Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (338)

Search Parameters:
Keywords = phase-locked loop (PLL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6031 KiB  
Article
Enhancement of Power Quality in Photovoltaic Systems for Weak Grid Connections
by Pankaj Kumar Sharma, Pushpendra Singh, Sharat Chandra Choube and Lakhan Singh Titare
Energies 2025, 18(15), 4066; https://doi.org/10.3390/en18154066 (registering DOI) - 31 Jul 2025
Abstract
This paper proposes a novel control strategy for a dual-stage grid-connected solar photovoltaic (PV) system designed to ensure reliable and efficient operation under unstable grid conditions. The strategy incorporates a Phase-Locked Loop (PLL)-based positive sequence estimator for accurate detection of grid voltage disturbances, [...] Read more.
This paper proposes a novel control strategy for a dual-stage grid-connected solar photovoltaic (PV) system designed to ensure reliable and efficient operation under unstable grid conditions. The strategy incorporates a Phase-Locked Loop (PLL)-based positive sequence estimator for accurate detection of grid voltage disturbances, including sags, swells, and fluctuations in solar irradiance. A dynamic DC-link voltage regulation mechanism is employed to minimize converter power losses and enhance the performance of the Voltage Source Converter (VSC) under weak grid scenarios. The control scheme maintains continuous maximum power point tracking (MPPT) and unity power factor (UPF) operation, thereby improving overall grid power quality. The proposed method is validated through comprehensive simulations and real-time hardware implementation using the OPAL-RT OP4510 platform. The results demonstrate compliance with IEEE Standard 519, confirming the effectiveness and robustness of the proposed strategy. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

16 pages, 2975 KiB  
Article
Control Strategy of Distributed Photovoltaic Storage Charging Pile Under Weak Grid
by Yan Zhang, Shuangting Xu, Yan Lin, Xiaoling Fang, Yang Wang and Jiaqi Duan
Processes 2025, 13(7), 2299; https://doi.org/10.3390/pr13072299 - 19 Jul 2025
Viewed by 292
Abstract
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance [...] Read more.
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance in the system under weak grid conditions. Firstly, the topology of a photovoltaic storage charging pile is introduced, including a bidirectional DC/DC converter, unidirectional DC/DC converter, and single-phase grid-connected inverter. Then, the maximum power tracking control strategy based on improved conductance micro-increment is derived for a photovoltaic power generation system, and a constant voltage and constant current charge–discharge control strategy is derived for energy storage equipment. Additionally, a segmented reflective charging control strategy is introduced for charging piles, and the quasi-PR controller is introduced for single-phase grid-connected inverters. In addition, an improved second-order general integrator phase-locked loop (SOGI-PLL) based on feed-forward of the grid current is derived. Finally, a simulation model is built to verify the performance of the solar–storage charging pile and lay the technical groundwork for future integrated control strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 8220 KiB  
Article
Improved PR Control Without Load Current Sensors and Phase-Locked Loops for APFs
by Jianling Liao, Wei Yuan, Yankui Zhang, Jia Zou and Xu Zhang
Appl. Sci. 2025, 15(14), 7830; https://doi.org/10.3390/app15147830 - 12 Jul 2025
Viewed by 203
Abstract
Focusing on the common problems of phase-locked loop dependence, multiple current sensor requirements, a large number of controllers, and complex settings in traditional parallel active power filter (APF) control methods, this paper proposes a harmonic compensation control strategy based on an improved proportional [...] Read more.
Focusing on the common problems of phase-locked loop dependence, multiple current sensor requirements, a large number of controllers, and complex settings in traditional parallel active power filter (APF) control methods, this paper proposes a harmonic compensation control strategy based on an improved proportional resonant (PR) controller. The proposed method introduces an instantaneous power theory to construct a reference current model, which relies solely on grid voltage and current signals, does not require load-side current detection and phase-locked loop modules, and effectively simplifies the sensor configuration and system structure. At the same time, compared with the traditional solution that requires PR modules to be configured for each order of harmonics, this study only uses one set of PR controllers for fundamental current tracking, which has advantages in terms of compactness and computing resource occupation. To guide the controller parameter setting, this paper systematically discusses the influence of changes in Kp and Kr on pole distribution and dynamic performance based on discrete domain modeling and root locus analysis methods. The results were verified on the MATLAB/Simulink simulation platform and the 1 kVA experimental platform and compared with the traditional control method that requires the use of phase-locked loops (PLLs), load current sensors, and multiple PR controllers. The simulation and experimental results show that the proposed method has achieved a certain degree of optimization in terms of harmonic suppression effect, dynamic response performance, and system structure complexity. Full article
(This article belongs to the Special Issue Research on and Application of Power Systems)
Show Figures

