Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,060)

Search Parameters:
Keywords = photosynthesis tolerance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7038 KiB  
Article
Polyploidy Induction of Wild Diploid Blueberry V. fuscatum
by Emily Walter, Paul M. Lyrene and Ye Chu
Horticulturae 2025, 11(8), 921; https://doi.org/10.3390/horticulturae11080921 (registering DOI) - 5 Aug 2025
Abstract
Diploid Vaccinium fuscatum is a wild blueberry species with a low chilling requirement, an evergreen growth habit, and soil adaptability to southeast US growing regions. Regardless of its potential to improve the abiotic and biotic resilience of cultivated blueberries, this species has rarely [...] Read more.
Diploid Vaccinium fuscatum is a wild blueberry species with a low chilling requirement, an evergreen growth habit, and soil adaptability to southeast US growing regions. Regardless of its potential to improve the abiotic and biotic resilience of cultivated blueberries, this species has rarely been used for blueberry breeding. One hurdle is the ploidy barrier between diploid V. fuscatum and tetraploid cultivated highbush blueberries. To overcome the ploidy barrier, vegetative shoots micro-propagated from one genotype of V. fuscatum, selected because it grew vigorously in vitro and two southern highbush cultivars, ‘Emerald’ and ‘Rebel,’ were treated with colchicine. While shoot regeneration was severely repressed in ‘Emerald’ and ‘Rebel,’ shoot production from the V. fuscatum clone was not compromised at either 500 µM or 5000 µM colchicine concentrations. Due to the high number of shoots produced in vitro via the V. fuscatum clone shoots of this clone that had an enlarged stem diameter in vitro were subjected to flow cytometer analysis to screen for induced polyploidy. Sixteen synthetic tetraploid V. fuscatum, one synthetic octoploid ‘Emerald,’ and three synthetic octoploid ‘Rebel’ were identified. Growth rates of the polyploid-induced mutants were reduced compared to their respective wildtype controls. The leaf width and length of synthetic tetraploid V. fuscatum and synthetic octoploid ‘Emerald’ was increased compared to the wildtypes, whereas the leaf width and length of synthetic octoploid ‘Rebel’ were reduced compared to the wildtype controls. Significant increases in stem thickness and stomata guard cell length were found in the polyploidy-induced mutant lines compared to the wildtypes. In the meantime, stomata density was reduced in the mutant lines. These morphological changes may improve drought tolerance and photosynthesis in these mutant lines. Synthetic tetraploid V. fuscatum can be used for interspecific hybridization with highbush blueberries to expand the genetic base of cultivated blueberries. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

