Fungal Coculture: Unlocking the Potential for Efficient Bioconversion of Lignocellulosic Biomass
Abstract
:1. Introduction
2. Importance and Potential of Biomass
3. CAZYmes and Their Mode of Action in Plant Cell Wall Degradation
3.1. Plant Cell Wall Polymer Components
3.2. Enzymatic Degradation of the Plant Cell Wall
4. Limitations in Fungal Monoculture-Based Lignocellulose Biodegradation Approaches
5. Fungal Coculture
6. Transcriptomic Analysis in Mono- and Coculture Systems
6.1. Transcriptome Analysis of Fungal Monoculture
6.2. Transcriptome Analysis of Fungal Coculture
Challenges in Transcriptomic Analysis of Fungal Coculture
7. Proteomic Analysis of Mono- and Cocultures
8. Integration of Multi-Omics Data
9. Advances in Genetic Engineering and Synthetic Biology for Fungal Strain Optimization
10. Consolidated Bioprocessing in the Context of Fungal Cocultures
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, S.J.; Alexander, K.; Moreno-Cruz, J.; Hong, C.; Shaner, M.; Caldeira, K.; McKay, I. Food without agriculture. Nat. Sustain. 2024, 7, 90–95. [Google Scholar] [CrossRef]
- Bhatti, U.A.; Bhatti, M.A.; Tang, H.; Syam, M.; Awwad, E.M.; Sharaf, M.; Ghadi, Y.Y. Global production patterns: Understanding the relationship between greenhouse gas emissions, agriculture greening and climate variability. Environ. Res. 2024, 245, 118049. [Google Scholar] [CrossRef]
- UNFCCC. Paris Agreement, Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris); HeinOnline: Getzville, NY, USA, 2015; p. 2. [Google Scholar]
- Welsby, D.; Price, J.; Pye, S.; Ekins, P. Unextractable fossil fuels in a 1.5 C world. Nature 2021, 597, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, A.; Forster, P.M. Estimated human-induced warming from a linear temperature and atmospheric CO2 relationship. Nat. Geosci. 2024, 17, 1222–1224. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; Ötvös, T.; Ghanem, C.; Rocca, E.; Gilmanova, A. International Energy Agency; Kluwer Law International: Alphen aan den Rijn, The Netherlands, 2021; 248p. [Google Scholar]
- Joyia, M.A.K.; Ahmad, M.; Chen, Y.-F.; Mustaqeem, M.; Ali, A.; Abbas, A.; Gondal, M.A. Trends and advances in sustainable bioethanol production technologies from first to fourth generation: A critical review. Energy Convers. Manag. 2024, 321, 119037. [Google Scholar] [CrossRef]
- Liers, C.; Arnstadt, T.; Ullrich, R.; Hofrichter, M. Patterns of lignin degradation and oxidative enzyme secretion by different wood-and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol. Ecol. 2011, 78, 91–102. [Google Scholar] [CrossRef]
- Fukasawa, Y. Ecological impacts of fungal wood decay types: A review of current knowledge and future research directions. Ecol. Res. 2021, 36, 910–931. [Google Scholar] [CrossRef]
- Tata, A.; Perez, C.; Campos, M.L.; Bayfield, M.A.; Eberlin, M.N.; Ifa, D.R. Imprint desorption electrospray ionization mass spectrometry imaging for monitoring secondary metabolites production during antagonistic interaction of fungi. Anal. Chem. 2015, 87, 12298–12305. [Google Scholar] [CrossRef]
- Knowles, S.L.; Raja, H.A.; Roberts, C.D.; Oberlies, N.H. Fungal–fungal co-culture: A primer for generating chemical diversity. Nat. Prod. Rep. 2022, 39, 1557–1573. [Google Scholar] [CrossRef]
- Stierle, A.A.; Stierle, D.B.; Decato, D.; Priestley, N.D.; Alverson, J.B.; Hoody, J.; McGrath, K.; Klepacki, D. The berkeleylactones, antibiotic macrolides from fungal coculture. J. Nat. Prod. 2017, 80, 1150–1160. [Google Scholar] [CrossRef]
- Selegato, D.M.; Castro-Gamboa, I. Enhancing chemical and biological diversity by co-cultivation. Front. Microbiol. 2023, 14, 1117559. [Google Scholar] [CrossRef]
- Bugge, M.M.; Hansen, T.; Klitkou, A. What is the bioeconomy? A review of the literature. Sustainability 2016, 8, 691. [Google Scholar] [CrossRef]
- Siegel, K.M.; Deciancio, M.; Kefeli, D.; de Queiroz-Stein, G.; Dietz, T. Fostering transitions towards sustainability? The politics of bioeconomy development in Argentina, Uruguay, and Brazil. Bull. Lat. Am. Res. 2022, 41, 541–556. [Google Scholar] [CrossRef]
- de Queiroz-Stein, G.; Martinelli, F.S.; Dietz, T.; Siegel, K.M. Disputing the bioeconomy-biodiversity nexus in Brazil: Coalitions, discourses and policies. For. Policy Econ. 2024, 158, 103101. [Google Scholar] [CrossRef]
- Valli, M.; Russo, H.M.; Bolzani, V.S. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy. An. Acad. Bras. Ciênc. 2018, 90, 763–778. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, D.; Zerbini, O.; Pinho, P.; Moutinho, P. The Amazon bioeconomy: Beyond the use of forest products. Ecol. Econ. 2022, 199, 107448. [Google Scholar] [CrossRef]
- Costa, F.d.A.; Nobre, C.; Genin, C.; Frasson, C.M.R.; Fernandes, D.A.; Silva, H.; Vicente, I.; Santos, I.T.; Feltran-Barbieri, R.; Ventura Neto, R.; et al. Bioeconomy for the Amazon: Concepts, limits, and trends for a proper definition of the tropical forest biome. Working paper; WRI Brasil: São Paulo, Brazil, 2022. [Google Scholar]
- Carroll, A.; Somerville, C. Cellulosic biofuels. Annu. Rev. Plant Biol. 2009, 60, 165–182. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Chandramughi, V.; Kumar, G.; Ngamcharussrivichai, C.; Piechota, G.; Igliński, B.; Kothari, R.; Chen, W.-H. Advancements in lignocellulosic biomass: A critical appraisal of fourth-generation biofuels and value-added bioproduct. Fuel 2024, 365, 130751. [Google Scholar] [CrossRef]
- O’Hara, I.M. The sugarcane industry, biofuel, and bioproduct perspectives. In Sugarcane-Based Biofuels and Bioproducts; O’Hara, I.M., Mundree, S.G., Eds.; John Wiley & Sns, Inc.: Hoboken, NJ, USA, 2016; pp. 1–22. [Google Scholar]
- Karp, S.G.; Medina, J.D.; Letti, L.A.; Woiciechowski, A.L.; de Carvalho, J.C.; Schmitt, C.C.; de Oliveira Penha, R.; Kumlehn, G.S.; Soccol, C.R. Bioeconomy and biofuels: The case of sugarcane ethanol in Brazil. Biofuels Bioprod. Biorefining 2021, 15, 899–912. [Google Scholar] [CrossRef]
- Chandel, A.K.; Forte, M.B.; Gonçalves, I.S.; Milessi, T.S.; Arruda, P.V.; Carvalho, W.; Mussatto, S.I. Brazilian biorefineries from second generation biomass: Critical insights from industry and future perspectives. Biofuels Bioprod. Biorefining 2021, 15, 1190–1208. [Google Scholar] [CrossRef]
- Ferreira, R.G.; Azzoni, A.R.; Freitas, S. On the production cost of lignocellulose-degrading enzymes. Biofuels Bioprod. Biorefining 2021, 15, 85–99. [Google Scholar] [CrossRef]