Figure 1

16 pages, 1935 KiB  
Article
Adaptive Modulation Tracking for High-Precision Time-Delay Estimation in Multipath HF Channels
by Qiwei Ji and Huabing Wu
Sensors 2025, 25(14), 4246; https://doi.org/10.3390/s25144246 - 8 Jul 2025
Viewed by 295
Abstract
High-frequency (HF) communication is critical for applications such as over-the-horizon positioning and ionospheric detection. However, precise time-delay estimation in complex HF channels faces significant challenges from multipath fading, Doppler shifts, and noise. This paper proposes a Modulation Signal-based Adaptive Time-Delay Estimation (MATE) algorithm, [...] Read more.
High-frequency (HF) communication is critical for applications such as over-the-horizon positioning and ionospheric detection. However, precise time-delay estimation in complex HF channels faces significant challenges from multipath fading, Doppler shifts, and noise. This paper proposes a Modulation Signal-based Adaptive Time-Delay Estimation (MATE) algorithm, which effectively decouples carrier and modulation signals and integrates phase-locked loop (PLL) and delay-locked loop (DLL) techniques. By leveraging the autocorrelation properties of 8PSK (Eight-Phase Shift Keying) signals, MATE compensates for carrier frequency deviations and mitigates multipath interference. Simulation results based on the Watterson channel model demonstrate that MATE achieves an average time-delay estimation error of approximately 0.01 ms with a standard deviation of approximately 0.01 ms, representing a 94.12% reduction in mean error and a 96.43% reduction in standard deviation compared to the traditional Generalized Cross-Correlation (GCC) method. Validation with actual measurement data further confirms the robustness of MATE against channel variations. MATE offers a high-precision, low-complexity solution for HF time-delay estimation, significantly benefiting applications in HF communication systems. This advancement is particularly valuable for enhancing the accuracy and reliability of time-of-arrival (TOA) detection in HF-based sensor networks and remote sensing systems. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

12 pages, 6408 KiB  
Article
Automatic Mode-Matching Method for MEMS Gyroscope Based on Fast Mode Reversal
by Feng Bu, Bo Fan, Rui Feng, Ming Zhou and Yiwang Wang
Micromachines 2025, 16(6), 704; https://doi.org/10.3390/mi16060704 - 12 Jun 2025
Viewed by 2485
Abstract
Processing errors can result in an asymmetric stiffness distribution within a microelectromechanical system (MEMS) disk resonator gyroscope (DRG) and thereby cause a mode mismatch and reduce the mechanical sensitivity and closed-loop scale factor stability. This paper proposes an automatic mode-matching method that utilizes [...] Read more.
Processing errors can result in an asymmetric stiffness distribution within a microelectromechanical system (MEMS) disk resonator gyroscope (DRG) and thereby cause a mode mismatch and reduce the mechanical sensitivity and closed-loop scale factor stability. This paper proposes an automatic mode-matching method that utilizes mode reversal to obtain the true resonant frequency of the operating state of a gyroscope for high-precision matching. This method constructs a gyroscope control system that contains a drive closed loop, sense force-to-rebalance (FTR) closed loop, and quadrature error correction closed loop. After the gyroscope was powered on and started up, the x- and y-axes were quickly switched to obtain the resonant frequencies of the two axes through a phase-locked loop (PLL), and the x-axis tuning voltage was automatically adjusted to match the two-axis frequency. The experimental results show that the method takes only 5 s to execute, the frequency matching accuracy reaches 0.01 Hz, the matching state can be maintained in the temperature range of −20 to 60 °C, and the fluctuation of the frequency split does not exceed 0.005 Hz. Full article
(This article belongs to the Special Issue Advances in MEMS Inertial Sensors)
Show Figures