34 pages, 9516 KiB  
Article
Proteus sp. Strain JHY1 Synergizes with Exogenous Dopamine to Enhance Rice Growth Performance Under Salt Stress
by Jing Ji, Baoying Ma, Runzhong Wang and Tiange Li
Microorganisms 2025, 13(8), 1820; https://doi.org/10.3390/microorganisms13081820 - 4 Aug 2025
Abstract
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous [...] Read more.
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous dopamine (DA) significantly enhanced the production of indole-3-acetic acid and ammonia by strain JHY1. Pot experiments revealed that both DA and JHY1 treatments effectively alleviated the adverse effects of 225 mM NaCl on rice, promoting biomass, plant height, and root length. More importantly, the combined application of DA-JHY1 showed a significant synergistic effect in mitigating salt stress. The treatment increased the chlorophyll content, net photosynthetic rate, osmotic regulators (proline, soluble sugars, and protein), and reduced lipid peroxidation. The treatment also increased soil nutrients (ammoniacal nitrogen and available phosphorus), enhanced soil enzyme activities (sucrase and alkaline phosphatase), stabilized the ion balance (K+/Na+), and modulated the soil rhizosphere microbial community by increasing beneficial bacteria, such as Actinobacteria and Firmicutes. This study provides the first evidence that the synergistic effect of DA and PGPR contributes to enhanced salt tolerance in rice, offering a novel strategy for alleviating the adverse effects of salt stress on plant growth. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 4055 KiB  
Article
Biphasic Salt Effects on Lycium ruthenicum Germination and Growth Linked to Carbon Fixation and Photosynthesis Gene Expression
by Xinmeng Qiao, Ruyuan Wang, Lanying Liu, Boya Cui, Xinrui Zhao, Min Yin, Pirui Li, Xu Feng and Yu Shan
Int. J. Mol. Sci. 2025, 26(15), 7537; https://doi.org/10.3390/ijms26157537 - 4 Aug 2025
Abstract
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been [...] Read more.
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been proposed as a viable strategy. In the study, we investigated the physiological and molecular responses of Lycium ruthenicum Murr. to varying NaCl concentrations. Results revealed a concentration-dependent dual effect: low NaCl levels significantly promoted seed germination, while high concentrations exerted strong inhibitory effects. To elucidate the mechanisms underlying these divergent responses, a combined analysis of metabolomics and transcriptomics was applied to identify key metabolic pathways and genes. Notably, salt stress enhanced photosynthetic efficiency through coordinated modulation of ribulose 5-phosphate and erythrose-4-phosphate levels, coupled with the upregulation of critical genes encoding RPIA (Ribose 5-phosphate isomerase A) and RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase). Under low salt stress, L. ruthenicum maintained intact cellular membrane structures and minimized oxidative damage, thereby supporting germination and early growth. In contrast, high salinity severely disrupted PS I (Photosynthesis system I) functionality, blocking energy flow into this pathway while simultaneously inducing membrane lipid peroxidation and triggering pronounced cellular degradation. This ultimately suppressed seed germination rates and impaired root elongation. These findings suggested a mechanistic framework for understanding L. ruthenicum adaptation under salt stress and pointed out a new way for breeding salt-tolerant crops and understanding the mechanism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 1313 KiB  
Article
Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought
by Lei Liu and Hong-Na Mu
Horticulturae 2025, 11(8), 910; https://doi.org/10.3390/horticulturae11080910 (registering DOI) - 4 Aug 2025
Abstract
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis [...] Read more.
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis mosseae or not, and subjected to well-watered (70–75% of field maximum water-holding capacity) or drought stress (50–55% field maximum water-holding capacity) conditions for 10 weeks. Plant growth performance, photosynthetic physiology, leaf flavonoid content and their antioxidant capacity, reactive oxygen species levels, and activities and gene expression of key flavonoid biosynthesis enzymes were analyzed. Although drought stress significantly reduced root colonization and soil hyphal length, inoculation with F. mosseae consistently enhanced the biomass of leaves, stems, and roots, as well as root surface area and diameter, irrespective of soil moisture. Despite drought suppressing photosynthesis in mycorrhizal plants, F. mosseae substantially improved photosynthetic capacity (measured via gas exchange) and optimized photochemical efficiency (assessed by chlorophyll fluorescence) while reducing non-photochemical quenching (heat dissipation). Inoculation with F. mosseae elevated the total flavonoid content in leaves by 46.67% (well-watered) and 14.04% (drought), accompanied by significantly enhanced activities of key synthases such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), 4-coumarate:coA ligase (4CL), and cinnamate 4-hydroxylase (C4H), with increases ranging from 16.90 to 117.42% under drought. Quantitative real-time PCR revealed that both mycorrhization and drought upregulated the expression of PtPAL1, PtCHI, and Pt4CL genes, with soil moisture critically modulating mycorrhizal regulatory effects. In vitro assays showed that flavonoid extracts scavenged radicals at rates of 30.07–41.60% in hydroxyl radical (•OH), 71.89–78.06% in superoxide radical anion (O2•−), and 49.97–74.75% in 2,2-diphenyl-1-picrylhydrazyl (DPPH). Mycorrhizal symbiosis enhanced the antioxidant capacity of flavonoids, resulting in higher scavenging rates of •OH (19.07%), O2•− (5.00%), and DPPH (31.81%) under drought. Inoculated plants displayed reduced hydrogen peroxide (19.77%), O2•− (23.90%), and malondialdehyde (17.36%) levels. This study concludes that mycorrhizae promote the level of total flavonoids in trifoliate orange by accelerating the flavonoid biosynthesis pathway, hence reducing oxidative damage under drought. Full article
Show Figures