- Peláez, R.D.R.; Wischral, D.; Mendes, T.D.; Pacheco, T.F.; Urben, A.F.; Helm, C.V.; Mendonça, S.; Balan, V.; de Siqueira, F.G. Co-culturing of micro- and macro-fungi for producing highly active enzyme cocktail for producing biofuels. Bioresour. Technol. Rep. 2021, 16, 100833. [Google Scholar] [CrossRef]
- Druzhinina, I.S.; Kubicek, C.P. Genetic engineering of Trichoderma reesei cellulases and their production. Microb. Biotechnol. 2017, 10, 1485–1499. [Google Scholar] [CrossRef] [PubMed]
- Saini, J.K.; Singhania, R.R.; Satlewal, A.; Saini, R.; Gupta, R.; Tuli, D.; Mathur, A.; Adsul, M. Improvement of wheat straw hydrolysis by cellulolytic blends of two Penicillium spp. Renew. Energy 2016, 98, 43–50. [Google Scholar]
- Contato, A.G.; Nogueira, K.M.V.; Buckeridge, M.S.; Silva, R.N.; Polizeli, M.d.L.T.d.M. Trichoderma longibrachiatum and Thermothelomyces thermophilus co-culture: Improvement the saccharification profile of different sugarcane bagasse varieties. Biotechnol. Lett. 2023, 45, 1093–1102. [Google Scholar] [CrossRef]
- Rocha, L.M.; Campanhol, B.S.; Bastos, R.G. Solid-state cultivation of Aspergillus niger–Trichoderma reesei from sugarcane bagasse with vinasse in bench packed-bed column bioreactor. Appl. Biochem. Biotechnol. 2021, 193, 2983–2992. [Google Scholar] [CrossRef]
- Arantes, V.; Las-Casas, B.; Dias, I.K.; Yupanqui-Mendoza, S.L.; Nogueira, C.F.; Marcondes, W.F. Enzymatic approaches for diversifying bioproducts from cellulosic biomass. Chem. Commun. 2024, 60, 9704–9732. [Google Scholar] [CrossRef]
- Heinze, T. Cellulose: Structure and properties. In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Rojas, O., Ed.; Advances in Polymer Science Book 271; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Carpita, N.C.; McCann, M.C. Redesigning plant cell walls for the biomass-based bioeconomy. J. Biol. Chem. 2020, 295, 15144–15157. [Google Scholar] [CrossRef]
- Qaseem, M.F.; Wu, A.-M. Balanced xylan acetylation is the key regulator of plant growth and development, and cell wall structure and for industrial utilization. Int. J. Mol. Sci. 2020, 21, 7875. [Google Scholar] [CrossRef]
- Tryfona, T.; Bourdon, M.; Delgado Marques, R.; Busse-Wicher, M.; Vilaplana, F.; Stott, K.; Dupree, P. Grass xylan structural variation suggests functional specialization and distinctive interaction with cellulose and lignin. Plant J. 2023, 113, 1004–1020. [Google Scholar] [CrossRef]
- Voiniciuc, C. Modern mannan: A hemicellulose’s journey. New Phytol. 2022, 234, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Mafa, M.S.; Malgas, S. Towards an understanding of the enzymatic degradation of complex plant mannan structures. World J. Microbiol. Biotechnol. 2023, 39, 302. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Líter, J.A.; de Eugenio, L.I.; Nieto-Domínguez, M.; Prieto, A.; Martínez, M.J. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review. Bioresour. Technol. 2021, 324, 124623. [Google Scholar] [CrossRef]
- Zhong, R.; Zhou, D.; Chen, L.; Rose, J.P.; Wang, B.-C.; Ye, Z.-H. Plant Cell Wall Polysaccharide O-Acetyltransferases. Plants 2024, 13, 2304. [Google Scholar] [CrossRef]
- Shahin, L.; Zhang, L.; Mohnen, D.; Urbanowicz, B.R. Insights into pectin O-acetylation in the plant cell wall: Structure, synthesis, and modification. Cell Surf. 2023, 9, 100099. [Google Scholar] [CrossRef]
- Delmer, D.; Dixon, R.A.; Keegstra, K.; Mohnen, D. The plant cell wall—Dynamic, strong, and adaptable—Is a natural shapeshifter. Plant Cell 2024, 36, 1257–1311. [Google Scholar] [CrossRef]
- Tocco, D.; Carucci, C.; Monduzzi, M.; Salis, A.; Sanjust, E. Recent developments in the delignification and exploitation of grass lignocellulosic biomass. ACS Sustain. Chem. Eng. 2021, 9, 2412–2432. [Google Scholar] [CrossRef]
- Kirui, A.; Zhao, W.; Deligey, F.; Yang, H.; Kang, X.; Mentink-Vigier, F.; Wang, T. Carbohydrate-aromatic interface and molecular architecture of lignocellulose. Nat. Commun. 2022, 13, 538. [Google Scholar] [CrossRef]
- Shah, R.S.; Senanayake, M.; Zhang, H.-H.; Pu, Y.; Biswal, A.K.; Pingali, S.V.; Davison, B.; O’Neill, H. Evidence for lignin–carbohydrate complexes from studies of transgenic switchgrass and a model lignin–pectin composite. ACS Sustain. Chem. Eng. 2023, 11, 15941–15950. [Google Scholar] [CrossRef]
- Tarasov, D.; Leitch, M.; Fatehi, P. Lignin–carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnol. Biofuels. 2018, 11, 269. [Google Scholar] [CrossRef]
- Cheng, K.; Zhou, Y.; Neelamegham, S. DrawGlycan-SNFG: A robust tool to render glycans and glycopeptides with fragmentation information. Glycobiology 2017, 27, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Levasseur, A.; Drula, E.; Lombard, V.; Coutinho, P.M.; Henrissat, B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 2013, 6, 41. [Google Scholar] [CrossRef]
- Navarro, D.; Chaduli, D.; Taussac, S.; Lesage-Meessen, L.; Grisel, S.; Haon, M.; Callac, P.; Courtecuisse, R.; Decock, C.; Dupont, J.; et al. Large-scale phenotyping of 1000 fungal strains for the degradation of non-natural, industrial compounds. Commun. Biol. 2021, 4, 871. [Google Scholar] [CrossRef]
- Drula, E.; Garron, M.-L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 2022, 50, D571–D577. [Google Scholar] [CrossRef] [PubMed]
- Houfani, A.A.; Anders, N.; Spiess, A.C.; Baldrian, P.; Benallaoua, S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars—A review. Biomass Bioenergy 2020, 134, 105481. [Google Scholar] [CrossRef]
- Li, J.; Wiebenga, A.; Lipzen, A.; Ng, V.; Tejomurthula, S.; Zhang, Y.; Grigoriev, I.V.; Peng, M.; de Vries, R.P. Comparative genomics and transcriptomics analyses reveal divergent plant biomass-degrading strategies in fungi. J. Fungi 2023, 9, 860. [Google Scholar] [CrossRef]
- Long, L.; Hu, Y.; Sun, F.; Gao, W.; Hao, Z.; Yin, H. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery. Int. J. Biol. Macromol. 2022, 219, 68–83. [Google Scholar] [CrossRef]
- Katsimpouras, C.; Dedes, G.; Thomaidis, N.S.; Topakas, E. A novel fungal GH30 xylanase with xylobiohydrolase auxiliary activity. Biotechnol. Biofuels 2019, 12, 120. [Google Scholar] [CrossRef]
- Larsbrink, J.; Lo Leggio, L. Glucuronoyl esterases–enzymes to decouple lignin and carbohydrates and enable better utilization of renewable plant biomass. Essays Biochem. 2023, 67, 493–503. [Google Scholar]
- Puchart, V.; Berrin, J.-G.; Haon, M.; Biely, P. A unique CE16 acetyl esterase from Podospora anserina active on polymeric xylan. Appl. Microbiol. Biotechnol. 2015, 99, 10515–10526. [Google Scholar] [CrossRef]
