Response of Anatomical Structure and Active Component Accumulation in Apocynum venetum L. (Apocynaceae) Under Saline Stress and Alkali Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Saline Stress and Alkali Stress Treatment
2.2.2. Growth Parameters Assessment
2.2.3. Anatomical Features Determination
2.2.4. Scanning Electron Microscopy (SEM) Observation of Leaf Surface Structures
2.2.5. Physiological Parameters Measurement
- 1.
- Soluble Protein Determination;
- 2.
- Soluble Sugar Determination;
- 3.
- Total Flavonoid Determination;
- 4.
- Photosynthetic Efficiency Determination (Fv/Fm);
- 5.
- Chlorophyll and Carotenoid Contents Determination;
2.2.6. Statistical Analysis
3. Results
3.1. Effects of Saline and Alkali Stress on the Growth of A. venetum
3.2. Measurement and Analysis of Anatomical Features Under Saline and Alkali Stress
3.2.1. Anatomical Variations in the Roots
3.2.2. Anatomical Variations in the Stem
3.2.3. Anatomical Variations in the Leaf
3.3. Measurement and Analysis of Photosynthetic Pigment Content and Fluorescence Parameters Under Saline and Alkali Stress
3.4. Measurement and Analysis of Osmotic Regulation Substances Under Saline and Alkali Stress
3.5. Measurement and Analysis of Total Flavonoid Content Under Saline and Alkali Stress
4. Discussion
4.1. Effects of Saline Stress and Alkali Stress on the Growth of A. venetum
4.2. Adaptive Changes in Anatomical Structures
4.2.1. Anatomical and Functional Adaptations of Roots
4.2.2. Enhanced Transport and Support Functions in Stems
4.2.3. Adaptation and Optimization of Leaf for Enhanced Photosynthesis
4.3. Effects of Saline Stress and Alkali Stress on Photosynthetic Pigments and Photosynthesis
4.4. Effects of Saline and Alkali Stress on the Accumulation of Metabolites in A. venetum
4.4.1. Osmotic Regulation Roles of Soluble Sugars and Soluble Proteins
4.4.2. Antioxidant Role of Flavonoid Compounds
4.5. A Comparative Study of Growth Adaptation and Active Regulatory Mechanisms Under Saline and Alkaline Stress
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Anatomical Parameters of Roots (µm) | CK (Control Group) | S1 (Nacl 80 mM) | S2 (Nacl 160 mM) | S3 (Nacl 240 mM) | A1 (Na2CO3/NaHCO3 50/100 mM) | A2 (Na2CO3/NaHCO3 100/50 mM) |
---|---|---|---|---|---|---|
Root Diameter | 1387.17 ± 2.49 b | 1474.64 ± 3.65 a | 1346.79 ± 2.61 c | 1310.65 ± 3.90 d | 1158.69 ± 1.93 e | 1135.98 ± 3.83 f |
Epidermis Thickness | 73.66 ± 2.55 a | 78.97 ± 0.86 a | 74.82 ± 1.75 a | 64.51 ± 2.73 b | 60.85 ± 1.20 b | 66.32 ± 0.95 b |
Cortex Thickness | 248.11 ± 2.24 d | 287.57 ± 1.01 c | 306.51 ± 1.32 b | 312.10 ± 1.50 a | 249.18 ± 2.30 d | 285.11 ± 1.23 c |
Stele Diameter | 727.63 ± 2.70 b | 776.30 ± 2.79 a | 626.99 ± 1.69 c | 612.13 ± 1.75 d | 608.64 ± 1.75 d | 459.04 ± 1.44 e |
Phloem Thickness | 73.10 ± 1.14 a | 62.48 ± 1.29 b | 53.60 ± 0.80 c | 47.99 ± 0.83 d | 40.50 ± 1.29 e | 40.50 ± 0.58 e |
Xylem Thickness | 643.99 ± 1.20 b | 717.50 ± 3.38 a | 548.94 ± 1.17 d | 526.10 ± 1.87 e | 556.39 ± 1.69 c | 364.84 ± 1.35 f |
Maximum Vessel Diameter | 36.81 ± 0.92 e | 58.33 ± 0.40 c | 66.17 ± 0.92 b | 74.18 ± 1.62 a | 49.19 ± 0.31 d | 50.14 ± 0.61 d |
Anatomical Parameters of Steams (µm) | CK (Control Group) | S1 (Nacl 80 mM) | S2 (Nacl 160 mM) | S3 (Nacl 240 mM) | A1 (Na2CO3/NaHCO3 50/100 mM) | A2 (Na2CO3/NaHCO3 100/50 mM) |