Figure 1

18 pages, 1256 KiB  
Article
Algae Extracts and Zeolite Modulate Plant Growth and Enhance the Yield of Tomato Solanum lycopersicum L. Under Suboptimum and Deficient Soil Water Content
by José Antonio Miranda-Rojas, Aurelio Pedroza-Sandoval, Isaac Gramillo-Ávila, Ricardo Trejo-Calzada, Ignacio Sánchez-Cohen and Luis Gerardo Yáñez-Chávez
Horticulturae 2025, 11(8), 902; https://doi.org/10.3390/horticulturae11080902 (registering DOI) - 3 Aug 2025
Viewed by 310
Abstract
Drought and water scarcity are some of the most important challenges facing agricultural producers in dry environments. This study aimed to evaluate the effect of algae extract and zeolite in terms of their biostimulant action on water stress tolerance to obtain better growth [...] Read more.
Drought and water scarcity are some of the most important challenges facing agricultural producers in dry environments. This study aimed to evaluate the effect of algae extract and zeolite in terms of their biostimulant action on water stress tolerance to obtain better growth and production of tomato Lycopersicum esculentum L. grown in an open field under suboptimum and deficient soil moisture content. Large plots had a suboptimum soil moisture content (SSMC) of 25% ± 2 [28% below field capacity (FC)] and deficient soil moisture content (DSMC) of 20% ± 2 [11% above permanent wilting point (PWP)]; both soil moisture ranges were based on field capacity FC (32%) and PWP (18%). Small plots had four treatments: algae extract (AE) 50 L ha−1 and zeolite (Z) 20 t ha−1, a combination of both products (AE + Z) 25 L ha−1 and 10 t h−1, and a control (without application of either product). By applying AE, Z, and AE + Z, plant height, plant vigor, and chlorophyll index were significantly higher compared to the control by 20.3%, 10.5%, and 22.3%, respectively. The effect on relative water content was moderate—only 2.6% higher than the control applying AE, while the best treatment for the photosynthesis variable was applying Z, with a value of 20.9 μmol CO2 m−2 s−1, which was 18% higher than the control. Consequently, tomato yield was also higher compared to the control by 333% and 425% when applying AE and Z, respectively, with suboptimum soil moisture content. The application of the biostimulants did not show any mitigating effect on water stress under soil water deficit conditions close to permanent wilting. These findings are relevant to water-scarce agricultural areas, where more efficient irrigation water use is imperative. Plant biostimulation through organic and inorganic extracts plays an important role in mitigating environmental stresses such as those caused by water shortages, leading to improved production in vulnerable agricultural areas with extreme climates. Full article
(This article belongs to the Special Issue Optimized Irrigation and Water Management in Horticultural Production)
Show Figures