- Capetti, C.C.d.M.; Dabul, A.N.G.; Pellegrini, V.d.O.A.; Polikarpov, I. Mannanases and other mannan-degrading enzymes. In Glycoside Hydrolases: Biochemistry, Biophysics, and Biotechnology; Elsevier Inc.: Amsterdam, The Netherlands, 2023; pp. 279–293. [Google Scholar]
- Liu, B.; Krishnaswamyreddy, S.; Muraleedharan, M.N.; Olson, Å.; Broberg, A.; Ståhlberg, J.; Sandgren, M. Side-by-side biochemical comparison of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare on their activity against crystalline cellulose and glucomannan. PLoS ONE 2018, 13, e0203430. [Google Scholar] [CrossRef] [PubMed]
- Vieira, P.S.; Bonfim, I.M.; Araujo, E.A.; Melo, R.R.; Lima, A.R.; Fessel, M.R.; Paixão, D.A.; Persinoti, G.F.; Rocco, S.A.; Lima, T.B.; et al. Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nat. Commun. 2021, 12, 4049. [Google Scholar] [CrossRef]
- Matsuzawa, T.; Watanabe, M.; Nakamichi, Y.; Fujimoto, Z.; Yaoi, K. Crystal structure and substrate recognition mechanism of Aspergillus oryzae isoprimeverose-producing enzyme. J. Struct. Biol. 2019, 205, 84–90. [Google Scholar] [CrossRef]
- Matsuzawa, T.; Watanabe, M.; Nakamichi, Y.; Kameyama, A.; Kojima, N.; Yaoi, K. Characterization of an extracellular α-xylosidase involved in xyloglucan degradation in Aspergillus oryzae. Appl. Microbiol. Biotechnol. 2022, 106, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Vieira Monclaro, A.; Petrović, D.; Alves, G.S.C.; Costa, M.M.C.; Midorikawa, G.E.O.; Miller, R.N.G.; Filho, E.X.F.; Eijsink, V.G.H.; Varnai, A. Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity. PLoS ONE 2020, 15, e0235642. [Google Scholar] [CrossRef] [PubMed]
- Goldenkova-Pavlova, I.V.; Tyurin, A.A.; Mustafaev, O.N. The features that distinguish lichenases from other polysaccharide-hydrolyzing enzymes and the relevance of lichenases for biotechnological applications. Appl. Microbiol. Biotechnol. 2018, 102, 3951–3965. [Google Scholar] [CrossRef]
- de Souza, T.S.; Kawaguti, H.Y. Cellulases, hemicellulases, and pectinases: Applications in the food and beverage industry. Food Bioproc. Technol. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Mäkelä, M.R.; Bredeweg, E.L.; Magnuson, J.K.; Baker, S.E.; De Vries, R.P.; Hildén, K. Fungal ligninolytic enzymes and their applications. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Venkatesagowda, B.; Dekker, R.F.H. Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups. Enzym. Microb. Technol. 2021, 147, 109780. [Google Scholar] [CrossRef]
- Hernández-Ortega, A.; Ferreira, P.; Martínez, A.T. Fungal aryl-alcohol oxidase: A peroxide-producing flavoenzyme involved in lignin degradation. Appl. Microbiol. Biotechnol. 2012, 93, 1395–1410. [Google Scholar] [CrossRef]
- Bugg, T.D.H. The chemical logic of enzymatic lignin degradation. Chem. Commun. 2024, 60, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Välimets, S.; Sun, P.; Virginia, L.J.; van Erven, G.; Sanders, M.G.; Kabel, M.A.; Peterbauer, C. Characterization of Amycolatopsis 75iv2 dye-decolorizing peroxidase on O-glycosides. Appl. Environ. Microbiol. 2024, 90, e00205-24. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gao, T.; Zhang, Y.; Wang, S.; Li, H.; Li, S.; Wang, S. Degradation of the phenolic β-ether lignin model dimer and dyes by dye-decolorizing peroxidase from Bacillus amyloliquefaciens. Biotechnol. Lett. 2019, 41, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- de OG Silva, C.; Sun, P.; Barrett, K.; Sanders, M.G.; van Berkel, W.J.; Kabel, M.A.; Meyer, A.S.; Agger, J.W. Polyphenol oxidase activity on guaiacyl and syringyl lignin units. Angew. Chem. 2024, 63, e202409324. [Google Scholar] [CrossRef]
- Harmon, M.E.; Hua, C. Coarse woody debris dynamics in two old-growth ecosystems. BioScience 1991, 41, 604–610. [Google Scholar] [CrossRef]
- Stokland, J.N. Wood Decomposition. Biodiversity in Dead-Wood; Cambridge University Press: London, UK, 2012; 509p. [Google Scholar]
- Ohm, R.A.; Riley, R.; Salamov, A.; Min, B.; Choi, I.-G.; Grigoriev, I.V. Genomics of wood-degrading fungi. Fungal Genet. Biol. 2014, 72, 82–90. [Google Scholar] [CrossRef]
- Sista Kameshwar, A.K.; Qin, W. Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology 2017, 9, 93–105. [Google Scholar] [CrossRef]
- Couturier, M.; Bennati-Granier, C.; Urio, M.B.; Ramos, L.P.; Berrin, J.-G. Fungal enzymatic degradation of cellulose. In Green Fuels Technology. Gree Energy and Technology; Soccol, C., Brar, S., Faulds, C., Ramos, L., Eds.; Springer: Cham, 2016; pp. 133–146. [Google Scholar]
- Bennett, R.J.; Turgeon, B.G. Fungal sex: The Ascomycota. Microb. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- He, M.-Q.; Zhao, R.-L.; Liu, D.-M.; Denchev, T.T.; Begerow, D.; Yurkov, A.; Kemler, M.; Millanes, A.M.; Wedin, M.; McTaggart, A.R. Species diversity of Basidiomycota. Fungal Divers. 2022, 114, 281–325. [Google Scholar] [CrossRef]
- Riley, R.; Salamov, A.A.; Brown, D.W.; Nagy, L.G.; Floudas, D.; Held, B.W.; Levasseur, A.; Lombard, V.; Morin, E.; Otillar, R.; et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl. Acad. Sci. USA 2014, 111, 9923–9928. [Google Scholar] [CrossRef]
- Andlar, M.; Rezić, T.; Marđetko, N.; Kracher, D.; Ludwig, R.; Šantek, B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng. Life Sci. 2018, 18, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Schilling, J.S.; Kaffenberger, J.T.; Held, B.W.; Ortiz, R.; Blanchette, R.A. Using wood rot phenotypes to illuminate the “gray” among decomposer fungi. Front. Microbiol. 2020, 11, 1288. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.-X.; Steenwyk, J.L.; LaBella, A.L.; Opulente, D.A.; Zhou, X.; Kominek, J.; Li, Y.; Groenewald, M.; Hittinger, C.T.; Rokas, A. Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota. Sci. Adv. 2020, 6, eabd0079. [Google Scholar] [CrossRef]
- De Vries, R.P.; Riley, R.; Wiebenga, A.; Aguilar-Osorio, G.; Amillis, S.; Uchima, C.A.; Anderluh, G.; Asadollahi, M.; Askin, M.; Barry, K.; et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 2017, 18, 28. [Google Scholar] [CrossRef]
- Kubicek, C.P. Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J. Biotechnol. 2013, 163, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Dueñas, F.J.; Barrasa, J.M.; Sánchez-García, M.; Camarero, S.; Miyauchi, S.; Serrano, A.; Linde, D.; Babiker, R.; Drula, E.; Ayuso-Fernández, I.; et al. Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Mol. Biol. Evol. 2021, 38, 1428–1446. [Google Scholar] [CrossRef]
- Mattila, H.; Österman-Udd, J.; Mali, T.; Lundell, T. Basidiomycota fungi and ROS: Genomic perspective on key enzymes involved in generation and mitigation of reactive oxygen species. Front. Fungal Biol. 2022, 3, 837605. [Google Scholar] [CrossRef]
