Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (514)

Search Parameters:
Keywords = phenol conversion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1567 KiB  
Article
Gastrointestinal Digestion Impact on Phenolics and Bioactivity of Tannat Grape Pomace Biscuits
by Victoria Olt, Jessica Báez, Romina Curbelo, Eduardo Boido, Eduardo Dellacassa, Alejandra Medrano and Adriana Maite Fernández-Fernández
Molecules 2025, 30(15), 3247; https://doi.org/10.3390/molecules30153247 (registering DOI) - 2 Aug 2025
Abstract
The search for natural sources of bioactive compounds with health-promoting properties has intensified in recent years. Among these, Tannat grape pomace (TGP), a primary byproduct of winemaking, stands out for its high phenolic content, although its bioactivity may be affected during gastrointestinal digestion. [...] Read more.
The search for natural sources of bioactive compounds with health-promoting properties has intensified in recent years. Among these, Tannat grape pomace (TGP), a primary byproduct of winemaking, stands out for its high phenolic content, although its bioactivity may be affected during gastrointestinal digestion. This study aimed to evaluate the impact of in vitro digestion on the antioxidant (ABTS, ORAC-FL, intracellular ROS inhibition), anti-diabetic (α-glucosidase inhibition), anti-obesity (lipase inhibition), and anti-inflammatory (NO inhibition) properties of five sugar-free biscuits formulated with varying percentages of TGP and sucralose. No significant differences were observed in the bioaccessible fractions (BFs, representing the compounds potentially released in the small intestine) between control biscuits and those enriched with TGP, suggesting limited release of phenolics at this stage. Conversely, the colonic fractions (CFs, simulating the material reaching the colon) from biscuits with higher TGP content exhibited greater bioactivities. HPLC-DAD-MS analysis of the CF from the biscuit containing 20% TGP and 4% sucralose revealed a high content of procyanidin trimers, indicating the persistence of these specific phenolic compounds after in vitro digestion. These findings suggest that TGP-enriched biscuits may deliver health benefits at the colonic level and support their potential application in the formulation of functional foods. Further microbiota and in vivo studies should be assessed to confirm the latter. Full article
Show Figures