Figure 1

14 pages, 6927 KiB  
Article
Physiological and Transcriptomic Mechanisms Underlying Vitamin C-Mediated Cold Stress Tolerance in Grafted Cucumber
by Panpan Yu, Junkai Wang, Xuyang Zhang, Zhenglong Weng, Kaisen Huo, Qiuxia Yi, Chenxi Wu, Sunjeet Kumar, Hao Gao, Lin Fu, Yanli Chen and Guopeng Zhu
Plants 2025, 14(15), 2398; https://doi.org/10.3390/plants14152398 - 2 Aug 2025
Viewed by 266
Abstract
Cucumbers (Cucumis sativus L.) are highly sensitive to cold, but grafting onto cold-tolerant rootstocks can enhance their low-temperature resilience. This study investigates the physiological and molecular mechanisms by which exogenous vitamin C (Vc) mitigates cold stress in grafted cucumber seedlings. Using cucumber [...] Read more.
Cucumbers (Cucumis sativus L.) are highly sensitive to cold, but grafting onto cold-tolerant rootstocks can enhance their low-temperature resilience. This study investigates the physiological and molecular mechanisms by which exogenous vitamin C (Vc) mitigates cold stress in grafted cucumber seedlings. Using cucumber ‘Chiyu 505’ as the scion and pumpkin ‘Chuangfan No.1’ as the rootstock, seedlings were grafted using the whip grafting method. In the third true leaf expansion stage, seedlings were foliar sprayed with Vc at concentrations of 50, 100, 150, and 200 mg L−1. Three days after initial spraying, seedlings were subjected to cold stress (8 °C) for 3 days, with continued spraying. After that, morphological and physiological parameters were assessed. Results showed that 150 mg L−1 Vc treatment was most impactive, significantly reducing the cold damage index while increasing the root-to-shoot ratio, root vitality, chlorophyll content, and activities of antioxidant enzymes (SOD, POD, CAT). Moreover, this treatment enhanced levels of soluble sugars, soluble proteins, and proline compared to control. However, 200 mg L−1 treatment elevated malondialdehyde (MDA) content, indicating potential oxidative stress. For transcriptomic analysis, leaves from the 150 mg L−1 Vc and CK treatments were sampled at 0, 1, 2, and 3 days of cold stress. Differential gene expression revealed that genes associated with photosynthesis (LHCA1), stress signal transduction (MYC2-1, MYC2-2, WRKY22, WRKY2), and antioxidant defense (SOD-1, SOD-2) were initially up-regulated and subsequently down-regulated, as validated by qRT-PCR. Overall, we found that the application of 150 mg L−1 Vc enhanced cold tolerance in grafted cucumber seedlings by modulating gene expression networks related to photosynthesis, stress response, and the antioxidant defense system. This study provides a way for developing Vc biostimulants to enhance cold tolerance in grafted cucumbers, improving sustainable cultivation in low-temperature regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 4556 KiB  
Article
Coordinated Regulation of Photosynthesis, Stomatal Traits, and Hormonal Dynamics in Camellia oleifera During Drought and Rehydration
by Linqing Cao, Chao Yan, Tieding He, Qiuping Zhong, Yaqi Yuan and Lixian Cao
Biology 2025, 14(8), 965; https://doi.org/10.3390/biology14080965 (registering DOI) - 1 Aug 2025
Viewed by 188
Abstract
Camellia oleifera, a woody oilseed species endemic to China, often experiences growth constraints due to seasonal drought. This study investigates the coordinated regulation of photosynthetic traits, stomatal behavior, and hormone responses during drought–rehydration cycles in two cultivars with contrasting drought resistance: ‘CL53’ [...] Read more.
Camellia oleifera, a woody oilseed species endemic to China, often experiences growth constraints due to seasonal drought. This study investigates the coordinated regulation of photosynthetic traits, stomatal behavior, and hormone responses during drought–rehydration cycles in two cultivars with contrasting drought resistance: ‘CL53’ (tolerant) and ‘CL40’ (sensitive). Photosynthetic inhibition resulted from both stomatal and non-stomatal limitations, with cultivar-specific differences. After 28 days of drought, the net photosynthetic rate (Pn) declined by 26.6% in CL53 and 32.6% in CL40. A stable intercellular CO2 concentration (Ci) in CL53 indicated superior mesophyll integrity and antioxidant capacity. CL53 showed rapid Pn recovery and photosynthetic compensation post-rehydration, in contrast to CL40. Drought triggered extensive stomatal closure; >98% reopened upon rehydration, though the total stomatal pore area remained reduced. Abscisic acid (ABA) accumulation was greater in CL40, contributing to stomatal closure and Pn suppression. CL53 exhibited faster ABA degradation and gibberellin (GA3) recovery, promoting photosynthetic restoration. ABA negatively correlated with Pn, transpiration rate (Tr), stomatal conductance (Gs), and Ci, but positively with stomatal limitation (Ls). Water use efficiency (WUE) displayed a parabolic response to ABA, differing by cultivar. This integrative analysis highlights a coordinated photosynthesis–stomata–hormone network underlying drought adaptation and informs selection strategies for drought-resilient cultivars and precision irrigation. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

13 pages, 25093 KiB  
Article
Sunflower HaGLK Enhances Photosynthesis, Grain Yields, and Stress Tolerance of Rice
by Jie Luo, Mengyi Zheng, Jiacheng He, Yangyang Lou, Qianwen Ge, Bojun Ma and Xifeng Chen
Biology 2025, 14(8), 946; https://doi.org/10.3390/biology14080946 - 27 Jul 2025
Viewed by 329
Abstract
GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower (Helianthus annuus) is a highly photosynthetic plant; here, a GLK-homologues gene HaGLK was identified from the sunflower genome by bioinformatics. [...] Read more.
GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower (Helianthus annuus) is a highly photosynthetic plant; here, a GLK-homologues gene HaGLK was identified from the sunflower genome by bioinformatics. To analyze the bio-function of HaGLK, transgenic rice plants overexpressing HaGLK (HaGLK-OE) were constructed and characterized via phenotype. Compared to the wild-type control rice variety Zhonghua 11 (ZH11), the HaGLK-OE lines exhibited increased photosynthetic pigment contents, higher net photosynthetic rates, and enlarged chloroplast area; meanwhile, genes involved in both photosynthesis and chlorophyll biosynthesis were also significantly up-regulated. Significantly, the HaGLK-OE plants showed a 12–13% increase in yield per plant. Additionally, the HaGLK-OE plants were demonstrated to have improved salt and drought tolerance compared to the control ZH11. Our results indicated that the HaGLK gene could play multiple roles in photosynthesis and stress response in rice, underscoring its potential value for improving crop productivity and environmental adaptability in breeding. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