---|---|---|---|---|---|---|
Stem Diameter | 1263.46 ± 3.53 f | 1284.24 ± 1.06 e | 1526.31 ± 1.58 c | 1873.25 ± 4.82 a | 1471.30 ± 4.01 d | 1579.02 ± 3.80 b |
Cortex Thickness | 123.81 ± 2.79 e | 132.28 ± 1.17 d | 169.46 ± 2.67 c | 221.68 ± 2.76 a | 218.98 ± 3.15 a | 200.47 ± 2.12 b |
Phloem Thickness | 58.33 ± 0.61 b | 58.54 ± 0.55 b | 35.06 ± 1.60 d | 42.80 ± 1.01 c | 57.01 ± 1.23 b | 62.87 ± 1.90 a |
Phloem Fiber Cell Wall Thickness | 3.13 ± 0.09 d | 3.71 ± 0.06 c | 4.18 ± 0.06 b | 5.28 ± 0.12 a | 3.37 ± 0.06 d | 1.19 ± 0.07 e |
Endogenous Phloem Thickness | 43.04 ± 1.69 d | 45.50 ± 1.14 d | 53.30 ± 1.14 c | 67.75 ± 2.73 a | 63.83 ± 1.11 b | 65.36 ± 2.13 ab |
Xylem Thickness | 335.95 ± 2.61 f | 376.66 ± 5.59 e | 471.21 ± 2.09 c | 532.98 ± 2.61 a | 426.39 ± 2.33 d | 509.19 ± 2.09 b |
Maximum Vessel Diameter | 43.41 ± 2.61 d | 52.07 ± 1.69 c | 64.19 ± 1.75 a | 66.93 ± 1.20 a | 56.37 ± 1.23 b | 57.53 ± 1.93 b |
Pith Diameter | 229.36 ± 2.86 e | 285.14 ± 0.64 d | 346.54 ± 2.00 c | 451.72 ± 2.61 a | 362.81 ± 1.04 b | 282.34 ± 2.27 d |
Anatomical Parameters of Leafs (µm) | CK (Control Group) | S1 (Nacl 80 mM) | S2 (Nacl 160 mM) | S3 (Nacl 240 mM) | A1 (Na2CO3/NaHCO3 50/100 mM) | A2 (Na2CO3/NaHCO3 100/50 mM) |
---|---|---|---|---|---|---|
Average Leaf Thickness | 156.50 ± 0.75 d | 157.52 ± 0.17 c | 164.94 ± 0.16 b | 176.85 ± 0.64 a | 158.78 ± 0.78 c | 139.42 ± 0.50 e |
Upper Epidermis Thickness | 19.38 ± 0.30 a | 15.89 ± 0.20 b | 14.27 ± 0.11 c | 13.92 ± 0.21 c | 12.73 ± 0.27 d | 12.20 ± 0.33 d |
Lower Epidermis Thickness | 14.47 ± 0.08 d | 16.41 ± 0.09 b | 18.10 ± 0.28 a | 15.44 ± 0.17 c | 16.19 ± 0.38 bc | 14.64 ± 0.27 d |
Wax Thickness of Upper Epidermis | 1.62 ± 0.02 a | 1.41 ± 0.02 b | 1.40 ± 0.02 bc | 0.98 ± 0.02 d | 1.32 ± 0.03 c | 0.90 ± 0.01 e |
Wax Thickness of Lower Epidermis | 1.41 ± 0.02 b | 1.49 ± 0.01 b | 1.86 ± 0.05 a | 1.25 ± 0.03 c | 1.47 ± 0.03 b | 1.13 ± 0.05 d |
Palisade Tissue Thickness | 48.52 ± 0.47 f | 67.35 ± 0.38 c | 73.97 ± 0.23 b | 76.82 ± 0.23 a | 65.42 ± 0.35 d | 50.70 ± 0.54 e |
Spongy Tissue Thickness | 67.80 ± 0.30 b | 50.02 ± 0.22 f | 63.53 ± 0.30 c | 71.02 ± 0.55 a | 61.82 ± 0.26 d | 57.99 ± 1.15 e |
Midvein Diameter | 305.04 ± 0.30 c | 287.13 ± 0.79 d | 313.15 ± 0.55 b | 375.90 ± 0.90 a | 256.70 ± 0.67 e | 249.45 ± 0.44 f |
Xylem Thickness | 34.80 ± 0.26 d | 36.17 ± 0.25 c | 38.83 ± 0.27 b | 43.17 ± 0.50 a | 29.33 ± 0.33 e | 29.90 ± 0.34 e |
Phloem Thickness | 22.61 ± 0.54 a | 20.44 ± 0.44 b | 19.08 ± 0.20 c | 18.90 ± 0.38 c | 17.99 ± 0.02 d | 14.87 ± 0.12 e |
References
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; De Sousa, L. Global Mapping of Soil Salinity Change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ Response Mechanisms to Salinity Stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Soil Salinization Management for Sustainable Development: A Review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef] [PubMed]
- Alkharabsheh, H.M.; Seleiman, M.F.; Hewedy, O.A.; Battaglia, M.L.; Jalal, R.S.; Alhammad, B.A.; Schillaci, C.; Ali, N.; Al-Doss, A. Field Crop Responses and Management Strategies to Mitigate Soil Salinity in Modern Agriculture: A Review. Agronomy 2021, 11, 2299. [Google Scholar] [CrossRef]