Figure 1

17 pages, 901 KiB  
Article
Tuning the Activity of NbOPO4 with NiO for the Selective Conversion of Cyclohexanone as a Model Intermediate of Lignin Pyrolysis Bio-Oils
by Abarasi Hart and Jude A. Onwudili
Energies 2025, 18(15), 4106; https://doi.org/10.3390/en18154106 (registering DOI) - 2 Aug 2025
Abstract
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds [...] Read more.
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds in the final upgraded liquid products. The present work involved a systematic study of solvent-free catalytic reactions of cyclohexanone in the presence of hydrogen gas at 160 °C for 3 h in a batch reactor. Cyclohexanone can be produced from biomass through the selective hydrogenation of lignin-derived phenolics. Three types of catalysts comprising undoped NbOPO4, 10 wt% NiO/NbOPO4, and 30 wt% NiO/NbOPO4 were studied. Undoped NbOPO4 promoted both aldol condensation and the dehydration of cyclohexanol, producing fused ring aromatic hydrocarbons and hard char. With 30 wt% NiO/NbOPO4, extensive competitive hydrogenation of cyclohexanone to cyclohexanol was observed, along with the formation of C6 cyclic hydrocarbons. When compared to NbOPO4 and 30 wt% NiO/NbOPO4, the use of 10 wt% NiO/NbOPO4 produced superior selectivity towards bi-cycloalkanones (i.e., C12) at cyclohexanone conversion of 66.8 ± 1.82%. Overall, the 10 wt% NiO/NbOPO4 catalyst exhibited the best performance towards the production of precursor compounds that can be further hydrodeoxygenated into energy-dense aviation fuel hydrocarbons. Hence, the presence and loading of NiO was able to tune the activity and selectivity of NbOPO4, thereby influencing the final products obtained from the same cyclohexanone feedstock. This study underscores the potential of lignin-derived pyrolysis oils as important renewable feedstocks for producing replacement hydrocarbon solvents or feedstocks and high-density sustainable liquid hydrocarbon fuels via sequential and selective catalytic upgrading. Full article
16 pages, 3511 KiB  
Article
Phlogacanthus pulcherrimus Leaf Extract as a Functional Feed Additive: Influences on Growth Indices, Bacterial Challenge Survival, and Expression of Immune-, Growth-, and Antioxidant-Related Genes in Labeo chrysophekadion (Bleeker, 1849)
by Sontaya Sookying, Panitnart Auputinan, Dutrudi Panprommin and Paiboon Panase
Life 2025, 15(8), 1220; https://doi.org/10.3390/life15081220 (registering DOI) - 1 Aug 2025
Abstract
This research examined the impact of dietary supplementation with Phlogacanthus pulcherrimus extract (PPE) on the growth, disease resistance, and expression of immune-, growth-, and antioxidant-related genes in Labeo chrysophekadion. Over 150 days, 90 fish from each group were fed diets with 0 [...] Read more.
This research examined the impact of dietary supplementation with Phlogacanthus pulcherrimus extract (PPE) on the growth, disease resistance, and expression of immune-, growth-, and antioxidant-related genes in Labeo chrysophekadion. Over 150 days, 90 fish from each group were fed diets with 0 (control), 0.25, 0.50, or 0.75 g/kg of PPE. Phytochemical analysis revealed phenolics (96.00 mg GAE/g), flavonoids (17.55 mg QE/g), anthraquinones, and triterpenoids, along with moderate antioxidant activity (IC50 = 1314.08 μg/mL). One-way ANOVA of growth indices, including weight gain, specific growth rate, feed conversion ratio, and survival rate, revealed no significant differences (p > 0.05); however, PPE supplementation significantly enhanced immune and antioxidant gene expression. IL-1β was significantly (p < 0.05) upregulated at all doses, with the highest expression observed at 0.50 g/kg, showing a fivefold increase compared to the control. In addition, the highest relative expressions of IGF-1 and CAT were found at 0.75 g/kg, with 4.5-fold and 3.5-fold increases compared to the control, respectively. PPE at 0.75 g/kg decreased the cumulative mortality rate (CMR) by 20% compared to the control group, which had a CMR of 50% following exposure to Aeromonas hydrophila. PPE acted as an effective immunostimulant and antioxidant, supporting reduced antibiotic reliance in aquaculture. Full article
(This article belongs to the Special Issue Nutrition–Physiology Interactions in Aquatic Species)
Show Figures

Figure 1

20 pages, 4025 KiB  
Article
Genomic Analysis of Cadmium-Resistant and Plant Growth-Promoting Burkholderia alba Isolated from Plant Rhizosphere
by Luyao Feng, Xin Liu, Nan Wang, Zhuli Shi, Yu Wang, Jianpeng Jia, Zhufeng Shi, Te Pu and Peiwen Yang
Agronomy 2025, 15(8), 1780; https://doi.org/10.3390/agronomy15081780 - 24 Jul 2025
Viewed by 283
Abstract
Reducing the application of chemical fertilizers and remediating heavy metal pollution in soil are important directions in current agricultural research. Utilizing the plant-growth-promoting and remediation capabilities of bacteria can provide more environmentally friendly assistance to agricultural production. In this study, the Burkholderia alba [...] Read more.
Reducing the application of chemical fertilizers and remediating heavy metal pollution in soil are important directions in current agricultural research. Utilizing the plant-growth-promoting and remediation capabilities of bacteria can provide more environmentally friendly assistance to agricultural production. In this study, the Burkholderia alba YIM B08401 strain was isolated and identified from rhizospheric soil, subjected to whole-genome sequencing and analysis, and its Cd2+ adsorption efficiency and characteristics were confirmed using multiple experimental methods, including atomic absorption spectrometry (AAS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). The results showed that the genome of strain YIM B08401 has a total length of 7,322,157 bp, a GC content of 66.39%, and predicts 6504 protein-coding sequences. It contains abundant functional genes related to nutrient conversion (phosphate solubilization, sulfur metabolism, zinc solubilization, siderophore production), plant hormone regulation (indole-3-acetic acid secretion, ACC deaminase production), phenolic acid degradation, root colonization, heavy metal tolerance, pathogen antagonism, and the production of antagonistic secondary metabolites. Additionally, strain YIM B08401 can specifically bind to Cd2+ through various functional groups on the cell surface, such as C-O-C, P=O, and O-H, enabling biosorption. In conclusion, strain YIM B08401 is an excellent strain with plant-growth-promoting, disease-resistant, and bioremediation capabilities, warranting further development as a biofertilizer for agricultural applications to promote green and sustainable agricultural development. Full article
Show Figures