21 pages, 3038 KiB  
Article
Glycerol Biosynthesis Pathways from Starch Endow Dunaliella salina with the Adaptability to Osmotic and Oxidative Effects Caused by Salinity
by Huiying Yao, Yi Xu, Huahao Yang, Yihan Guo, Pengrui Jiao, Dongyou Xiang, Hui Xu and Yi Cao
Int. J. Mol. Sci. 2025, 26(14), 7019; https://doi.org/10.3390/ijms26147019 - 21 Jul 2025
Viewed by 322
Abstract
Dunaliella salina, a unicellular and eukaryotic alga, has been found to be one of the most salt-tolerant eukaryotes with a wide range of practical applications. To elucidate the underlying molecular mechanisms of D. salina in response to salinity stress, we performed transcriptome [...] Read more.
Dunaliella salina, a unicellular and eukaryotic alga, has been found to be one of the most salt-tolerant eukaryotes with a wide range of practical applications. To elucidate the underlying molecular mechanisms of D. salina in response to salinity stress, we performed transcriptome sequencing on samples under different stress conditions. A total of 82,333 unigenes were generated, 4720, 1111 and 2611 differentially expressed genes (DEGs) were identified under high salt stress, oxidative stress and hypertonic stress, respectively. Our analysis revealed that D. salina responds to salinity stress through a complex network of molecular mechanisms. Under high salt stress, starch degradation is regulated by AMY (α-amylase) and PYG (glycogen phosphorylase) with alternative expression patterns. This process is hypothesized to be initially constrained by low ATP levels due to impaired photosynthesis. The clustering analysis of DEGs indicated that starch and sucrose metabolism, as well as glycerol metabolism, are specifically reprogrammed under high salt stress. Glycerol metabolism, particularly involving GPDHs, plays a crucial role in maintaining osmotic balance under salinity stress. Key glycerol metabolism genes were up-regulated under salinity conditions, indicating the importance of this pathway in osmotic regulation. The G3P shuttle, involving mitochondrial GPDHs (c25199_g1 and c23777_g1), contributes to redox imbalance management under high salt, oxidative and hypertonic stresses. Notably, c23777_g1 is involved in the G3P shuttle under high salt, oxidative and hypertonic stresses, while c25199_g1 is specifically induced by hypertonic stress. The R2R3-MYB gene (c23845_g1) may respond to different effects of salinity stress by regulating the transcription of ROS-related genes. Our study provides a detailed understanding of the molecular responses of D. salina to salinity stress. We reveal the critical roles of starch and sucrose metabolism, glycerol metabolism and transcription factors in the D. salina adaptation to salinity. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress: 3rd Edition)
Show Figures

Figure 1

17 pages, 2071 KiB  
Article
Melatonin Enhances Drought Tolerance by Regulating the Genes Underlying Photosynthesis and Antioxidant Defense in Rubber Tree (Hevea brasiliensis) Seedlings
by Dejun Li, Zhihui Xia, Xuncheng Wang, Hong Yang and Yao Li
Plants 2025, 14(14), 2243; https://doi.org/10.3390/plants14142243 - 21 Jul 2025
Viewed by 381
Abstract
Melatonin (MT) can enhance plant stress tolerance by activating the internal defense system, but its application in rubber trees has been barely reported up to now. In this study, we found that the relative electrical conductivity (REC), H2O2, and [...] Read more.
Melatonin (MT) can enhance plant stress tolerance by activating the internal defense system, but its application in rubber trees has been barely reported up to now. In this study, we found that the relative electrical conductivity (REC), H2O2, and malondialdehyde (MDA) contents were significantly higher in the leaves of rubber tree seedlings under drought stress compared to the control (water treatment), whereas chlorophyll contents were obviously lower in the leaves under drought stress compared to the control. MT partly relieves the aforementioned drought-induced adverse effects by dramatically reducing chlorophyll degradation, H2O2 accumulation, MDA content, and REC. Comparative transcriptomes among the PEG (P), MT (M), and PEG + MT (PM) treatments against the control showed that 213, 896, and 944 genes were differently expressed in rubber tree seedlings treated with M, P, and PM in contrast to the control. Among the 64 differently expressed genes (DEGs) being common among the three comparisons, the expression profiles of 25 were opposite in MH compared with PH. Intriguingly, all the KEGG pathways of the DEGs mentioned above belonged to metabolism including energy metabolism, carbohydrate metabolism, amino acid metabolism, and the metabolism of cofactors and vitamins. Exogenous application of MT mainly regulated the genes associated with photosynthesis and the anti-oxidative defense system, thereby enhancing the antioxidant protection of rubber tree seedlings under drought stress. These results suggest that exogenous melatonin application can effectively enhance drought tolerance by heightening ROS scavenging to decrease H2O2 accumulation in rubber tree seedlings. Our results elucidate the molecular mechanisms of MT’s roles in drought stress, which help to employ exogenous MT to boost drought tolerance in the rubber tree. Full article
(This article belongs to the Special Issue Metabolic Analysis of Plant Development and Defense Responses)
Show Figures