- Saradadevi, G.P.; Das, D.; Mangrauthia, S.K.; Mohapatra, S.; Chikkaputtaiah, C.; Roorkiwal, M.; Solanki, M.; Sundaram, R.M.; Chirravuri, N.N.; Sakhare, A.S.; et al. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. Biology 2021, 10, 1255. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Yang, Y. How Plants Tolerate Salt Stress. Curr. Issues Mol. Biol. 2023, 45, 5914–5934. [Google Scholar] [CrossRef] [PubMed]
- Alnusairi, G.S.H.; Mazrou, Y.S.A.; Qari, S.H.; Elkelish, A.A.; Soliman, M.H.; Eweis, M.; Abdelaal, K.; El-Samad, G.A.; Ibrahim, M.F.M.; ElNahhas, N. Exogenous Nitric Oxide Reinforces Photosynthetic Efficiency, Osmolyte, Mineral Uptake, Antioxidant, Expression of Stress-Responsive Genes and Ameliorates the Effects of Salinity Stress in Wheat. Plants 2021, 10, 1693. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, A.; Shahani, A. Effects of Salt Stress on the Morphological Characteristics, Total Phenol and Total Anthocyanin Contents of Roselle (Hibiscus sabdariffa L.). Plant Physiol. Rep. 2019, 24, 210–214. [Google Scholar] [CrossRef]
- Faisal, M.; Faizan, M.; Tonny, S.H.; Rajput, V.D.; Minkina, T.; Alatar, A.A.; Pathirana, R. Strigolactone-Mediated Mitigation of Negative Effects of Salinity Stress in Solanum Lycopersicum through Reducing the Oxidative Damage. Sustainability 2023, 15, 5805. [Google Scholar] [CrossRef]
- Rai, G.K.; Mishra, S.; Chouhan, R.; Mushtaq, M.; Chowdhary, A.A.; Rai, P.K.; Kumar, R.R.; Kumar, P.; Perez-Alfocea, F.; Colla, G.; et al. Plant Salinity Stress, Sensing, and Its Mitigation through WRKY. Front. Plant Sci. 2023, 14, 1238507. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Fan, X.; Peng, M.; Yin, C.; Xiao, Z.; Liang, Y. Silicon Improves Rice Salinity Resistance by Alleviating Ionic Toxicity and Osmotic Constraint in an Organ-Specific Pattern. Front. Plant Sci. 2020, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Meloni, D.A.; Oliva, M.A.; Martinez, C.A.; Cambraia, J. Photosynthesis and Activity of Superoxide Dismutase, Peroxidase and Glutathione Reductase in Cotton under Salt Stress. Environ. Exp. Bot. 2003, 49, 69–76. [Google Scholar] [CrossRef]
- Fang, S.; Hou, X.; Liang, X. Response Mechanisms of Plants Under Saline-Alkali Stress. Front. Plant Sci. 2021, 12, 667458. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Lin, L.; Zhang, Y.; Li, S.; Tang, Z. Component Characteristics and Reactive Oxygen Species Scavenging Activity of Anthocyanins from Fruits of Lonicera caerulea L. Food Chem. 2023, 403, 134391. [Google Scholar] [CrossRef] [PubMed]
- Munns, R. Comparative Physiology of Salt and Water Stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity Induced Physiological and Biochemical Changes in Plants: An Omic Approach towards Salt Stress Tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Smith, D.L. Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and Microbial Associations. Agronomy 2020, 10, 1209. [Google Scholar] [CrossRef]