Figure 1

16 pages, 3181 KiB  
Article
Effects of Lactic Acid Bacteria Fermentation on the Release and Biotransformation of Bound Phenolics in Ma Bamboo Shoots (Dendrocalamus latiflorus Munro)
by Liangshi Zhang, Anping Li, Hemei Liu, Qifeng Mo and Zhengchang Zhong
Foods 2025, 14(15), 2573; https://doi.org/10.3390/foods14152573 - 23 Jul 2025
Viewed by 279
Abstract
Lactic acid bacteria fermentation has the potential to enhance the biological activity of bamboo shoot polyphenols. The aim of this study was to investigate the release pattern and biotransformation mechanism of bound phenols from bamboo shoots prepared by fermentation with Lactobacillus acidophilus, [...] Read more.
Lactic acid bacteria fermentation has the potential to enhance the biological activity of bamboo shoot polyphenols. The aim of this study was to investigate the release pattern and biotransformation mechanism of bound phenols from bamboo shoots prepared by fermentation with Lactobacillus acidophilus, Pediococcus pentosaceus, and Lactobacillus plantarum. The results showed that compared with unfermented controls, bound forms of vanillic acid, p-coumaric acid, and ferulic acid significantly decreased, while their free forms increased substantially after 6 d fermentation (p < 0.05). Quantitative analysis revealed particularly dramatic transformations for p-coumaric acid, which showed a 30–3000% increase in free form, and ferulic acid with a 203–359% increase in free form. Pediococcus pentosaceus demonstrated outstanding performance in bound phenol release and conversion, correlating with its higher β-glucosidase (0.67 U/g) and ferulic acid esterase (0.69 U/g) production. FITR, SEM, and IFM also demonstrated that LAB fermentation led to changes between free and bound phenols in bamboo shoots. These results demonstrate Pediococcus pentosaceus fermentation most effectively liberates bound phenolics, significantly improving their bioavailability for functional food applications. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

22 pages, 7389 KiB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 325
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

18 pages, 2822 KiB  
Article
A Substrate–Product Switch Mathematical Model for the Growth Kinetics of Ethanol Metabolism from Longan Solid Waste Using Candida tropicalis
by Juan Feng, Chatchadaporn Mahakuntha, Su Lwin Htike, Charin Techapun, Yuthana Phimolsiripol, Pornchai Rachtanapun, Julaluk Khemacheewakul, Siraphat Taesuwan, Kritsadaporn Porninta, Sumeth Sommanee, Rojarej Nunta and Noppol Leksawasdi
Agriculture 2025, 15(14), 1472; https://doi.org/10.3390/agriculture15141472 - 9 Jul 2025
Viewed by 278
Abstract
A substrate–product switch model was proposed to describe ethanol fermentation from longan solid waste using Candida tropicalis at an initial glucose and xylose ratio of 2 to 1. The model incorporated multiple rate equations for cell growth, sugar uptake, and ethanol production along [...] Read more.
A substrate–product switch model was proposed to describe ethanol fermentation from longan solid waste using Candida tropicalis at an initial glucose and xylose ratio of 2 to 1. The model incorporated multiple rate equations for cell growth, sugar uptake, and ethanol production along with ethanol consumption. It elucidated the following three-step mechanism: (I) sugar uptake, (II) sugar conversion, and (III) ethanol consumption concerning the effects of concentration factor (CF) and associated growth function. Optimal kinetic parameters were estimated and validated against experimental data. The identification of two critical xylose concentrations showed that ethanol consumption either preceded or coincided with xylose consumption cessation. The phenolics inhibitory effect of gallic acid, ellagic acid, pyrogallol, and catechol on cell growth and ethanol production was elucidated with relatively minimal effect. The highest ethanol concentration of 25.5 g/L was reached with corresponding ethanol mass yield and productivity of 0.30 g/g and 1.063 g/L/h, respectively. The proposed model and kinetics provide valuable insights for designing and optimizing ethanol fermentation, contributing to more sustainable and cost-effective ethanol production. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