Figure 1

19 pages, 9140 KiB  
Article
Synchronized Carrier-Wave and High-Frequency Square-Wave Periodic Modulation Strategy for Acoustic Noise Reduction in Sensorless PMSM Drives
by Wentao Zhang, Sizhe Cheng, Pengcheng Zhu, Yiwei Liu and Jiming Zou
Energies 2025, 18(11), 2729; https://doi.org/10.3390/en18112729 - 24 May 2025
Viewed by 531
Abstract
High-frequency injection (HFI) is widely adopted for the sensorless control of permanent magnet synchronous motors (PMSMs) at low speeds. However, conventional HFI strategies relying on fixed-frequency carrier modulation and square-wave injection concentrate current harmonic energy within narrow spectral bands, thereby inducing pronounced high-frequency [...] Read more.
High-frequency injection (HFI) is widely adopted for the sensorless control of permanent magnet synchronous motors (PMSMs) at low speeds. However, conventional HFI strategies relying on fixed-frequency carrier modulation and square-wave injection concentrate current harmonic energy within narrow spectral bands, thereby inducing pronounced high-frequency motor vibrations and noise. To mitigate this issue, this paper proposes a noise suppression strategy based on synchronized periodic frequency modulation (PFM) of both the carrier and high-frequency square-wave signals. By innovatively synchronizing the periodic modulation of the triangular carrier in space vector pulse width modulation (SVPWM) with the injected high-frequency square wave, harmonic energy dispersion and noise reduction are achieved, substantially lowering peak acoustic emissions. First, the harmonic characteristics of the voltage-source inverter output under symmetric triangular carrier SVPWM are analyzed within a sawtooth-wave PFM framework. Concurrently, a harmonic current model is developed for the high-frequency square-wave injection method, enabling the precise derivation of harmonic components. A frequency-synchronized modulation strategy between the carrier and injection signals is proposed, with a rigorous analysis of its harmonic suppression mechanism. The rotor position is then estimated via high-frequency signal extraction and a normalized phase-locked loop (PLL). Comparative simulations and experiments confirm significant noise peak attenuation compared to conventional methods, while position estimation accuracy remains unaffected. This work provides both theoretical and practical advancements for noise-sensitive sensorless motor control applications. Full article
(This article belongs to the Special Issue Advances in Control of Electrical Drives and Power Electronics)
Show Figures

Figure 1

20 pages, 7505 KiB  
Article
A Modified Phase-Locked Loop with Parameter Self-Tuning Used in the Sensorless Control of Permanent Magnet Synchronous Motors (PMSMs)
by Chung-Wuu Ding and Pi-Cheng Tung
Mathematics 2025, 13(10), 1654; https://doi.org/10.3390/math13101654 - 18 May 2025
Viewed by 373
Abstract
This paper proposes a sensorless field-oriented control (FOC) strategy for permanent magnet synchronous motors (PMSMs), focusing on rotor flux position estimation based on back-electromotive force (back-EMF) signals. The limitations of conventional phase-locked loop (PLL) techniques for rotor flux position estimation along the motor [...] Read more.
This paper proposes a sensorless field-oriented control (FOC) strategy for permanent magnet synchronous motors (PMSMs), focusing on rotor flux position estimation based on back-electromotive force (back-EMF) signals. The limitations of conventional phase-locked loop (PLL) techniques for rotor flux position estimation along the motor shaft are analyzed, and an enhanced PLL structure is developed to address these deficiencies.In electric vehicle traction applications, precise flux position estimation alone is insufficient; accurate generation of d–q-axis current commands is equally critical. To address this need, a zero-pole-free PI regulator is designed within the PLL module, enabling more accurate flux estimation. Additionally, a gradient-based self-tuning algorithm is employed to identify system parameters, particularly the stator inductance, enabling the controller to optimize current command generation.Comprehensive system-level simulations have been conducted to validate the effectiveness of the proposed sensorless control scheme. Comparative studies demonstrate that the proposed method significantly improves feasibility and robustness for practical PMSM drive applications. Full article
Show Figures