Figure 1

28 pages, 2503 KiB  
Article
The Identification of Transcriptomic and Phytohormonal Biomarkers for Monitoring Drought and Evaluating the Potential of Acibenzolar-S-Methyl Root Application to Prime Two Apple Rootstock Genotypes for Drought Resistance
by Kirstin V. Wurms, Tony Reglinski, Erik H. A. Rikkerink, Nick Gould, Catrin S. Günther, Janine M. Cooney, Poppy Buissink, Annette Ah Chee, Christina B. Fehlmann, Dwayne J. A. Jensen and Duncan Hedderley
Int. J. Mol. Sci. 2025, 26(14), 6986; https://doi.org/10.3390/ijms26146986 - 21 Jul 2025
Viewed by 322
Abstract
Droughts are predicted to intensify with climate change, posing a serious threat to global crop production. Increasing drought tolerance in plants requires an understanding of the underlying mechanisms. This study measured the physiological, phytohormonal and transcriptomic responses to drought in two apple rootstocks [...] Read more.
Droughts are predicted to intensify with climate change, posing a serious threat to global crop production. Increasing drought tolerance in plants requires an understanding of the underlying mechanisms. This study measured the physiological, phytohormonal and transcriptomic responses to drought in two apple rootstocks to identify drought ‘biomarkers’ and investigated whether the application of acibenzolar-S-methyl (ASM) to the roots could enhance drought tolerance. Two potted-plant trials were conducted on dwarfing (M9) and semi-dwarfing (CG202) apple rootstocks. In both trials, the response patterns in the roots and leaves were compared between irrigated and non-irrigated plants over a 14-day period. In trial 2, ASM was applied 14 days before and immediately before withdrawing irrigation. Drought induced significant decreases in transpiration, photosynthesis and stomatal conductance in both trials. This was accompanied by the accumulation of abscisic acid (ABA) metabolites and the upregulation of ABA pathway transcripts (CYP707A1/A2 and NCED3), a decrease in 12-oxophytodienoic acid (cis-OPDA) and the downregulation of ABA receptor genes (PYL4). The responses to drought were greater in the roots than the leaves, broadly similar across both rootstocks, but differed in strength and timing between the rootstocks. The application of ASM to the roots did not significantly affect the responsiveness to drought in either rootstock. The identified phytohormonal and transcriptomic biomarkers require further validation across a broader range of genotypes. Full article
(This article belongs to the Special Issue Phytohormones: From Physiological Response to Application)
Show Figures

Figure 1

23 pages, 4385 KiB  
Article
Melatonin Enhances Tomato Salt Tolerance by Improving Water Use Efficiency, Photosynthesis, and Redox Homeostasis
by Chen Ru, Yuxuan Liu, Xingjiao Yu, Chuanliu Xie and Xiaotao Hu
Agronomy 2025, 15(7), 1746; https://doi.org/10.3390/agronomy15071746 - 20 Jul 2025
Viewed by 281
Abstract
Salinity stress is a primary abiotic constraint limiting global crop productivity, with progressive soil salinization inducing growth inhibition and physiological dysfunction in plants. Although melatonin (MT) has been extensively documented to enhance stress adaptation, the underlying mechanisms through which it mediates salt tolerance [...] Read more.
Salinity stress is a primary abiotic constraint limiting global crop productivity, with progressive soil salinization inducing growth inhibition and physiological dysfunction in plants. Although melatonin (MT) has been extensively documented to enhance stress adaptation, the underlying mechanisms through which it mediates salt tolerance by integrating physiological processes remain unclear. This study investigated the effects of varying MT concentrations on photosynthetic performance, plant water relations, water-use efficiency, and stress-responsive physiological parameters in tomatoes, aiming to identify the key physiological pathways for MT-mediated salt stress mitigation. The results showed that salt stress significantly reduced the leaf relative water content and root hydraulic conductivity, suppressed the photosynthetic rate, and ultimately caused significant reductions in the aboveground and root biomass. MT spraying effectively improved leaf water status and root water uptake capacity, enhancing the photosynthetic rate and water-use efficiency, thereby providing material and energy support for plant growth. Furthermore, MT spraying increased the total antioxidant capacity in leaves and promoted the synthesis of phenolic and flavonoid compounds, thereby reducing oxidative damage. Simultaneously, it stimulated the accumulation of osmolytes to enhance cellular osmotic adjustment capacity and optimized ion uptake to maintain cellular ion homeostasis. Among the tested concentrations, 100 μM MT showed the most significant alleviative effects. This concentration comprehensively enhanced the salt tolerance and growth performance of tomato plants by synergistically optimizing water use, photosynthetic function, antioxidant defense, and ion balance. In conclusion, these findings provide experimental evidence for elucidating the physiological mechanisms underlying MT-mediated salt tolerance in tomatoes and offer theoretical references for the rational application of MT in crop production under saline conditions. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