24 pages, 1814 KiB  
Article
Functional Feed for Tilapia: Exploring the Benefits of Aspalathus linearis Tea Extract
by Grace Okuthe, Bongile Bhomela and Noluyolo Vundisa
Biology 2025, 14(7), 778; https://doi.org/10.3390/biology14070778 - 27 Jun 2025
Viewed by 484
Abstract
To address the growing global demand for aquatic protein and the need for sustainable aquaculture, this study explored Aspalathus linearis tea extract as a novel feed additive for Oreochromis mossambicus larvae. Over an eight-week feeding trial, the efficacy of diets supplemented with 30% [...] Read more.
To address the growing global demand for aquatic protein and the need for sustainable aquaculture, this study explored Aspalathus linearis tea extract as a novel feed additive for Oreochromis mossambicus larvae. Over an eight-week feeding trial, the efficacy of diets supplemented with 30% fermented or green rooibos extract was assessed against a control. Both fermented and green rooibos treatments significantly (p < 0.05) enhanced larval growth, evidenced by improved weight gain and feed conversion ratios (fermented: 1.50 ± 0.25; green: 1.41 ± 0.07). Notably, A. linearis extracts also demonstrated genoprotective potential, as indicated by a marked reduction in micronucleus frequency, most likely attributed to their abundant phenolic compounds. These findings demonstrate that rooibos extract, especially the green variety, can improve growth performance and feed utilization, and also provide genoprotective benefits. The superior outcomes in growth and feed conversion are likely due to the bioactive phenolic compounds, which may enhance palatability, gut health, and nutrient absorption, rather than macronutrient content. This positions rooibos extract as a promising natural functional additive for aquafeed, offering a sustainable strategy to enhance tilapia farming productivity and resource utilization. However, further research is necessary to uncover specific molecular mechanisms, conduct in-depth analyses of gut health and immune responses, and evaluate effects on product quality to facilitate its sustainable and effective integration into aquaculture practices, thereby contributing to both fish health and food security. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Effects of Moderate Electric Field Pretreatment on the Efficiency and Nutritional Quality of Hot Air-Dried Apple Slices
by Deryanur Kalkavan and Nese Sahin Yesilcubuk
Foods 2025, 14(13), 2160; https://doi.org/10.3390/foods14132160 - 20 Jun 2025
Viewed by 342
Abstract
This study investigates the effects of electric field pretreatment parameters such as electric field strength (0.1–0.2 kV/cm), waveform (sinusoidal vs. square), and application mode (continuous vs. pulsed) on the quality attributes of dried Fuji apple slices, including ascorbic acid (vitamin C) retention, β-carotene [...] Read more.
This study investigates the effects of electric field pretreatment parameters such as electric field strength (0.1–0.2 kV/cm), waveform (sinusoidal vs. square), and application mode (continuous vs. pulsed) on the quality attributes of dried Fuji apple slices, including ascorbic acid (vitamin C) retention, β-carotene content, and hydroxymethylfurfural (HMF) formation. Electric-field-treated samples were compared to untreated controls after convective drying at 75 °C. Results revealed that vitamin C was significantly influenced by waveform, with sinusoidal waves preserving about 27% more vitamin C than square waves, likely due to reduced oxidative degradation from gentler electroporation. Conversely, square waves caused the highest β-carotene losses (25% vs. control), attributed to prolonged peak voltage destabilizing carotenoids. HMF formation was reduced by 10–23% in electric-field-treated samples compared to controls, linked to accelerated drying rates limiting Maillard reaction time. Low electric field strengths (0.1–0.15 kV/cm) enhanced antioxidant activity; however, higher intensities showed a potential decline. The square waveform had a more detrimental effect on phenolic compounds than the sinusoidal waveform. These findings suggest that low electric field pretreatment, particularly with sinusoidal waveforms at 0.2 kV/cm, enhances drying efficiency while balancing nutrient retention and HMF mitigation, offering a promising strategy for producing high-quality dried fruits. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