Figure 1

19 pages, 1847 KiB  
Article
Real-Time Wave Energy Converter Control Using Instantaneous Frequency
by Inyong Kim, Ted K. A. Brekken, Solomon Yim, Brian Johnson, Yue Cao and Pranav Chandran
Appl. Sci. 2025, 15(9), 4889; https://doi.org/10.3390/app15094889 - 28 Apr 2025
Viewed by 474
Abstract
Wave Energy Converters (WECs) rely on effective Power Take-Off (PTO) control strategies to maximize energy absorption under dynamic sea conditions. Traditional hydrodynamic modeling techniques may require computationally intensive convolution calculations, making real-time control implementation challenging. This paper presents an alternative approach by leveraging [...] Read more.
Wave Energy Converters (WECs) rely on effective Power Take-Off (PTO) control strategies to maximize energy absorption under dynamic sea conditions. Traditional hydrodynamic modeling techniques may require computationally intensive convolution calculations, making real-time control implementation challenging. This paper presents an alternative approach by leveraging instantaneous frequency estimation to dynamically adjust PTO damping in response to varying wave frequencies. Two real-time frequency estimation methods are explored: the Hilbert Transform (HT) and Phase-Locked Loop (PLL). The Hilbert Transform method provides accurate frequency tracking but introduces a delayed response due to its dependence on causal data. Conversely, the PLL approach demonstrates strong potential in frequency tracking but requires careful gain tuning, particularly in complex sea states. Comparative evaluations across multiple test cases—including sinusoidal variations, amplitude steps, frequency step changes, and real-world JONSWAP spectrum waves—highlight the strengths and limitations of each method. The two different PTO control techniques across the various frequency estimation methods were tested under real-sea states using a state-space model of a point-absorbing Wave Energy Converter. The Capture Width Ratio (CWR) is used as a performance metric, with results showing that the HT achieves a 10.6% improvement, while the PLL estimation yields a 0.9% improvement relative to the fixed parameter control baseline. These results highlight the effectiveness of real-time frequency estimation in improving energy absorption compared to static control parameters. Full article
(This article belongs to the Special Issue Dynamics and Control with Applications to Ocean Renewables)
Show Figures

Figure 1

22 pages, 8659 KiB  
Article
Elimination of Static Angular Error and Stability Enhancement for Active Power-Synchronized Converter Under a Weak Grid
by Tong Zhao, Chao Wu and Yong Wang
Electronics 2025, 14(9), 1781; https://doi.org/10.3390/electronics14091781 - 27 Apr 2025
Viewed by 284
Abstract
A phase-locked loop (PLL), as a synchronization unit commonly employed in grid-connected converters (GCCs), jeopardizes system stability under a weak grid. Therefore, synchronization units without a PLL, such as active power synchronization (APS), have received much attention. However, GCCs adopting APS suffer from [...] Read more.
A phase-locked loop (PLL), as a synchronization unit commonly employed in grid-connected converters (GCCs), jeopardizes system stability under a weak grid. Therefore, synchronization units without a PLL, such as active power synchronization (APS), have received much attention. However, GCCs adopting APS suffer from two typical issues: static angular error and the risk of destabilization. In this paper, the mechanism for static angular error is analyzed, which is attributed to the presence of active power current, resulting in a non-zero q-axis voltage at the point of common coupling. To eliminate the static error in angular tracking, conventionally, a proportional–integral (PI) controller is integrated into APS, which arouses system instability. Thus, a closed-loop single-input single-output (SISO) model of a GCC is derived from angular perturbation to analyze the mechanism of this destabilization. It is revealed that the gain overshoot in the closed-loop SISO model resulting from the PI controller would lead to system instability under a weak grid. Consequently, according to the above mechanistic analysis, a composite direct damping controller is proposed, which achieves the elimination of static angular error while enhancing system stability. Finally, the effectiveness of the mathematical analysis and derived models are verified by experimental results. Full article
Show Figures