- Boddy, L. Fungal community ecology and wood decomposition processes in angiosperms: From standing tree to complete decay of coarse woody debris. Ecol. Bull. 2001, 49, 43–56. [Google Scholar]
- Sperandio, G.B.; Filho, E.X.F. Fungal co-cultures in the lignocellulosic biorefinery context: A review. Int. Biodeterior. Biodegrad. 2019, 142, 109–123. [Google Scholar] [CrossRef]
- Yao, L.; Zhu, L.-P.; Xu, X.-Y.; Tan, L.-L.; Sadilek, M.; Fan, H.; Hu, B.; Shen, X.-T.; Yang, J.; Qiao, B.; et al. Discovery of novel xylosides in co-culture of basidiomycetes Trametes versicolor and Ganoderma applanatum by integrated metabolomics and bioinformatics. Sci. Rep. 2016, 6, 33237. [Google Scholar] [CrossRef]
- Gavenauskas, M.; Iršėnaitė, R.; Motiejūnaitė, J. Interactions between fungi and other microorganisms for better fungal products: A review. Biologija 2024, 70, 147–157. [Google Scholar] [CrossRef]
- Ueda, K.; Beppu, T. Antibiotics in microbial coculture. J. Antibiot. 2017, 70, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Sun, Y.; Han, H.; Yan, X.; Wang, Y.; Ge, X.; Qiao, B.; Tan, L. Coculture, an efficient biotechnology for mining the biosynthesis potential of macrofungi via interspecies interactions. Front. Microbiol. 2021, 12, 663924. [Google Scholar] [CrossRef]
- Ahamed, A.; Vermette, P. Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem. Eng. J. 2008, 42, 41–46. [Google Scholar] [CrossRef]
- Kolasa, M.; Ahring, B.K.; Lübeck, P.S.; Lübeck, M. Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production. Bioresour. Technol. 2014, 169, 143–148. [Google Scholar] [CrossRef]
- Madamwar, D.; Patel, S. Formation of cellulases by co-culturing of Trichoderma reesei and Aspergillus niger on cellulosic waste. World J. Microbiol. Biotechnol. 1992, 8, 183–186. [Google Scholar] [CrossRef]
- Sperandio, G.B.; Melo, R.M.; Gomes, T.G.; Miller, R.N.G.; do Vale, L.H.F.; Sousa, M.V.d.; Ricart, C.A.O.; Filho, E.X.F. Exploring the Synergistic Secretome: Insights from Co-Cultivation of Aspergillus brasiliensis and Trichoderma reesei RUT-C30. J. Fungi 2024, 10, 677. [Google Scholar] [CrossRef]
- Mittermeier, F.; Fischer, F.; Hauke, S.; Hirschmann, P.; Weuster-Botz, D. Valorization of wheat bran by co-cultivation of fungi with integrated hydrolysis to provide sugars and animal feed. BioTech 2024, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Ruan, Z. Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresour. Technol. 2015, 175, 586–593. [Google Scholar] [CrossRef]
- Ma, J.; Li, Q.; Wu, Y.; Yue, H.; Zhang, Y.; Zhang, J.; Shi, M.; Wang, S.; Liu, G.-Q. Elucidation of ligninolysis mechanism of a newly isolated white-rot basidiomycete Trametes hirsuta X-13. Biotechnol. Biofuels 2021, 14, 189. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Xu, C.; Pan, J.; Li, H.; Zhou, Y.; Zou, Y. Genome-wide analysis of the Pleurotus eryngii laccase gene (PeLac) family and functional identification of PeLac5. AMB Express 2023, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- van der Made, J.J.; Landis, E.A.; Deans, G.T.; Lai, R.A.; Chandran, K. Synergistic lignin degradation between Phanerochaete chrysosporium and Fenton chemistry is mediated through iron cycling and ligninolytic enzyme induction. Sci. Total Environ. 2023, 905, 166767. [Google Scholar] [CrossRef] [PubMed]
- Sperandio, G.B.; Filho, E.X.F. An overview of Trichoderma reesei co-cultures for the production of lignocellulolytic enzymes. Appl. Microbiol. Biotechnol. 2021, 105, 3019–3025. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.S.; Damasio, A.R.d.L.; Crnkovic, P.M.; Pinto, M.R.; Da Silva, A.M.; Da Silva, J.C.; Segato, F.; De Lucas, R.C.; Jorge, J.A.; Polizeli, M.d.L.d.M. Co-cultivation of Aspergillus nidulans recombinant strains produces an enzymatic cocktail as alternative to alkaline sugarcane bagasse pretreatment. Front. Microbiol. 2016, 7, 583. [Google Scholar] [CrossRef]
- Llamas, M.; Greses, S.; Magdalena, J.A.; González-Fernández, C.; Tomás-Pejó, E. Microbial co-cultures for biochemicals production from lignocellulosic biomass: A review. Bioresour. Technol. 2023, 386, 129499. [Google Scholar] [CrossRef]
- Singh, J.; Das, A.; Yogalakshmi, K. Enhanced laccase expression and azo dye decolourization during co-interaction of Trametes versicolor and Phanerochaete chrysosporium. SN Appl. Sci. 2020, 2, 1095. [Google Scholar] [CrossRef]
- Vučurović, D.; Bajić, B.; Trivunović, Z.; Dodić, J.; Zeljko, M.; Jevtić-Mučibabić, R.; Dodić, S. Biotechnological utilization of agro-industrial residues and by-products—Sustainable production of biosurfactants. Foods 2024, 13, 711. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Horta, M.A.C.; Vicentini, R.; Delabona, P.d.S.; Laborda, P.; Crucello, A.; Freitas, S.; Kuroshu, R.M.; Polikarpov, I.; Pradella, J.G.d.C.; Souza, A.P. Transcriptome profile of Trichoderma harzianum IOC-3844 induced by sugarcane bagasse. PLoS ONE 2014, 9, e88689. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Nguyen, T.T.; Reid, I.D.; Yanke, J.L.; Wang, P.; Abbott, D.W.; Tsang, A.; McAllister, T. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates. Front. Microbiol. 2018, 9, 1581. [Google Scholar] [CrossRef]
- Midorikawa, G.; Correa, C.; Noronha, E.; Filho, E.X.F.; Togawa, R.C.; Costa, M.M.D.C.; Silva-Junior, O.B.; Grynberg, P.; Miller, R.N.G. Analysis of the transcriptome in Aspergillus tamarii during enzymatic degradation of sugarcane bagasse. Front. Bioeng. Biotechnol. 2018, 6, 123. [Google Scholar] [CrossRef] [PubMed]
- Wijayawardene, N.N.; Boonyuen, N.; Ranaweera, C.B.; de Zoysa, H.K.; Padmathilake, R.E.; Nifla, F.; Dai, D.-Q.; Liu, Y.; Suwannarach, N.; Kumla, J. OMICS and other advanced technologies in mycological applications. J. Fungi 2023, 9, 688. [Google Scholar] [CrossRef]
- Kaur, J.; Murray, P.; Collins, C. Bioprospecting of novel and biologically active compounds and enzymes from a new fungal biobank for industrial biotechnology. Biotechnol. Environ. 2024, 1, 14. [Google Scholar] [CrossRef]
- de Souza, W.R.; de Gouvea, P.F.; Savoldi, M.; Malavazi, I.; de Souza Bernardes, L.A.; Goldman, M.H.S.; de Vries, R.P.; de Castro Oliveira, J.V.; Goldman, G.H. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnol. Biofuels 2011, 4, 40. [Google Scholar] [CrossRef]
- van Munster, J.M.; Daly, P.; Delmas, S.; Pullan, S.T.; Blythe, M.J.; Malla, S.; Kokolski, M.; Noltorp, E.C.; Wennberg, K.; Fetherston, R.; et al. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genet. Biol. 2014, 72, 34–47. [Google Scholar] [CrossRef] [PubMed]