- Zheng, M.; Fan, Y.; Shi, D.; Liu, C. Antidepressant-like Effect of Flavonoids Extracted from Apocynum venetum Leaves on Brain Monoamine Levels and Dopaminergic System. J. Ethnopharmacol. 2013, 147, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, L.; Jiang, L.; Zhan, Y.G.; Fan, G.Z. Quercetin Alleviates Seed Germination and Growth Inhibition in Apocynum venetum and Apocynum pictum under Mannitol-Induced Osmotic Stress. Plant Physiol. Biochem. 2021, 159, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Dorjee, T. Chromosome-Scale Genome Analysis of Apocynum venetum Sheds Light on Apocynum Phylogenetics, Bast Fiber Development, and Flavonoid Synthesis. Ind. Crops Prod. 2024, 212, 118325. [Google Scholar] [CrossRef]
- Xiang, T.; Wu, L.; Isah, M.B.; Chen, C.; Zhang, X. Apocynum venetum, a Medicinal, Economical and Ecological Plant: A Review Update. PeerJ 2023, 11, e14966. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, D. Response of Soil Fungi Community Structure to Salt Vegetation Succession in the Yellow River Delta. Curr. Microbiol. 2016, 73, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Talbot, M.J.; White, R.G. Methanol Fixation of Plant Tissue for Scanning Electron Microscopy Improves Preservation of Tissue Morphology and Dimensions. Plant Methods 2013, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.G.; Daniel Hare, J.; Compton, S.J. Measuring Plant Protein with the Bradford Assay: 1. Evaluation and Standard Method. J. Chem. Ecol. 1989, 15, 979–992. [Google Scholar] [CrossRef] [PubMed]
- Boshagh, F. Measurement Methods of Carbohydrates in Dark Fermentative Hydrogen Production- A Review. Int. J. Hydrog. Energy 2021, 46, 24028–24050. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of Total Flavonoid Content by Aluminum Chloride Assay: A Critical Evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Chu, Q.; Xie, S.; Wei, H.; Tian, X.; Tang, Z.; Li, D.; Liu, Y. Enzyme-Assisted Ultrasonic Extraction of Total Flavonoids and Extraction Polysaccharides in Residue from Abelmoschus manihot (L.). Ultrason. Sonochem. 2024, 104, 106815. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Cao, H.; Ding, R.; Du, T.; Kang, S.; Tong, L.; Chen, J.; Gao, J. A Meta-analysis Highlights the Cross-resistance of Plants to Drought and Salt Stresses from Physiological, Biochemical, and Growth Levels. Physiol. Plant. 2024, 176, e14282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Han, B.; Wang, T.; Chen, S.; Li, H.; Zhang, Y.; Dai, S. Mechanisms of Plant Salt Response: Insights from Proteomics. J. Proteome Res. 2012, 11, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Bláha, L. Importance of Root-Shoot Ratio for Crops Production: A Review. Curr. Top. Agric. Sci. 2021, 1, 37–49. [Google Scholar]
- Adolf, V.I.; Jacobsen, S.-E.; Shabala, S. Salt Tolerance Mechanisms in Quinoa (Chenopodium quinoa Willd.). Environ. Exp. Bot. 2013, 92, 43–54. [Google Scholar] [CrossRef]
- Pan, J.; Peng, F.; Xue, X.; You, Q.; Zhang, W.; Wang, T.; Huang, C. The Growth Promotion of Two Salt-Tolerant Plant Groups with PGPR Inoculation: A Meta-Analysis. Sustainability 2019, 11, 378. [Google Scholar] [CrossRef]