36 pages, 1432 KiB  
Review
Fungal Coculture: Unlocking the Potential for Efficient Bioconversion of Lignocellulosic Biomass
by Rafael Icaro Matos Vieira, Alencar da Silva Peixoto, Antonielle Vieira Monclaro, Carlos André Ornelas Ricart, Edivaldo Ximenes Ferreira Filho, Robert Neil Gerard Miller and Taísa Godoy Gomes
J. Fungi 2025, 11(6), 458; https://doi.org/10.3390/jof11060458 - 17 Jun 2025
Viewed by 737
Abstract
Microbial decomposition of persistent natural compounds such as phenolic lignin and polysaccharides in plant cell walls plays a crucial role in the global carbon cycle and underpins diverse biotechnological applications. Among microbial decomposers, fungi from the Ascomycota and Basidiomycota phyla have evolved specialized [...] Read more.
Microbial decomposition of persistent natural compounds such as phenolic lignin and polysaccharides in plant cell walls plays a crucial role in the global carbon cycle and underpins diverse biotechnological applications. Among microbial decomposers, fungi from the Ascomycota and Basidiomycota phyla have evolved specialized mechanisms for efficient lignocellulosic biomass degradation, employing extracellular enzymes and synergistic fungal consortia. Fungal coculture, defined as the controlled, axenic cultivation of multiple fungal species or strains in a single culture medium, is a promising strategy for industrial processes. This approach to biomass conversion offers potential for enhancing production of enzymes, biofuels, and other high-value bioproducts, while enabling investigation of ecological dynamics and metabolic pathways relevant to biorefinery operations. Lignocellulosic biomass conversion into fuels, energy, and biochemicals is central to the bioeconomy, integrating advanced biotechnology with sustainable resource use. Recent advancements in -omics technologies, including genomics, transcriptomics, and proteomics, have facilitated detailed analysis of fungal metabolism, uncovering novel secondary metabolites and enzymatic pathways activated under specific growth conditions. This review highlights the potential of fungal coculture systems to advance sustainable biomass conversion in alignment with circular bioeconomy goals. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

13 pages, 7192 KiB  
Article
Nickel-Driven Electrochemical Upgrading of Kraft Lignin to Value-Added Aliphatic and Phenolic Products
by Yanbing Liu, Lucie M. Lindenbeck, Marcella Frauscher, Björn B. Beele, Bruno V. Manzolli Rodrigues and Adam Slabon
Molecules 2025, 30(12), 2544; https://doi.org/10.3390/molecules30122544 - 11 Jun 2025
Viewed by 919
Abstract
The depolymerization of lignin represents a promising strategy for its efficient utilization as a precursor for industrial raw materials. However, achieving both high efficiency and environmental sustainability remains a significant challenge. In this study, we present an aqueous electrochemical approach employing nickel as [...] Read more.
The depolymerization of lignin represents a promising strategy for its efficient utilization as a precursor for industrial raw materials. However, achieving both high efficiency and environmental sustainability remains a significant challenge. In this study, we present an aqueous electrochemical approach employing nickel as an electrocatalyst, enabling both depolymerization and partial de-aromatization of Kraft lignin under mild reaction conditions. Using an aqueous sodium carbonate medium, room temperature and ambient pressure, we achieved lignin depolymerization over reaction times ranging from 5 to 20 h. Characterization by nuclear magnetic resonance (NMR) spectroscopy confirmed the formation of aliphatic products such as acetate and formate, while high-resolution mass spectrometry (HRMS) confirmed the formation of a wide range of phenolic compounds. The conversion of lignin into valuable aromatic and aliphatic compounds offers a promising pathway for the synthesis of a wide range of organic chemicals and their subsequent industrial utilization, thereby supporting the development of a more sustainable economy. Full article
(This article belongs to the Special Issue Advances in Biomass Chemicals: Transformation and Valorization)
Show Figures