Figure 1

20 pages, 4069 KiB  
Article
A New Approach to Field-Oriented Control That Substantially Improves the Efficiency of an Induction Motor with Speed Control
by Chung-Wuu Ding and Pi-Cheng Tung
Appl. Sci. 2025, 15(9), 4845; https://doi.org/10.3390/app15094845 - 27 Apr 2025
Viewed by 796
Abstract
Accurate estimation of the rotor flux angle remains a significant challenge when conventional direct or indirect field-oriented control (FOC) strategies are applied to induction motor drives. This paper proposes a novel method for determining the rotor flux angle under steady-state conditions using only [...] Read more.
Accurate estimation of the rotor flux angle remains a significant challenge when conventional direct or indirect field-oriented control (FOC) strategies are applied to induction motor drives. This paper proposes a novel method for determining the rotor flux angle under steady-state conditions using only stator voltage and current measurements. An adjustable steady-state detection mechanism is introduced and integrated into a phase-locked loop (PLL)-based indirect field-oriented framework to enable a smooth injection of the actual rotor flux angle into the control system. Both simulation and experimental results validate the effectiveness of the proposed method, demonstrating a significant reduction in stator current compared to conventional FOC approaches under identical load torque conditions. Full article
Show Figures

Figure 1

24 pages, 7335 KiB  
Article
Grid-Connected Harmonic Suppression Strategy Considering Phase-Locked Loop Phase-Locking Error Under Asymmetrical Faults
by Yanjiu Zhang and Shuxin Tian
Energies 2025, 18(9), 2202; https://doi.org/10.3390/en18092202 - 26 Apr 2025
Viewed by 472
Abstract
Harmonic distortion caused by phase jumps in the phase-locked loop (PLL) during asymmetric faults poses a significant threat to the secure operation of renewable energy grid-connected systems. A harmonic suppression strategy based on Vague set theory is proposed for offshore wind power AC [...] Read more.
Harmonic distortion caused by phase jumps in the phase-locked loop (PLL) during asymmetric faults poses a significant threat to the secure operation of renewable energy grid-connected systems. A harmonic suppression strategy based on Vague set theory is proposed for offshore wind power AC transmission systems. By employing the three-dimensional membership framework of Vague sets—comprising true, false, and hesitation degrees—phase-locked errors are characterized, and dynamic, real-time PLL proportional-integral (PI) parameters are derived. This approach addresses the inadequacy of harmonic suppression in conventional PLL, where fixed PI parameters limit performance under asymmetric faults. The significance of this research is reflected in the improved power quality of offshore wind power grid integration, the provision of technical solutions supporting efficient clean energy utilization in alignment with “Dual Carbon” objectives, and the introduction of innovative approaches to harmonic suppression in complex grid environments. Firstly, an equivalent circuit model of the offshore wind power AC transmission system is established, and the impact of PLL phase jumps on grid harmonics during asymmetric faults is analyzed in conjunction with PLL locking mechanisms. Secondly, Vague sets are employed to model the phase-locked error interval across three dimensions, enabling adaptive PI parameter tuning to suppress harmonic content during such faults. Finally, time-domain simulations conducted in PSCAD indicate that the proposed Vague set-based control strategy reduces total harmonic distortion (THD) to 1.08%, 1.12%, and 0.97% for single-phase-to-ground, two-phase-to-ground, and two-phase short-circuit faults, respectively. These values correspond to relative reductions of 13.6%, 33.7%, and 80.87% compared to conventional control strategies, thereby confirming the efficacy of the proposed method in minimizing grid-connected harmonic distortions. Full article
Show Figures