- de Gouvêa, P.F.; Bernardi, A.V.; Gerolamo, L.E.; de Souza Santos, E.; Riaño-Pachón, D.M.; Uyemura, S.A.; Dinamarco, T.M. Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse. BMC Genom. 2018, 19, 232. [Google Scholar] [CrossRef]
- Corrêa, C.; Midorikawa, G.E.O.; Filho, E.X.F.; Noronha, E.F.; Alves, G.S.C.; Togawa, R.C.; Silva-Junior, O.B.; Costa, M.M.D.C.; Grynberg, P.; Miller, R.N.G. Transcriptome profiling-based analysis of carbohydrate-active enzymes in Aspergillus terreus involved in plant biomass degradation. Front. Bioeng. Biotechnol. 2020, 8, 564527. [Google Scholar] [CrossRef]
- Zhang, J.; Zhuo, X.; Wang, Q.; Ji, H.; Chen, H.; Hao, H. Effects of different nitrogen levels on lignocellulolytic enzyme production and gene expression under straw-state cultivation in Stropharia rugosoannulata. Int. J. Mol. Sci. 2023, 24, 10089. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, V.; Brás, J.L.A.; Costa, I.F.; Ferreira, L.M.A.; Gama, L.T.; Vincentelli, R.; Henrissat, B.; Fontes, C.M.G.A. Generation of a library of carbohydrate-active enzymes for plant biomass deconstruction. Int. J. Mol. Sci. 2022, 23, 4024. [Google Scholar] [CrossRef]
- Shelest, E. Transcription factors in fungi. FEMS Microbiol. Lett. 2008, 286, 145–151. [Google Scholar] [CrossRef]
- Song, H.-J.; Li, X.-F.; Pei, X.-R.; Sun, Z.-B.; Pan, H.-X. Transcription Factors in Biocontrol Fungi. J. Fungi 2025, 11, 223. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Gazara, R.K.; Verma, P.K. Transcription factor repertoire of necrotrophic fungal phytopathogen Ascochyta rabiei: Predominance of MYB transcription factors as potential regulators of secretome. Front. Plant Sci. 2017, 8, 1037. [Google Scholar] [CrossRef] [PubMed]
- Pasari, N.; Gupta, M.; Sinha, T.; Ogunmolu, F.E.; Yazdani, S.S. Systematic identification of CAZymes and transcription factors in the hypercellulolytic fungus Penicillium funiculosum NCIM1228 involved in lignocellulosic biomass degradation. Biotechnol. Biofuels Bioprod. 2023, 16, 150. [Google Scholar] [CrossRef] [PubMed]
- Benocci, T.; Aguilar-Pontes, M.V.; Zhou, M.; Seiboth, B.; de Vries, R.P. Regulators of plant biomass degradation in ascomycetous fungi. Biotechnol. Biofuels 2017, 10, 152. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Gao, R.; Li, J.; Ma, G.; Tian, C. CLR-4, a novel conserved transcription factor for cellulase gene expression in ascomycete fungi. Mol. Microbiol. 2019, 111, 373–394. [Google Scholar] [CrossRef]
- Cao, Y.; Zheng, F.; Zhang, W.; Meng, X.; Liu, W. Trichoderma reesei XYR1 recruits SWI/SNF to facilitate cellulase gene expression. Mol. Microbiol. 2019, 112, 1145–1162. [Google Scholar] [CrossRef]
- Cao, Y.; Zheng, F.; Wang, L.; Zhao, G.; Chen, G.; Zhang, W.; Liu, W. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei. Mol. Microbiol. 2017, 105, 65–83. [Google Scholar] [CrossRef]
- Wang, L.; Lv, X.; Cao, Y.; Zheng, F.; Meng, X.; Shen, Y.; Chen, G.; Liu, W.; Zhang, W. A novel transcriptional regulator RXE1 modulates the essential transactivator XYR1 and cellulase gene expression in Trichoderma reesei. Appl. Microbiol. Biotechnol. 2019, 103, 4511–4523. [Google Scholar] [CrossRef]
- Zheng, F.; Cao, Y.; Wang, L.; Lv, X.; Meng, X.; Zhang, W.; Chen, G.; Liu, W. The mating type locus protein MAT1-2-1 of Trichoderma reesei interacts with Xyr1 and regulates cellulase gene expression in response to light. Sci. Rep. 2017, 7, 17346. [Google Scholar] [CrossRef]
- Marian, I.M.; Vonk, P.J.; Valdes, I.D.; Barry, K.; Bostock, B.; Carver, A.; Daum, C.; Lerner, H.; Lipzen, A.; Park, H.; et al. The transcription factor Roc1 is a key regulator of cellulose degradation in the wood-decaying mushroom Schizophyllum commune. mBio 2022, 13, e00628-22. [Google Scholar] [CrossRef]
- Chen, K.H.; Liao, H.L.; Arnold, A.E.; Korotkin, H.B.; Wu, S.H.; Matheny, P.B.; Lutzoni, F. Comparative transcriptomics of fungal endophytes in co-culture with their moss host Dicranum scoparium reveals fungal trophic lability and moss unchanged to slightly increased growth rates. New Phytol. 2022, 234, 1832–1847. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; He, X.; Guo, Y.; Wu, Z.; Zhao, J.; Liu, G.; Qu, Y. Combinatorial engineering of transcriptional activators in Penicillium oxalicum for improved production of corn-fiber-degrading enzymes. J. Agric. Food Chem. 2021, 69, 2539–2548. [Google Scholar] [CrossRef]
- Daly, P.; Van Munster, J.M.; Blythe, M.J.; Ibbett, R.; Kokolski, M.; Gaddipati, S.; Lindquist, E.; Singan, V.R.; Barry, K.W.; Lipzen, A.; et al. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments. Biotechnol. Biofuels 2017, 10, 35. [Google Scholar] [CrossRef]
- Klassert, T.E.; Hölzer, M.; Zubiria-Barrera, C.; Bethge, J.; Klaile, E.; Müller, M.M.; Marz, M.; Slevogt, H. Differential Transcriptional Responses of Human Granulocytes to Fungal Infection with Candida albicans and Aspergillus fumigatus. J. Fungi 2023, 9, 1014. [Google Scholar] [CrossRef] [PubMed]
- Maluleke, E.; Jolly, N.P.; Patterton, H.-G.; Setati, M.E. Unravelling the transcriptomic dynamics of Hyphopichia pseudoburtonii in co-culture with Botrytis cinerea. PLoS ONE 2025, 20, e0316713. [Google Scholar] [CrossRef] [PubMed]
- Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansa, H.A.; Aoki, T.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef]
- Bleichrodt, R.; Read, N. Flow cytometry and FACS applied to filamentous fungi. Fungal Biol. Rev. 2019, 33, 1–15. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Petrucelli, M.F.; Peronni, K.; Sanches, P.R.; Komoto, T.T.; Matsuda, J.B.; Silva, W.A.d., Jr.; Beleboni, R.O.; Martinez-Rossi, N.M.; Marins, M.; Fachin, A.L. Dual RNA-Seq analysis of Trichophyton rubrum and HaCat keratinocyte co-culture highlights important genes for fungal-host interaction. Genes 2018, 9, 362. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Cologna, N.M.D.; Gómez-Mendoza, D.P.; Zanoelo, F.F.; Giannesi, G.C.; Guimarães, N.C.A.; Moreira, L.R.S.; Filho, E.X.F.; Ricart, C.A.O. Exploring Trichoderma and Aspergillus secretomes: Proteomics approaches for the identification of enzymes of biotechnological interest. Enzym. Microb. Technol. 2018, 109, 1–10. [Google Scholar] [CrossRef]
- Gómez-Mendoza, D.P.; Junqueira, M.; do Vale, L.H.F.; Domont, G.B.; Ferreira Filho, E.X.; de Sousa, M.V.; Ricart, C.A.O. Secretomic survey of Trichoderma harzianum grown on plant biomass substrates. J. Proteome Res. 2014, 13, 1810–1822. [Google Scholar] [CrossRef]