- Yan, F.; Zhao, H.; Wu, L.; Huang, Z.; Niu, Y.; Qi, B.; Zhang, L.; Fan, S.; Ding, Y.; Li, G.; et al. Basic Cognition of Melatonin Regulation of Plant Growth under Salt Stress: A Meta-Analysis. Antioxidants 2022, 11, 1610. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, M.; Chanratana, M.; Kim, K.; Seshadri, S.; Sa, T. Impact of Arbuscular Mycorrhizal Fungi on Photosynthesis, Water Status, and Gas Exchange of Plants Under Salt Stress–A Meta-Analysis. Front. Plant Sci. 2019, 10, 457. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Motos, J.; Ortuño, M.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.; Hernandez, J. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Hou, P.; Wang, F.; Luo, B.; Li, A.; Wang, C.; Shabala, L.; Ahmed, H.A.I.; Deng, S.; Zhang, H.; Song, P.; et al. Antioxidant Enzymatic Activity and Osmotic Adjustment as Components of the Drought Tolerance Mechanism in Carex Duriuscula. Plants 2021, 10, 436. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, Z.; Xin, Y.; Chen, G.; Wu, Q.; Liang, X.; Zhai, Y. Effects of Planting Density on Root Spatial and Temporal Distribution and Yield of Winter Wheat. Agronomy 2022, 12, 3014. [Google Scholar] [CrossRef]
- Clément, C.; Schneider, H.M.; Dresbøll, D.B.; Lynch, J.P.; Thorup-Kristensen, K. Root and Xylem Anatomy Varies with Root Length, Root Order, Soil Depth and Environment in Intermediate Wheatgrass (Kernza®) and Alfalfa. Ann. Bot. 2022, 130, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Kheloufi, A.; Mounia Mansouri, L. Anatomical Changes Induced by Salinity Stress in Root and Stem of Two Acacia Species (A. karroo and A. saligna). Agric. For. 2019, 65, 137–150. [Google Scholar] [CrossRef]
- Yun, P.; Kaya, C.; Shabala, S. Hormonal and Epigenetic Regulation of Root Responses to Salinity Stress. Crop J. 2024, 12, 1309–1320. [Google Scholar] [CrossRef]
- Liu, C.; Mao, B.; Yuan, D.; Chu, C.; Duan, M. Salt Tolerance in Rice: Physiological Responses and Molecular Mechanisms. Crop J. 2022, 10, 13–25. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, L.; Qi, D. Variation in Leaf Traits at Different Altitudes Reflects the Adaptive Strategy of Plants to Environmental Changes. Ecol. Evol. 2020, 10, 8166–8175. [Google Scholar] [CrossRef] [PubMed]
- Éva, C.; Oszvald, M.; Tamás, L. Current and Possible Approaches for Improving Photosynthetic Efficiency. Plant Sci. 2019, 280, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Tang, Y.; Zhu, X.-G. Stomata Conductance as a Goalkeeper for Increased Photosynthetic Efficiency. Curr. Opin. Plant Biol. 2022, 70, 102310. [Google Scholar] [CrossRef] [PubMed]
- Qaderi, M.M.; Martel, A.B.; Dixon, S.L. Environmental Factors Influence Plant Vascular System and Water Regulation. Plants 2019, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Hacke, U.G.; Spicer, R.; Schreiber, S.G.; Plavcová, L. An Ecophysiological and Developmental Perspective on Variation in Vessel Diameter. Plant Cell Environ. 2017, 40, 831–845. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, H.; Song, C.; Zhu, J.-K.; Shabala, S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation 2020, 1, 100017. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ji, X.; Li, A.; Zheng, X.; Zhang, Y.; Zhang, J. Effect of Persistent Salt Stress on the Physiology and Anatomy of Hybrid Walnut (Juglans major × Juglans regia) Seedlings. Plants 2024, 13, 1840. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.J.; Larraburu, E.E.; Llorente, B.E. Azospirillum Brasilense Mitigates Anatomical Alterations Produced by Salt Stress in Jojoba in Vitro Plants. Vegetos 2021, 34, 725–737. [Google Scholar] [CrossRef]