26 pages, 3710 KiB  
Article
Global Transcriptome and Weighted Gene Co-Expression Network Analyses of Cold Stress Responses in Chinese Cabbage
by Jizong Zhang, Songtao Liu, Huibin Li, Mengmeng Sun, Baoyue Yan, Peng Zhang and Lifeng Zhang
Genes 2025, 16(7), 845; https://doi.org/10.3390/genes16070845 - 20 Jul 2025
Viewed by 418
Abstract
Background/Objectives: Chinese cabbage (Brassica rapa ssp. Pekinensis, AA) growth and development is highly sensitive to cold temperatures. Prolonged low-temperature exposure during early growth stages can induce premature bolting, which reduces market quality and yield. Methods: Here, using comparative leaf RNA-seq transcriptome [...] Read more.
Background/Objectives: Chinese cabbage (Brassica rapa ssp. Pekinensis, AA) growth and development is highly sensitive to cold temperatures. Prolonged low-temperature exposure during early growth stages can induce premature bolting, which reduces market quality and yield. Methods: Here, using comparative leaf RNA-seq transcriptome analysis of plants grown at 6, 9, 12, and 15 °C, we explored key genes and metabolic pathways regulating Chinese cabbage cold response. Results: RNA-seq transcriptome analysis identified a total of 1832 differentially expressed genes (DEGs) in the three comparison groups, with 5452, 1861, and 752 DEGs specifically expressed in the A6_vs_A15, A9_vs_A15, and A12_vs_A15 groups, respectively. KEGG enrichment analysis of DEGs showed that sulfur metabolism, secondary metabolites biosynthesis and photosynthesis pathways were mostly affected by cold stress. K-means clustering revealed distinct expression profiles among the DEGs enriched in cold stress response-associated clusters. Subsequently, DEGs were divided into 18 modules by WGCNA, whereupon co-expression genes that clustered into similar modules exhibited diverse expression and were annotated to various GO terms at different temperatures. Module-trait association analysis revealed M1, M2, M3, and M6 modules as key clusters potentially linked to vernalization-related processes. These modules harbored candidate hub genes encoding transcription factors (including MYB, bZIP, and WRKY), protein kinases, and cold-stress-responsive genes. Additionally, phenotypic analysis showed that 12 °C to 15 °C supported optimal growth, whereas <9 °C temperature inhibited growth. Physiological measurements showed increased antioxidant enzyme activity and proline accumulation at 6 °C. Conclusions: Overall, our study provides a set of candidate cold-stress-responsive genes and co-expression modules that may support cold stress tolerance breeding in Chinese cabbage. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1482 KiB  
Article
The Physiological Mechanism of Arbuscular Mycorrhizal in Regulating the Growth of Trifoliate Orange (Poncirus trifoliata L. Raf.) Under Low-Temperature Stress
by Changlin Li, Xian Pei, Qiaofeng Yang, Fuyuan Su, Chuanwu Yao, Hua Zhang, Zaihu Pang, Zhonghua Yao, Dejian Zhang and Yan Wang
Horticulturae 2025, 11(7), 850; https://doi.org/10.3390/horticulturae11070850 - 18 Jul 2025
Viewed by 306
Abstract
In recent years, low temperature has seriously threatened the citrus industry. Arbuscular mycorrhizal fungi (AMF) can enhance the absorption of nutrients and water and tolerance to abiotic stresses. In this study, pot experiments were conducted to study the effects of low-temperature stress on [...] Read more.
In recent years, low temperature has seriously threatened the citrus industry. Arbuscular mycorrhizal fungi (AMF) can enhance the absorption of nutrients and water and tolerance to abiotic stresses. In this study, pot experiments were conducted to study the effects of low-temperature stress on citrus (trifoliate orange, Poncirus trifoliata L. Raf.) with AMF (Diversispora epigaea D.e). The results showed that AMF inoculation significantly increased plant growth, chlorophyll fluorescence, and photosynthetic parameters. Compared with 25 °C, −5 °C significantly increased the relative conductance rate and the contents of malondialdehyde, hydrogen peroxide, soluble sugar soluble protein, and proline, and also enhanced the activities of catalase and superoxide dismutase, but dramatically reduced photosynthetic parameters. Compared with the non-AMF group, AMF significantly increased the maximum light quantum efficiency and steady-state light quantum efficiency at 25 °C (by 16.67% and 61.54%), and increased the same parameters by 71.43% and 140% at −5 °C. AMF also significantly increased the leaf net photosynthetic rate and transpiration rate at 25 °C (by 54.76% and 29.23%), and increased the same parameters by 72.97% and 26.67% at −5 °C. Compared with the non-AMF treatment, the AMF treatment significantly reduced malondialdehyde and hydrogen peroxide content at 25 °C (by 46.55% and 41.29%), and reduced them by 28.21% and 29.29% at −5 °C. In addition, AMF significantly increased the contents of soluble sugar, soluble protein, and proline at 25 °C (by 15.22%, 34.38%, and 11.38%), but these increased by only 9.64%, 0.47%, and 6.09% at −5 °C. Furthermore, AMF increased the activities of superoxide dismutase and catalase at 25 °C (by 13.33% and 13.72%), but these increased by only 5.51% and 13.46% at −5 °C. In conclusion, AMF can promote the growth of the aboveground and underground parts of trifoliate orange seedlings and enhance their resistance to low temperature via photosynthesis, osmoregulatory substances, and their antioxidant system. Full article
Show Figures