- Gomes, H.A.; Moreira, L.R.; Júnior, A.C.; Fontes, W.; Santana, R.H.; Kruger, R.H.; de Sousa, M.V.; Ricart, C.A.O.; Filho, E.X.F. Evaluation of different secretomes produced by Clonostachys byssicola as tools to holocellulose breakdown. Int. Biodeterior. Biodeg. 2020, 148, 104880. [Google Scholar] [CrossRef]
- Da Silva, A.J.; Gómez-Mendoza, D.P.; Junqueira, M.; Domont, G.B.; Queiroz, R.M.L.; de Sousa, M.V.; Filho, E.X.F.; Ricart, C.A.O. Secretomic analysis reveals multi-enzymatic complexes in Trichoderma reesei grown in media containing lactose or galactose. Bioenergy Res. 2015, 8, 1906–1911. [Google Scholar] [CrossRef]
- Do Vale, L.H.; Gómez-Mendoza, D.P.; Kim, M.S.; Pandey, A.; Ricart, C.A.; Edivaldo, X.F.F.; Sousa, M.V. Secretome analysis of the fungus Trichoderma harzianum grown on cellulose. Proteomics 2012, 12, 2716–2728. [Google Scholar] [CrossRef] [PubMed]
- Catherman, A.D.; Skinner, O.S.; Kelleher, N.L. Top down proteomics: Facts and perspectives. Biochem. Biophys. Res. Commun. 2014, 445, 683–693. [Google Scholar] [CrossRef]
- Cassidy, L.; Kaulich, P.T.; Maaß, S.; Bartel, J.; Becher, D.; Tholey, A. Bottom-up and top-down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame-encoded peptides. Proteomics 2021, 21, e2100008. [Google Scholar] [CrossRef]
- Savas, J.N.; Stein, B.D.; Wu, C.C.; Yates, J.R. Mass spectrometry accelerates membrane protein analysis. Trends Biochem. Sci. 2011, 36, 388–396. [Google Scholar] [CrossRef]
- Ngounou Wetie, A.G.; Sokolowska, I.; Woods, A.G.; Roy, U.; Deinhardt, K.; Darie, C.C. Protein–protein interactions: Switch from classical methods to proteomics and bioinformatics-based approaches. Cell. Mol. Life Sci. 2014, 71, 205–228. [Google Scholar] [CrossRef]
- Chen, J.; Fang, M.; Li, Y.; Ding, H.; Zhang, X.; Jiang, X.; Zhang, J.; Zhang, C.; Lu, Z.; Luo, M. Cell surface protein–protein interaction profiling for biological network analysis and novel target discovery. Life Med. 2024, 3, lnae031. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Deng, L.; Fang, H. Mixed culture of recombinant Trichoderma reesei and Aspergillus niger for cellulase production to increase the cellulose degrading capability. Biomass Bioenergy 2018, 112, 93–98. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kubicek, C.P.; Berrin, J.-G.; Wilson, D.W.; Couturier, M.; Berlin, A.; Filho, E.X.F.; Ezeji, T. Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem. Sci. 2016, 41, 633–645. [Google Scholar] [CrossRef]
- Li, Z.; Shen, L.; Hou, Q.; Zhou, Z.; Mei, L.; Zhao, H.; Wen, X. Identification of genes and metabolic pathways involved in resin yield in masson pine by integrative analysis of transcriptome, proteome and biochemical characteristics. Int. J. Mol. Sci. 2022, 23, 11420. [Google Scholar] [CrossRef] [PubMed]
- Perco, P.; Mühlberger, I.; Mayer, G.; Oberbauer, R.; Lukas, A.; Mayer, B. Linking transcriptomic and proteomic data on the level of protein interaction networks. Electrophoresis 2010, 31, 1780–1789. [Google Scholar] [CrossRef]
- Haider, S.; Pal, R. Integrated analysis of transcriptomic and proteomic data. Curr. Genom. 2013, 14, 91–110. [Google Scholar] [CrossRef]
- Du, Y.; Clair, G.C.; Al Alam, D.; Danopoulos, S.; Schnell, D.; Kitzmiller, J.A.; Misra, R.S.; Bhattacharya, S.; Warburton, D.; Mariani, T.J. Integration of transcriptomic and proteomic data identifies biological functions in cell populations from human infant lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 317, L347–L360. [Google Scholar] [CrossRef]
- Chasman, D.; Walters, K.B.; Lopes, T.J.; Eisfeld, A.J.; Kawaoka, Y.; Roy, S. Integrating transcriptomic and proteomic data using predictive regulatory network models of host response to pathogens. PLoS Comput. Biol. 2016, 12, e1005013. [Google Scholar] [CrossRef]
- Garg, S.; Kim, M.; Romero-Suarez, D. Current advancements in fungal engineering technologies for Sustainable Development Goals. Trends Microbiol. 2025, 33, 285–301. [Google Scholar] [CrossRef]
- Kun, R.S.; Gomes, A.C.S.; Hildén, K.S.; Cerezo, S.S.; Mäkelä, M.R.; de Vries, R.P. Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation. Biotechnol. Adv. 2019, 37, 107361. [Google Scholar] [CrossRef]
- Jo, C.; Zhang, J.; Tam, J.M.; Church, G.M.; Khalil, A.S.; Segrè, D.; Tang, T.C. Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater. Today Bio 2023, 19, 100560. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Cerezo, S.; de Vries, R.P.; Garrigues, S. Strategies for the development of industrial fungal producing strains. J. Fungi 2023, 9, 834. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.-Q.; Li, C.; Lin, Y.; Wu, S.-S.; Gan, L.-H.; Liu, J.; Yang, S.-L.; Zeng, X.-H.; Lin, L. Cellulase production and efficient saccharification of biomass by a new mutant Trichoderma afroharzianum MEA-12. Biotechnol. Biofuels 2021, 14, 219. [Google Scholar] [CrossRef]
- Festa, G.; Autore, F.; Fraternali, F.; Giardina, P.; Sannia, G. Development of new laccases by directed evolution: Functional and computational analyses. Proteins 2008, 72, 25–34. [Google Scholar] [CrossRef]
- Dwivedi, P.; Vivekanand, V.; Pareek, N.; Sharma, A.; Singh, R.P. Co-cultivation of mutant Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation. N. biotechnol. 2011, 28, 616–626. [Google Scholar] [CrossRef]
- Purohit, J.S.; Dutta, J.R.; Nanda, R.K.; Banerjee, R. Strain improvement for tannase production from co-culture of Aspergillus foetidus and Rhizopus oryzae. Bioresour. Technol. 2006, 97, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Bulakhov, A.G.; Volkov, P.V.; Rozhkova, A.M.; Gusakov, A.V.; Nemashkalov, V.A.; Satrutdinov, A.D.; Sinitsyn, A.P. Using an inducible promoter of a gene encoding Penicillium verruculosum glucoamylase for production of enzyme preparations with enhanced cellulase performance. PLoS ONE 2017, 12, e0170404. [Google Scholar] [CrossRef]
- Rendsvig, J.K.; Workman, C.T.; Hoof, J.B. Bidirectional histone-gene promoters in Aspergillus: Characterization and application for multi-gene expression. Fungal Biol. Biotechnol. 2019, 6, 24. [Google Scholar] [CrossRef]
- Wu, X.; Li, F.; Yang, R.; Meng, X.; Zhang, W.; Liu, W. Identification of a bidirectional promoter from Trichoderma reesei and its application in dual gene expression. J. Fungi 2022, 8, 1059. [Google Scholar] [CrossRef] [PubMed]
- Amalamol, D.; Ashwin, N.; Lakshana, K.V.; Nirmal Bharathi, M.; Ramesh Sundar, A.; Sukumaran, R.K.; Malathi, P.; Viswanathan, R. A highly efficient stratagem for protoplast isolation and genetic transformation in filamentous fungus Colletotrichum falcatum. Folia Microbiol. 2022, 67, 479–490. [Google Scholar] [CrossRef]
