round power balance. During winter months, system operation is sustained entirely by biomethane, while in high-solar periods hydrogen production and storage enhance operational flexibility. Compared to a conventional grid-based electricity supply, the proposed system enables near-complete elimination of operational CO2 emissions, achieving an annual reduction of approximately 8800 tCO2, corresponding to a reduction of about 93%. The key novelty of this work lies in the simultaneous and process-level integration of biogas, hydrogen, photovoltaic generation, energy storage, and a gas-steam combined cycle within a single operational framework, an approach that has not been comprehensively addressed in the recent literature. The findings demonstrate that such integrated hybrid systems can provide dispatchable, low-carbon electricity for small communities, offering a scalable pathway toward resilient and decentralized energy systems. Full article
(This article belongs to the Special Issue Transitioning to Green Energy: The Role of Hydrogen)
Show Figures

Figure 1

17 pages, 3575 KB  
Article
Tailoring Properties Through Functionalized Alicyclic Diamine Towards Solution-Processable High-Performance Polyimide Films
by Lei Xiong, Feiyan Ding, Liangrong Li, Xinhai Wei, Jiayao Xu, Guanfa Xiao, Zhenyu Yang and Feng Liu
Polymers 2026, 18(2), 207; https://doi.org/10.3390/polym18020207 - 12 Jan 2026
Viewed by 289
Abstract
A novel fluorinated diamine monomer, 4,4′-((bicyclo[2.2.1]hept- 5-ene-2,3-diylbis (methylene)) bis(oxy))bis(3- (trifluoromethyl) aniline) (NFDA), featuring a tailored alicyclic norbornane core, flexible ether linkages, and pendant trifluoromethyl groups, was successfully synthesized. This monomer was polymerized with six commercial dianhydrides to produce a series of poly(amic acid) [...] Read more.
A novel fluorinated diamine monomer, 4,4′-((bicyclo[2.2.1]hept- 5-ene-2,3-diylbis (methylene)) bis(oxy))bis(3- (trifluoromethyl) aniline) (NFDA), featuring a tailored alicyclic norbornane core, flexible ether linkages, and pendant trifluoromethyl groups, was successfully synthesized. This monomer was polymerized with six commercial dianhydrides to produce a series of poly(amic acid) precursors, which were subsequently converted into high-performance polyimide (PI) films via a thermal imidization process. The strategic integration of the alicyclic, ether, and fluorinated motifs within the polymer backbone resulted in materials with an exceptional combination of properties. These PI films display outstanding solubility in a wide range of organic solvents, including low-boiling options like chloroform and tetrahydrofuran, highlighting their superior solution processability. The films are amorphous and exhibit remarkable hydrophobicity, evidenced by high water contact angles (up to 109.4°) and minimal water absorption (as low as 0.26%). Furthermore, they possess excellent optical transparency, with a maximum transmittance of 86.7% in the visible region. The materials also maintain robust thermal stability, with 5% mass loss temperatures exceeding 416 °C, and offer a desirable balance of mechanical strength and flexibility. This unique set of attributes, stemming from a rational molecular design, positions these polyimides as highly promising candidates for next-generation flexible electronics and advanced photovoltaics. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

22 pages, 2247 KB  
Article
A Multi-Time-Scale Coordinated Scheduling Model for Multi-Energy Complementary Power Generation System Integrated with High Proportion of New Energy Including Electricity-to-Hydrogen System
by Fuxia Wu, Yu Cui, Hongjie He, Qiantao Huo and Jinming Yao
Electronics 2026, 15(2), 294; https://doi.org/10.3390/electronics15020294 - 9 Jan 2026
Viewed by 192
Abstract
It has become an urgent problem to deal with the uncertain influence caused by the high proportion of new energy connected to the grid and improve the consumption level of new energy in the background of the new power system. Based on the [...] Read more.
It has become an urgent problem to deal with the uncertain influence caused by the high proportion of new energy connected to the grid and improve the consumption level of new energy in the background of the new power system. Based on the constantly updated predicted information of wind power, photovoltaic power, and load power, a multi-time-scale coordinated scheduling model for a multi-energy complementary power generation system integrated with a high proportion of new energy, including an electricity-to-hydrogen system, is proposed. The complex nonlinear factors in the operation cost of thermal power and pumped storage power generation were converted into a mixed integer linear model for solving the problem. The results show that the participation of the pumped storage units in the power grid dispatching can effectively alleviate the peak regulation and reserve pressure of the thermal power units. The electricity-to-hydrogen system has the advantages of fast power response and a wide adjustment range. Pumped storage plant, together with the electricity-to-hydrogen system, enhances the flexible adjustment ability of the power grid on the power side and the load side, respectively. The coordinated dispatch of the two can take into account the safety and economy of the power grid operation, maintain the power balance of the high-proportion new energy power generation system, and effectively reduce green power abandonment and improve the consumption level of clean energy. Full article
(This article belongs to the Special Issue Planning, Scheduling and Control of Grids with Renewables)
Show Figures

Figure 1

23 pages, 5069 KB  
Article
Processor-in-the-Loop Validation of an Advanced Hybrid MPPT Controller for Sustainable Grid-Tied Photovoltaic Systems Under Real Climatic Conditions
by Oumaima Echab, Noureddine Ech-Cherki, Omaima El Alani, Tourıa Gueddouch, Abdellatif Obbadi, Youssef Errami and Smail Sahnoun
Sustainability 2026, 18(2), 655; https://doi.org/10.3390/su18020655 - 8 Jan 2026
Viewed by 220
Abstract
The global shift toward sustainable energy systems has led to an increased adoption of PV systems, driven by their enhanced performance and environmental benefits, including reduced carbon emissions. Improving the efficiency of Grid-Tied Photovoltaic Systems (GTPVS) is essential for guaranteeing reliable and sustainable [...] Read more.
The global shift toward sustainable energy systems has led to an increased adoption of PV systems, driven by their enhanced performance and environmental benefits, including reduced carbon emissions. Improving the efficiency of Grid-Tied Photovoltaic Systems (GTPVS) is essential for guaranteeing reliable and sustainable renewable power integration. This research paper presents advanced hybrid Maximum Power Point Tracking (MPPT) designed for GTPVS to maximize PV energy harvesting and support grid sustainability. The proposed technique combines Advanced Variable Step Size Incremental Conductance (AVIC) for reference voltage generation and an Integral Backstepping Control (IBC) to regulate the control of the step-up converter. This hybrid technique enables rapid convergence speed, reduces power losses, and enhances stability under fast-changing environmental conditions, Partial Shading Conditions (PSCs), and grid disturbances conditions. This MPPT is evaluated via the MATLAB/Simulink environment, version 2020b, and validated in real time using a Processor-in-the-Loop (PIL) setup on the eZdsp TMS320F28335 platform. Comparative analysis with benchmark methods confirms its superiority, with an average tracking performance of 99.57%, a response time of 0.02 s, and a Total Harmonic Distortion (THD) of 0.69%, accompanied by negligible steady-state oscillations. These findings indicate the validity and sustainability of the AVIC-IBC MPPT for real-time GTPVS operating under realistic climatic conditions. Full article
(This article belongs to the Special Issue Sustainable Electrical Engineering and PV Microgrids)
Show Figures

Figure 1

Back to TopTop