Figure 1

25 pages, 6525 KiB  
Article
Response of Anatomical Structure and Active Component Accumulation in Apocynum venetum L. (Apocynaceae) Under Saline Stress and Alkali Stress
by Yanlei Zhang, Shaowei Hu, Xiaxia Wang, Jie Yue, Dongmei Chen, Mingzhi Han, Wanmin Qiao, Yifan Wang and Haixia Wang
Plants 2025, 14(14), 2223; https://doi.org/10.3390/plants14142223 - 18 Jul 2025
Viewed by 290
Abstract
Soil salinization, affecting approximately 954 million hectares globally, severely impairs plant growth and agricultural productivity. Apocynum venetum L., a perennial herbaceous plant with ecological and economic value, demonstrates remarkable tolerance to saline and alkali soils. This study investigated the effects of saline (NaCl) [...] Read more.
Soil salinization, affecting approximately 954 million hectares globally, severely impairs plant growth and agricultural productivity. Apocynum venetum L., a perennial herbaceous plant with ecological and economic value, demonstrates remarkable tolerance to saline and alkali soils. This study investigated the effects of saline (NaCl) and alkali (Na2CO3 and NaHCO3) stress on the growth, anatomical adaptations, and metabolite accumulation of A. venetum (Apocynum venetum L.). Results showed that alkali stress (100 mM Na2CO3 and 50 mM NaHCO3) inhibited growth more than saline stress (NaCl 240 mM), reducing plant height by 29.36%. Anatomical adaptations included a 40.32% increase in the root cortex-to-diameter ratio (100 mM Na2CO3 and 50 mM NaHCO3), a 101.52% enlargement of xylem vessel diameter (NaCl 240 mM), and a 68.69% thickening of phloem fiber walls in the stem (NaCl 240 mM), enhancing water absorption, salt exclusion, and structural support. Additionally, leaf palisade tissue densification (44.68% increase at NaCl 160 mM), along with epidermal and wax layer adjustments, balanced photosynthesis and water efficiency. Metabolic responses varied with stress conditions. Root soluble sugar content increased 49.28% at NaCl 160 mM. Flavonoid accumulation in roots increased 53.58% at Na2CO3 100 mM and NaHCO3 50 mM, enhancing antioxidant defense. However, chlorophyll content and photosynthetic efficiency declined with increasing stress intensity. This study emphasizes the coordinated adaptations of A. venetum, providing valuable insights for the development of salt-tolerant crops. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

Back to TopTop