- du Pré, S.; Konings, M.; Schoorl, D.J.A.; Fahal, A.H.; Arentshorst, M.; Ram, A.F.J.; van de Sande, W.W.J. Protoplast-mediated transformation of Madurella mycetomatis using hygromycin resistance as a selection marker. PLoS Negl. Trop. Dis. 2024, 18, e0012092. [Google Scholar] [CrossRef] [PubMed]
- Agisha, V.; Ashwin, N.; Vinodhini, R.; Nalayeni, K.; Ramesh Sundar, A.; Malathi, P.; Viswanathan, R. Protoplast-mediated transformation in Sporisorium scitamineum facilitates visualization of in planta developmental stages in sugarcane. Mol. Biol. Rep. 2021, 48, 7921–7932. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.-J.; Hu, S.; Wang, B.-T.; Jin, L. Advances in genetic engineering technology and its application in the industrial fungus Aspergillus oryzae. Front. Microbiol. 2021, 12, 644404. [Google Scholar] [CrossRef]
- Yörük, E.; Albayrak, G. Geneticin (G418) resistance and electroporation-mediated transformation of Fusarium graminearum and F. culmorum. Biotechnol. Biotechnol. Equip. 2015, 29, 268–273. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, Y.J.; Kong, W.S.; Kang, H.W. Highly efficient electroporation-mediated transformation into edible mushroom Flammulina velutipes. Mycobiology 2010, 38, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Sharma, R.; Dua, M.; Tuteja, N.; Johri, A.K. “Electrotransformation” Transformation system for root endophytic fungus Piriformospora indica. In Piriformospora Indica: Soil Biology; Varma, A., Kost, G., Oelmüller, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 33, pp. 309–321. [Google Scholar]
- Dahlmann, T.A.; Terfehr, D.; Becker, K.; Teichert, I. Golden Gate vectors for efficient gene fusion and gene deletion in diverse filamentous fungi. Curr. Genet. 2021, 67, 317–330. [Google Scholar] [CrossRef]
- Sarkari, P.; Marx, H.; Blumhoff, M.L.; Mattanovich, D.; Sauer, M.; Steiger, M.G. An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger. Bioresour. Technol. 2017, 245, 1327–1333. [Google Scholar] [CrossRef]
- Pullen, R.M.; Decker, S.R.; Subramanian, V.; Adler, M.J.; Tobias, A.V.; Perisin, M.; Sund, C.J.; Servinsky, M.D.; Kozlowski, M.T. Considerations for Domestication of Novel Strains of Filamentous Fungi. ACS Synth. Biol. 2025, 14, 343–362. [Google Scholar] [CrossRef]
- Maini Rekdal, V.; van der Luijt, C.R.; Chen, Y.; Kakumanu, R.; Baidoo, E.E.; Petzold, C.J.; Cruz-Morales, P.; Keasling, J.D. Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit. Nat. Commun. 2024, 15, 2099. [Google Scholar] [CrossRef]
- Benites-Pariente, J.; Samolski, I.; Ludeña, Y.; Villena, G.K. CRISPR/Cas9 mediated targeted knock-in of eglA gene to improve endoglucanase activity of Aspergillus fumigatus LMB-35Aa. Sci. Rep. 2024, 14, 19661. [Google Scholar] [CrossRef]
- Salazar-Cerezo, S.; Kun, R.S.; De Vries, R.P.; Garrigues, S. CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer. Enzym. Microb. Technol. 2020, 133, 109463. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Raheja, Y.; Basotra, N.; Sharma, G.; Tsang, A.; Chadha, B.S. CRISPR/Cas9 mediated gene editing of transcription factor ACE1 for enhanced cellulase production in thermophilic fungus Rasamsonia emersonii. Fungal Biol. Biotechnol. 2023, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, M.; Liu, D.; Liu, D.; Sun, T.; Yang, Y.; Dong, J.; Zhai, H.; Sun, W.; Liu, Q. Development of the thermophilic fungus Myceliophthora thermophila into glucoamylase hyperproduction system via the metabolic engineering using improved AsCas12a variants. Microb. Cell fact. 2023, 22, 150. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Waghmare, P.R.; Dijkhuizen, L.; Meng, X.; Liu, W. Research advances on the consolidated bioprocessing of lignocellulosic biomass. Eng. Microbiol. 2024, 4, 100139. [Google Scholar] [CrossRef] [PubMed]
- Dashtban, M.; Kepka, G.; Seiboth, B.; Qin, W. Xylitol production by genetically engineered Trichoderma reesei strains using barley straw as feedstock. Appl. Biochem. Biotechnol. 2013, 169, 554–569. [Google Scholar] [CrossRef]
- Vitcosque, G.L.; Ribeiro, L.F.C.; de Lucas, R.C.; da Silva, T.M.; Ribeiro, L.F.; de Lima Damasio, A.R.; Farinas, C.S.; Gonçalves, A.Z.L.; Segato, F.; Buckeridge, M.S.; et al. The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation. Appl. Microbiol. Biotechnol. 2016, 100, 9133–9144. [Google Scholar] [CrossRef]
- Den Haan, R.; Rose, S.H.; Lynd, L.R.; van Zyl, W.H. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 2007, 9, 87–94. [Google Scholar] [CrossRef]
- Anasontzis, G.E.; Kourtoglou, E.; Villas-Boâs, S.G.; Hatzinikolaou, D.G.; Christakopoulos, P. Metabolic engineering of Fusarium oxysporum to improve its ethanol-producing capability. Front. Microbiol. 2016, 7, 632. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Singh, A.; Haldar, D.; Soam, S.; Chen, C.-W.; Tsai, M.-L.; Dong, C.-D. Consolidated bioprocessing of lignocellulosic biomass: Technological advances and challenges. Bioresour. Technol. 2022, 354, 127153. [Google Scholar] [CrossRef]
- Scholz, S.A.; Graves, I.; Minty, J.J.; Lin, X.N. Production of cellulosic organic acids via synthetic fungal consortia. Biotechnol. Bioeng. 2018, 115, 1096–1100. [Google Scholar] [CrossRef]
- Schlembach, I.; Hosseinpour Tehrani, H.; Blank, L.M.; Büchs, J.; Wierckx, N.; Regestein, L.; Rosenbaum, M.A. Consolidated bioprocessing of cellulose to itaconic acid by a co-culture of Trichoderma reesei and Ustilago maydis. Biotechnol. Biofuels 2020, 13, 207. [Google Scholar] [CrossRef] [PubMed]
- Daniel, G.O.; John, E.M.; Lee, R.L. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 2012, 23, 3. [Google Scholar]
- Zerva, A.; Savvides, A.L.; Katsifas, E.A.; Karagouni, A.D.; Hatzinikolaou, D.G. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing. Bioresour. technol. 2014, 162, 294–299. [Google Scholar] [CrossRef]
- Ali, N.S.; Huang, F.; Qin, W.; Yang, T.C. A high throughput screening process and quick isolation of novel lignin-degrading microbes from large number of natural biomasses. Biotechnol. Rep. 2023, 39, e00809. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Y.; Yang, X.; Pan, R.; Mou, L.; Jiang, W.; Zhang, W.; Xin, F.; Jiang, M. Compartmentalization of a synergistic fungal-bacterial consortium to boost lactic acid conversion from lignocellulose via consolidated bioprocessing. Green Chem. 2023, 25, 2011–2020. [Google Scholar] [CrossRef]