Figure 1

20 pages, 3031 KiB  
Article
Synergistic Coordination Between PWM Inverters and DC-DC Converters for Power Quality Improvement of Three-Phase Grid-Connected PV Systems
by Ali M. Eltamaly and Zeyad A. Almutairi
Sustainability 2025, 17(8), 3748; https://doi.org/10.3390/su17083748 - 21 Apr 2025
Viewed by 648
Abstract
Grid-connected photovoltaic (PV) systems require a power converter to extract maximum power and deliver high-quality electricity to the grid. Traditional control methods, such as proportional-integral (PI) control for DC-link voltage regulation, often struggle under abnormal operating conditions, resulting in voltage fluctuations and instability [...] Read more.
Grid-connected photovoltaic (PV) systems require a power converter to extract maximum power and deliver high-quality electricity to the grid. Traditional control methods, such as proportional-integral (PI) control for DC-link voltage regulation, often struggle under abnormal operating conditions, resulting in voltage fluctuations and instability in the maximum power point tracker (MPPT). This paper proposes a synergistic control strategy that combines a musical chairs algorithm (MCA) MPPT with sliding mode control (SMC) together for the boost converter DC-link control. This approach enhances DC-link voltage stability by switching the MPPT to SMC of the boost converter when the DC-link voltage exceeds the predefined limit. This strategy enhances the stability of the DC-link voltage and allows for a smaller DC-link capacitor, thereby reducing system cost and improving the power quality of PV systems. A phase-locked loop (PLL) further ensures effective grid synchronization. The reduction in DC-link voltage overshoot (from 570 V to 522 V) improved stability under varying irradiance conditions. Moreover, a 48 V reduction in overshoot voltage and a 66% decrease in DC-link voltage ripple (standard deviation from 17.93 V to 5.92 V) occurred. Simulation and experimental results demonstrate the superiority of the proposed strategy compared to the case without coordination between the DC-DC converter and inverter controllers, particularly under challenging conditions. Full article
Show Figures

Figure 1

26 pages, 2834 KiB  
Article
Two-Degree-of-Freedom Proportional Integral Controllers for Stability Enhancement of Power Electronic Converters in Weak Grids: Inverter and Rectifier Operating Modes
by Ricardo Vidal-Albalate, José Jesús Tejedor Bomboi, Carlos Díaz-Sanahuja and Ignacio Peñarrocha-Alós
Electronics 2025, 14(8), 1565; https://doi.org/10.3390/electronics14081565 - 12 Apr 2025
Viewed by 473
Abstract
Future power generation plants will be largely based on renewable energy sources such as wind or photovoltaic power. These plants are connected to the grid through power electronic converters, which may present stability problems, specifically in weak grids. Consequently, numerous stabilities studies have [...] Read more.
Future power generation plants will be largely based on renewable energy sources such as wind or photovoltaic power. These plants are connected to the grid through power electronic converters, which may present stability problems, specifically in weak grids. Consequently, numerous stabilities studies have been conducted. In these studies, converters work as inverters; however, in power electronic interfaced loads, energy storage systems or High-Voltage Direct Current (HVDC) links, power converters can also function as a rectifier. Stability studies focusing on the rectifier operation have received little attention in previous research. In this paper, the Voltage Source Converter (VSC) stability is analysed for both the inverter and rectifier modes, with particular focus on the influence of the Phase-Locked Loop (PLL) and the current controllers’ bandwidths. Additionally, a Two-Degree-of-Freedom Proportional Integral (2DOF-PI) controller is proposed to expand the stable operating range. The stability study is carried out using a small-signal model validated through PSCAD simulations. The results show that for inverter operations, a slow PLL and fast current controllers yield better performance, whereas for rectifier operation, a fast PLL and slow current controllers are recommended. Finally, a robustness study based on the H-norm is carried out to provide some tuning recommendations for the controller parameters, confirming the different behaviour in inverter and rectifier operation. Full article
Show Figures