- Le Gall, H.; Philippe, F.; Domon, J.-M.; Gillet, F.; Pelloux, J.; Rayon, C. Cell Wall Metabolism in Response to Abiotic Stress. Plants 2015, 4, 112–166. [Google Scholar] [CrossRef] [PubMed]
- Goudenhooft, C.; Bourmaud, A.; Baley, C. Flax (Linum usitatissimum L.) Fibers for Composite Reinforcement: Exploring the Link Between Plant Growth, Cell Walls Development, and Fiber Properties. Front. Plant Sci. 2019, 10, 411. [Google Scholar] [CrossRef] [PubMed]
- Van Zelm, E.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, F.; Sakata, T.; Terazawa, K. Physiological, Morphological and Anatomical Responses of Fraxinus Mandshurica Seedlings to Flooding. Tree Physiol. 1995, 15, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.D.; Minkina, T.; Yaning, C.; Sushkova, S.; Chapligin, V.A.; Mandzhieva, S. A Review on Salinity Adaptation Mechanism and Characteristics of Populus euphratica, a Boon for Arid Ecosystems. Acta Ecol. Sin. 2016, 36, 497–503. [Google Scholar] [CrossRef]
- Li, S.; Lu, S.; Wang, J.; Chen, Z.; Zhang, Y.; Duan, J.; Liu, P.; Wang, X.; Guo, J. Responses of Physiological, Morphological and Anatomical Traits to Abiotic Stress in Woody Plants. Forests 2023, 14, 1784. [Google Scholar] [CrossRef]
- Chauhan, J.; Prathibha, M.; Singh, P.; Choyal, P.; Mishra, U.N.; Saha, D.; Kumar, R.; Anuragi, H.; Pandey, S.; Bose, B.; et al. Plant Photosynthesis under Abiotic Stresses: Damages, Adaptive, and Signaling Mechanisms. Plant Stress 2023, 10, 100296. [Google Scholar] [CrossRef]
- Barros, N.L.F.; Marques, D.N.; Tadaiesky, L.B.A.; De Souza, C.R.B. Halophytes and Other Molecular Strategies for the Generation of Salt-Tolerant Crops. Plant Physiol. Biochem. 2021, 162, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Gao, Y.; Wang, D.; Chen, J.; Zhang, F.; Zhou, J.; Yan, X.; Li, Y. Stoichiometric Variation of Halophytes in Response to Changes in Soil Salinity. Plant Biol. J. 2017, 19, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Pan, Y.; Wang, P.; Ran, L.; Qin, G.; Li, Q.; Kang, P. Response of Phyllosphere and Rhizosphere Microbial Communities to Salt Stress of Tamarix Chinensis. Plants 2024, 13, 1091. [Google Scholar] [CrossRef] [PubMed]
- Niinemets, Ü. Photosynthesis and Resource Distribution through Plant Canopies. Plant Cell Environ. 2007, 30, 1052–1071. [Google Scholar] [CrossRef] [PubMed]
- Buschhaus, C.; Jetter, R. Composition Differences between Epicuticular and Intracuticular Wax Substructures: How Do Plants Seal Their Epidermal Surfaces? J. Exp. Bot. 2011, 62, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Khanal, B.P.; Knoche, M. Mechanical Properties of Cuticles and Their Primary Determinants. J. Exp. Bot. 2017, 68, 5351–5367. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Zhang, J.; Zhong, C.; Zhu, L.; Cao, X.; Yu, S.; Allen Bohr, J.; Hu, J.; Jin, Q. Effects of Salt Stress on Rice Growth, Development Characteristics, and the Regulating Ways: A Review. J. Integr. Agric. 2017, 16, 2357–2374. [Google Scholar] [CrossRef]
- Ismail, F.; Rashid, M.Y. The Impacts of Salt Stress on Growth Factors and Photosynthesis Pigments in Wheat (Triticum aestivum L.). Eurasian J. Sci. Eng. 2017, 3, 58. [Google Scholar] [CrossRef]
- Stepien, P.; Johnson, G.N. Contrasting Responses of Photosynthesis to Salt Stress in the Glycophyte Arabidopsis and the Halophyte Thellungiella: Role of the Plastid Terminal Oxidase as an Alternative Electron Sink. Plant Physiol. 2009, 149, 1154–1165. [Google Scholar] [CrossRef] [PubMed]