- Riedling, O.; Walker, A.S.; Rokas, A. Predicting fungal secondary metabolite activity from biosynthetic gene cluster data using machine learning. Microbiol. Spectr. 2024, 12, e03400-23. [Google Scholar] [CrossRef]
- Moreno-Giménez, E.; Gandía, M.; Sáez, Z.; Manzanares, P.; Yenush, L.; Orzáez, D.; Marcos, J.F.; Garrigues, S. FungalBraid 2.0: Expanding the synthetic biology toolbox for the biotechnological exploitation of filamentous fungi. Front. Bioeng. Biotechnol. 2023, 11, 1222812. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Xue, Y.; Guo, H.; Gao, M.-t.; Li, J.; Zhang, S.; Tsang, Y.F. Design and composition of synthetic fungal-bacterial microbial consortia that improve lignocellulolytic enzyme activity. Bioresour. Technol. 2017, 227, 247–255. [Google Scholar] [CrossRef]
- Brown, J.L.; Perisin, M.A.; Swift, C.L.; Benyamin, M.; Liu, S.; Singan, V.; Zhang, Y.; Savage, E.; Pennacchio, C.; Grigoriev, I.V. Co-cultivation of anaerobic fungi with Clostridium acetobutylicum bolsters butyrate and butanol production from cellulose and lignocellulose. J. Ind. Microbiol. Biotechnol. 2022, 49, kuac024. [Google Scholar] [CrossRef]
Compound | Type | Characteristics | Enzymes Involved |
---|---|---|---|
Cellulose | α-Cellulose, β-Cellulose, γ-Cellulose | Cellulose is a linear polymer of glucose units linked by β-1,4 glycosidic bonds. It has crystalline and amorphous regions, with hydroxyl groups in the amorphous regions being more reactive. Types of cellulose: α-cellulose: Long chains, insoluble in NaOH, high DP (600–1500). β-cellulose: Short chains, soluble in NaOH, moderate DP (15–90). γ-cellulose: Very short chains, DP < 15, mainly hemicellulose. | Endoglucanases (EGLs), cellobiohydrolases (CBHs), β-glucosidases (BGLs), and auxiliary enzymes like Lytic Polysaccharide Monooxygenases (LPMOs) and Cellobiose Dehydrogenases (CDHs) |
Hemicellulose | Xylan, Mannan, Xyloglucan, Mixed-linkage glucan | Xylan: with a backbone of β-(1→4)-D-xylopyranose. It contains side chains. Xylan is categorized into glucuronoxylan, glucuronoarabinoxylan, and arabinoxylan. Mannan: Composed of D-mannose residues. Xyloglucan: Features a backbone of D-glucose residues linked by β-1,4 bonds, often substituted with α-D-xylose. MLGs: Linear polysaccharides with glucose monomers connected by β-1,4 bonds, interrupted by β-1,3 bonds. | Xylan: endo-β-1,4-xylanases, β-xylosidases, α-L-arabinofuranosidases, α-glucuronidases, esterases, β-xylobiohydrolase, exo-β-1,3-galactanase. Mannan: β-mannanase, β-mannosidase, α-galactosidase, β-glucosidase and acetyl mannan esterase. Xyloglucan: α-xylosidase, β-galactosidase, α-fucosidase, arabinofuranosidase, xyloglucanase and endo-β-1,4-glucanase. MLGs: Cellobiohydrolase, β-1,3-1,4-glucanase, β-1,4-glucana. |
Pectin | Homogalacturonan, Rhamnogalacturonan I, Rhamnogalacturonan II, Xylogalacturonan | Homogalacturonan: A homopolymer of GalA linked by α-D-1,4 bonds, which may be methyl-esterified at the C-6 position. Rhamnogalacturonan I: Composed of a GalA backbone alternating with rhamnose (-α-1,4-D-GalA-α-1,2-L-Rha-), where rhamnose may be substituted by galactose, arabinose, or other sugars. Rhamnogalacturonan II: The most complex polymer, featuring a homogalacturonan backbone and over 13 different sugars in its branches. Xylogalacturonan: Homogalacturonan backbone with xylose side branches. | Pectinolytic enzymes include protopectinases, esterases, and depolymerases, comprising both hydrolases and lyases such as polygalacturonases and pectin lyases. These enzymes can be classified according to their mode of action: Endoenzymes: Endopolygalacturonase, endopectin lyase, and endopectate lyase; Exoenzymes: Exopoly galacturonase; Modifier: pectin esterase. |
Lignin | p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) | Lignin is composed of monolignols (p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol), forming H, G, and S units, respectively. S units have methoxy groups at the 5 positions, limiting certain bonds. Lignins include diverse C-O and C-C bonds (e.g., β-O-4, β-5, β-β). Low S unit content favors cross-links, creating dense, degradation-resistant networks. Composition varies by plant type: softwoods are rich in G lignin, hardwoods in GS lignin, and grasses in HGS lignin. | Laccases, Lignin peroxidases (LiPs), Manganese peroxidases (MnPs), Versatile peroxidases (VPs, and lignin-degrading auxiliary enzymes), O-demethylase, β-etherase, Auxiliary Activity (AA), and glucuronoyl esterases. |
Fungal Coculture | Interaction | Substrate | Main Outcome Compared to Monoculture | Reference |
---|---|---|---|---|
T. reesei + A. niger | Synergistic | Wheat bran hydrolysate | Increased FPase and endoglucanase activities | [92] |
T. reesei + A. tubingensis/A. brasiliensis | Synergistic | Pretreated wheat straw | Enhanced hydrolysis efficiency; better enzyme productivity | [93] |
T. reesei + A. brasiliensis | Synergistic | Sugarcane bagasse | Enriched CAZyme profile; improved saccharification | [95] |
T. reesei + Cochliobolus heterostrophus | Synergistic | Sugarcane bagasse | Enhanced hemicellulase production (xylanase, β-xylosidase) | [29] |
T. reesei + A. niger | Synergistic | Sugarcane bagasse | Co-production of xylanase, cellulase, and β-glucosidase | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, R.I.M.; Peixoto, A.d.S.; Monclaro, A.V.; Ricart, C.A.O.; Filho, E.X.F.; Miller, R.N.G.; Gomes, T.G. Fungal Coculture: Unlocking the Potential for Efficient Bioconversion of Lignocellulosic Biomass. J. Fungi 2025, 11, 458. https://doi.org/10.3390/jof11060458
Vieira RIM, Peixoto AdS, Monclaro AV, Ricart CAO, Filho EXF, Miller RNG, Gomes TG. Fungal Coculture: Unlocking the Potential for Efficient Bioconversion of Lignocellulosic Biomass. Journal of Fungi. 2025; 11(6):458. https://doi.org/10.3390/jof11060458
Chicago/Turabian StyleVieira, Rafael Icaro Matos, Alencar da Silva Peixoto, Antonielle Vieira Monclaro, Carlos André Ornelas Ricart, Edivaldo Ximenes Ferreira Filho, Robert Neil Gerard Miller, and Taísa Godoy Gomes. 2025. "Fungal Coculture: Unlocking the Potential for Efficient Bioconversion of Lignocellulosic Biomass" Journal of Fungi 11, no. 6: 458. https://doi.org/10.3390/jof11060458
APA StyleVieira, R. I. M., Peixoto, A. d. S., Monclaro, A. V., Ricart, C. A. O., Filho, E. X. F., Miller, R. N. G., & Gomes, T. G. (2025). Fungal Coculture: Unlocking the Potential for Efficient Bioconversion of Lignocellulosic Biomass. Journal of Fungi, 11(6), 458. https://doi.org/10.3390/jof11060458