Figure 1

25 pages, 1997 KiB  
Review
Transient Synchronization Stability in Grid-Following Converters: Mechanistic Insights and Technological Prospects—A Review
by Yang Liu, Lin Zhu, Xinya Xu, Dongrui Li, Zhiwei Liang and Nan Ye
Energies 2025, 18(8), 1975; https://doi.org/10.3390/en18081975 - 11 Apr 2025
Cited by 1 | Viewed by 803
Abstract
This paper investigates the transient synchronization stability mechanisms and technological advancements associated with grid-following (GFL) converters, providing a systematic review of the current research landscape and future directions in this field. The current literature lacks a comprehensive understanding of how outer-loop control dynamics [...] Read more.
This paper investigates the transient synchronization stability mechanisms and technological advancements associated with grid-following (GFL) converters, providing a systematic review of the current research landscape and future directions in this field. The current literature lacks a comprehensive understanding of how outer-loop control dynamics and grid-converter interactions critically influence transient stability mechanisms. This oversight often leads to incomplete or overly simplistic stability assessments, particularly under high penetration of renewable energy sources. Furthermore, existing stability criteria and analytical methodologies do not adequately address the compounded challenges arising from multi-control-loop coupling effects and systems with multiple parallel converters. These limitations underscore the inability of conventional methodologies to holistically model the transient synchronization behavior of GFL converters in modern power-electronics-dominated grids. To address these gaps, this work synthesizes a comprehensive review of modeling frameworks, analytical methodologies, transient stability mechanisms, and influence factors specific to GFL converters. First, based on the fundamental differences between synchronous generators and GFL, this paper summarizes the second-order equivalent model derived from phase-locked loop (PLL) dynamic. It conducts a comparative analysis of the applicability and limitations of conventional stability assessment methods, such as the equal-area criterion, phase portrait method, and Lyapunov functions, within power-electronics-dominated systems. It highlights potential mechanistic misinterpretations arising from neglecting outer-loop control and grid interactions. Second, the paper delineates the principal challenges inherent in the transient synchronization stability analysis of GFL converters. These challenges encompass the dynamic influences of multi-control-loop coupling effects and the imperative for advancing stability criterion research in systems with multiple parallel converters. Building on existing studies, the paper further explores innovative applications of artificial intelligence (AI) in transient stability assessment, including stability prediction based on deep learning, data-physics hybrid modeling, and human–machine collaborative optimization strategies. It emphasizes that enhancing model interpretability and dynamic generalization capabilities will be critical future directions. Finally, by addressing these gaps, this work provides theoretical foundations and technical references for transient synchronization stability analysis and control in high-penetration inverter-based resources (IBRs) grids. Full article
(This article belongs to the Special Issue Modeling, Simulation and Optimization of Power System)
Show Figures

Figure 1

22 pages, 12731 KiB  
Article
New Fault-Tolerant Sensorless Control of FPFTPM Motor Based on Hybrid Adaptive Robust Observation for Electric Agricultural Equipment Applications
by Zifeng Pei, Li Zhang, Haijun Fu and Yucheng Wang
Energies 2025, 18(8), 1962; https://doi.org/10.3390/en18081962 - 11 Apr 2025
Cited by 1 | Viewed by 280
Abstract
This paper proposes a hybrid adaptive robust observation (HARO)-based sensorless control strategy of a five-phase fault-tolerant permanent-magnet (FPFTPM) motor for electric agricultural equipment applications under various operating conditions, including fault conditions. Regarding fault-tolerant sensorless control, the existing studies usually treat fault-tolerant control and [...] Read more.
This paper proposes a hybrid adaptive robust observation (HARO)-based sensorless control strategy of a five-phase fault-tolerant permanent-magnet (FPFTPM) motor for electric agricultural equipment applications under various operating conditions, including fault conditions. Regarding fault-tolerant sensorless control, the existing studies usually treat fault-tolerant control and sensorless control as two independent units rather than a unified system, which makes the algorithm complex. In addition, under the traditional fault-tolerant algorithm, the system needs to switch after diagnosis when the fault occurs, which leads to a degraded sensorless control performance. Hence, this paper proposes a fault-tolerant sensorless control strategy that can achieve the whole speed range without fault-tolerant switching. At zero/low speed, a disturbance adaptive controller (DAC) architecture is developed by treating phase faults as system disturbances, where robust controllers and extended state observer (ESO) collaboratively suppress speed and position errors. At medium/high speeds, this paper provides a steady-healthy SMO, which combines the enhanced observer and universal phase-locked loop (PLL) without phase compensation. With above designs, the proposed strategy can significantly improve the estimated accuracy of rotor position under normal conditions and fault circumstances, while simplifying the complexity of the fault-tolerant sensorless algorithm. Furthermore, the proposed strategy is verified based on the experimental platform of the FPFTPM motor drive system. The experimental results show that compared with the traditional method, the torque ripple and position error are reduced by nearly 20% and 60%, respectively, at zero-low speed and medium-high speed, and the torque ripple is reduced by 55% during fault operation, which verifies the robustness and effectiveness of the proposed method. Full article
Show Figures

Figure 1

Back to TopTop