- Hauser, F.; Horie, T. A Conserved Primary Salt Tolerance Mechanism Mediated by HKT Transporters: A Mechanism for Sodium Exclusion and Maintenance of High K+/Na+ Ratio in Leaves during Salinity Stress. Plant Cell Environ. 2010, 33, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Shi, Y.; Mu, C.; Wang, J. Differences in Organic Solute and Metabolites of Leymus Chinensis in Response to Different Intensities of Salt and Alkali Stress. Plants 2023, 12, 1916. [Google Scholar] [CrossRef] [PubMed]
- Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of Sugars under Abiotic Stress. Plant Physiol. Biochem. 2016, 109, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.-M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Cui, G.; Zhang, Y.; Zhang, W.; Lang, D.; Zhang, X.; Li, Z.; Zhang, X. Response of Carbon and Nitrogen Metabolism and Secondary Metabolites to Drought Stress and Salt Stress in Plants. J. Plant Biol. 2019, 62, 387–399. [Google Scholar] [CrossRef]
- Daryanavard, H.; Postiglione, A.E.; Mühlemann, J.K.; Muday, G.K. Flavonols Modulate Plant Development, Signaling, and Stress Responses. Curr. Opin. Plant Biol. 2023, 72, 102350. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-T.; Yu, Z.-C.; Tang, J.-W.; Cai, M.-L.; Chen, Y.-L.; Yang, C.-W.; Chow, W.S.; Peng, C.-L. The Major Photoprotective Role of Anthocyanins in Leaves of Arabidopsis thaliana under Long-Term High Light Treatment: Antioxidant or Light Attenuator? Photosynth. Res. 2021, 149, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Khan, M.A.R. Understanding the Roles of Osmolytes for Acclimatizing Plants to Changing Environment: A Review of Potential Mechanism. Plant Signal. Behav. 2021, 16, 1913306. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Prasad, M.N.V. (Eds.) Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Springer: New York, NY, USA, 2012; ISBN 978-1-4614-0633-4. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Hu, S.; Wang, X.; Yue, J.; Chen, D.; Han, M.; Qiao, W.; Wang, Y.; Wang, H. Response of Anatomical Structure and Active Component Accumulation in Apocynum venetum L. (Apocynaceae) Under Saline Stress and Alkali Stress. Plants 2025, 14, 2223. https://doi.org/10.3390/plants14142223
Zhang Y, Hu S, Wang X, Yue J, Chen D, Han M, Qiao W, Wang Y, Wang H. Response of Anatomical Structure and Active Component Accumulation in Apocynum venetum L. (Apocynaceae) Under Saline Stress and Alkali Stress. Plants. 2025; 14(14):2223. https://doi.org/10.3390/plants14142223
Chicago/Turabian StyleZhang, Yanlei, Shaowei Hu, Xiaxia Wang, Jie Yue, Dongmei Chen, Mingzhi Han, Wanmin Qiao, Yifan Wang, and Haixia Wang. 2025. "Response of Anatomical Structure and Active Component Accumulation in Apocynum venetum L. (Apocynaceae) Under Saline Stress and Alkali Stress" Plants 14, no. 14: 2223. https://doi.org/10.3390/plants14142223
APA StyleZhang, Y., Hu, S., Wang, X., Yue, J., Chen, D., Han, M., Qiao, W., Wang, Y., & Wang, H. (2025). Response of Anatomical Structure and Active Component Accumulation in Apocynum venetum L. (Apocynaceae) Under Saline Stress and Alkali Stress. Plants, 14(14), 2223. https://doi.org/10.3390/plants14142223