Figure 1

13 pages, 1739 KiB  
Article
Impact of Magnetic Biostimulation and Environmental Conditions on the Agronomic Quality and Bioactive Composition of INIA 601 Purple Maize
by Tony Chuquizuta, Cesar Lobato, Franz Zirena Vilca, Nils Leander Huamán-Castilla, Wilson Castro, Marta Castro-Giraldez, Pedro J. Fito, Segundo G. Chavez and Hubert Arteaga
Foods 2025, 14(12), 2045; https://doi.org/10.3390/foods14122045 - 10 Jun 2025
Viewed by 687
Abstract
The utilization of magnetic fields in agricultural contexts has been demonstrated to exert a beneficial effect on various aspects of crop development, including germination, growth, and yield. The present study investigates the impact of magnetic biostimulation on seeds of purple maize (Zea [...] Read more.
The utilization of magnetic fields in agricultural contexts has been demonstrated to exert a beneficial effect on various aspects of crop development, including germination, growth, and yield. The present study investigates the impact of magnetic biostimulation on seeds of purple maize (Zea mays L.), variety INIA 601, cultivated in Cajamarca, Peru, with a particular focus on their physical characteristics, yield, bioactive compounds, and antioxidant activity. The results demonstrated that seeds treated with pulsed (8 mT at 30 Hz for 30 min) and static (50 mT for 30 min) magnetic fields exhibited significantly longer cobs (16.89 and 16.53 cm, respectively) compared with the untreated control (15.79 cm). Furthermore, the application of these magnetic fields resulted in enhanced antioxidant activity in the bract, although the untreated samples exhibited higher values (110.56 µg/mL) compared with the pulsed (91.82 µg/mL) and static (89.61 µg/mL) treatments. The geographical origin of the samples had a significant effect on the physical development and the amount of total phenols, especially the antioxidant activity in the coronet and bract. Furthermore, a total of fourteen phenols were identified in various parts of the purple maize, with procyanidin B2 found in high concentrations in the bract and crown. Conversely, epicatechin, kaempferol, vanillin, and resveratrol were found in lower concentrations. These findings underscore the phenolic diversity of INIA 601 purple maize and its potential application in the food and pharmaceutical industries, suggesting that magnetic biostimulation could be an effective tool to improve the nutritional and antioxidant properties of crops. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

19 pages, 3792 KiB  
Article
Experiment and Simulation of the Non-Catalytic Reforming of Biomass Gasification Producer Gas for Syngas Production
by Yongbin Wang, Guoqiang Cao, Zhongren Ba, Hao Cheng, Donghai Hu, Jonas Baltrusaitis, Chunyu Li, Jiantao Zhao and Yitian Fang
Energies 2025, 18(11), 2945; https://doi.org/10.3390/en18112945 - 3 Jun 2025
Viewed by 458
Abstract
Among biomass gasification syngas cleaning methods, non-catalytic reforming emerges as a sustainable and high-efficiency alternative. This study employed integrated experimental analysis and kinetic modeling to examine non-catalytic reforming processes of biomass-derived producer gas utilizing a synthetic tar mixture containing representative model compounds: naphthalene [...] Read more.
Among biomass gasification syngas cleaning methods, non-catalytic reforming emerges as a sustainable and high-efficiency alternative. This study employed integrated experimental analysis and kinetic modeling to examine non-catalytic reforming processes of biomass-derived producer gas utilizing a synthetic tar mixture containing representative model compounds: naphthalene (C10H8), toluene (C7H8), benzene (C6H6), and phenol (C6H5OH). The experiments were conducted using a high-temperature fixed-bed reactor under varying temperatures (1100–1500 °C) and equivalence ratios (ERs, 0.10–0.30). The results obtained from the experiment, namely the measured mole concentration of H2, CO, CH4, CO2, H2O, soot, and tar suggested that both reactor temperature and O2 content had an important effect. Increasing the temperature significantly promotes the formation of H2 and CO. At 1500 °C and a residence time of 0.01 s, the product gas achieved CO and H2 concentrations of 28.02% and 34.35%, respectively, while CH4, tar, and soot were almost entirely converted. Conversely, the addition of O2 reduces the concentrations of H2 and CO. Increasing ER from 0.10 to 0.20 could reduce CO from 22.25% to 16.11%, and H2 from 13.81% to 10.54%, respectively. Experimental results were used to derive a kinetic model to accurately describe the non-catalytic reforming of producer gas. Furthermore, the maximum of the Root Mean Square Error (RMSE) and the Relative Root Mean Square Error (RRMSE) between the model predictions and experimental data are 2.42% and 11.01%, respectively. In particular, according to the kinetic model, the temperature increases predominantly accelerated endothermic reactions, including the Boudouard reaction, water gas reaction, and CH4 steam reforming, thereby significantly enhancing CO and H2 production. Simultaneously, O2 content primarily influenced carbon monoxide oxidation, hydrogen oxidation, and partial carbon oxidation. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
Show Figures

Figure 1

21 pages, 307 KiB  
Article
Effect of Dietary Addition of Blueberry (Vaccinium corymbosum) Powder on Fattening Performance, Meat Quality, Oxidative Stability and Storage Quality in Japanese Quails (Coturnix coturnix japonica)
by Shaistah Naimati, Sibel Canoğulları Doğan, Muhammad Umair Asghar and Qurat Ul Ain Sajid
Animals 2025, 15(11), 1633; https://doi.org/10.3390/ani15111633 - 2 Jun 2025
Viewed by 788
Abstract
This study was conducted to investigate the effects of dietary addition of blueberry (Vaccinium corymbosum) powder on the growth performance, meat quality, oxidative stability and cold storage quality of Japanese quails (Coturnix coturnix japonica). In this research, 480 quail [...] Read more.
This study was conducted to investigate the effects of dietary addition of blueberry (Vaccinium corymbosum) powder on the growth performance, meat quality, oxidative stability and cold storage quality of Japanese quails (Coturnix coturnix japonica). In this research, 480 quail chicks were divided into four experimental groups, and each experimental group was composed of four replicates, each containing 30 quail chicks. Commercial feed was used in the study, but BBP was added to the feed at levels of 0%, 1%, 2% and 4%. Results showed that dietary addition of blueberry powder did not affect body weight gain, feed consumption and feed conversion ratio (p > 0.05). No significant difference was observed between hot and cold carcass weights and carcass yield among carcass parameters (p > 0.05). However, significant differences were found among the blueberry-supplemented groups in terms of thigh, back and neck ratios (p < 0.05). In this study, it was determined that thiobarbituric acid (TBA), pH and peroxide values in breast meat samples kept at +4 °C for 1, 3, 5 and 7 days were lower in the blueberry-supplemented groups compared to the control group and these values decreased linearly as the supplement level increased (p < 0.05). The addition of blueberries to the quail diets resulted in similar L, a and b values in breast and thigh meat and skin among the groups (p > 0.05) except for the b value in thigh meat (p < 0.05). The findings obtained in this study revealed that although adding blueberries to the quail diet did not have a significant effect on performance, the antioxidant activity and phenolic substance content of the plant had a significant effect on increasing the shelf life of meat. It was concluded that blueberry could be used as a natural additive that may replace synthetic antioxidants. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
18 pages, 4206 KiB  
Article
Multi-Omics and Functional Insights into Triterpenoid Biosynthesis Pathways in Neopicrorhiza scrophulariiflora (Pennell) D.Y.Hong
by Pinhan Zhou, Juan Wang, Chaohui Li, Lesong Li, Luyuan Duan, Weihao Wang, Xirui Liu, Khadija Tehseen Arshad, Yanli Liang and Yan Zhao
Plants 2025, 14(10), 1562; https://doi.org/10.3390/plants14101562 - 21 May 2025
Viewed by 548
Abstract
Neopicrorhiza scrophulariiflora (Pennell) D.Y.Hong, an endangered perennial herb, is rich in triterpenes, iridoids, and phenolic compounds, which exhibit significant pharmacological effects. However, the molecular mechanisms of triterpenoid biosynthesis in N. scrophulariiflora remain unclear. Here, transcriptomic and metabolomic analyses were performed to investigate the [...] Read more.
Neopicrorhiza scrophulariiflora (Pennell) D.Y.Hong, an endangered perennial herb, is rich in triterpenes, iridoids, and phenolic compounds, which exhibit significant pharmacological effects. However, the molecular mechanisms of triterpenoid biosynthesis in N. scrophulariiflora remain unclear. Here, transcriptomic and metabolomic analyses were performed to investigate the triterpene content in different tissues and the expression patterns of key enzyme-encoding genes related to triterpenoid biosynthesis. We functionally characterized eight upstream oxidosqualene cyclases (OSCs) involved in triterpenoid biosynthesis, among which NsOSC2 is a bifunctional enzyme capable of catalyzing the conversion of 2,3-oxidosqualene to β-amyrin and α-amyrin. Additionally, an efficient regeneration system and a stable genetic transformation system were established for N. scrophulariiflora. These findings reveal key genes in triterpenoid biosynthesis, providing a theoretical foundation for the future production of key triterpenoids in N. scrophulariiflora through synthetic biology approaches. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

Back to TopTop