Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = perfluorooctane sulfonic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1087 KiB  
Review
Visceral, Neural, and Immunotoxicity of Per- and Polyfluoroalkyl Substances: A Mini Review
by Pietro Martano, Samira Mahdi, Tong Zhou, Yasmin Barazandegan, Rebecca Iha, Hannah Do, Joel Burken, Paul Nam, Qingbo Yang and Ruipu Mu
Toxics 2025, 13(8), 658; https://doi.org/10.3390/toxics13080658 - 31 Jul 2025
Viewed by 300
Abstract
Per- and polyfluoroalkyl substances (PFASs) have gained significant attention due to their widespread distribution in the environment and potential adverse health effects. While ingestion, especially through contaminated drinking water, is considered the primary route of human exposure, recent research suggests that other pathways, [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) have gained significant attention due to their widespread distribution in the environment and potential adverse health effects. While ingestion, especially through contaminated drinking water, is considered the primary route of human exposure, recent research suggests that other pathways, such as inhalation and dermal absorption, also play a significant role. This review provides a concise overview of the toxicological impacts of both legacy and emerging PFASs, such as GenX and perfluorobutane sulfonic acid (PFBS), with a particular focus on their effects on the liver, kidneys, and immune and nervous systems, based on findings from recent in vivo, in vitro, and epidemiological studies. Despite the transition to PFAS alternatives, much of the existing toxicity data focus on a few legacy compounds, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), which have been linked to adverse immune outcomes, particularly in children. However, evidence for carcinogenic risk remains limited to populations with extremely high exposure levels, and data on neurodevelopmental effects remain underexplored. While epidemiological and experimental animal studies supported these findings, significant knowledge gaps persist, especially regarding emerging PFASs. Therefore, this review examines the visceral, neural, and immunotoxicity data for emerging PFASs and mixtures from recent studies. Given the known risks from well-studied PFASs, a precautionary principle should be adopted to mitigate human health risks posed by this large and diverse group of chemicals. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

21 pages, 2519 KiB  
Review
Distribution and Ecological Risk Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances in Chinese Soils: A Review
by Junyi Wang, Otgontuya Tsogbadrakh, Jichen Tian, Faisal Hai, Chenpeng Lyu, Guangming Jiang and Guoyu Zhu
Water 2025, 17(15), 2246; https://doi.org/10.3390/w17152246 - 28 Jul 2025
Viewed by 426
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants of global concern due to their high environmental persistence and bioaccumulative characteristics. This study investigates PFAS concentrations in soils from China through an extensive literature review, covering soil samples from seventeen provinces and the years [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants of global concern due to their high environmental persistence and bioaccumulative characteristics. This study investigates PFAS concentrations in soils from China through an extensive literature review, covering soil samples from seventeen provinces and the years from 2009 to 2024. It was found that the total concentration of PFAS in soil ranged from 0.25 to 6240 ng/g, with the highest contamination levels observed in coastal provinces, particularly Fujian (620 ng/g) and Guangdong (1090 ng/g). Moreover, Fujian Province ranked the highest among multiple regions with a median PFAS concentration of 15.7 ng/g for individual compounds. Ecological risk assessment, focusing on areas where perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) were identified as the primary soil PFAS compounds, showed moderate ecological risk from PFOA in Shanghai (0.24), while PFOS posed a high ecological risk in Fujian and Guangdong, with risk values of 43.3 and 1.4, respectively. Source analysis revealed that anthropogenic activities, including PFAS production, firefighting foam usage, and landfills, were the primary contributors to soil contamination. Moreover, soil PFASs tend to migrate into groundwater via adsorption and seepage, ultimately entering the human body through bioaccumulation or drinking water, posing health risks. These findings enhance our understanding of PFAS distribution and associated risks in Chinese soils, providing crucial insights for pollution management, source identification, and regulation strategies in diverse areas. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

25 pages, 3545 KiB  
Article
Combined Effects of PFAS, Social, and Behavioral Factors on Liver Health
by Akua Marfo and Emmanuel Obeng-Gyasi
Med. Sci. 2025, 13(3), 99; https://doi.org/10.3390/medsci13030099 - 28 Jul 2025
Viewed by 292
Abstract
Background: Environmental exposures, such as per- and polyfluoroalkyl substances (PFAS), in conjunction with social and behavioral factors, can significantly impact liver health. This research investigates the combined effects of PFAS (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), alcohol consumption, smoking, income, and education [...] Read more.
Background: Environmental exposures, such as per- and polyfluoroalkyl substances (PFAS), in conjunction with social and behavioral factors, can significantly impact liver health. This research investigates the combined effects of PFAS (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), alcohol consumption, smoking, income, and education on liver function among the U.S. population, utilizing data from the 2017–2018 National Health and Nutrition Examination Survey (NHANES). Methods: PFAS concentrations in blood samples were analyzed using online solid-phase extraction combined with liquid chromatography–tandem mass spectrometry (LC-MS/MS), a highly sensitive and specific method for detecting levels of PFAS. Liver function was evaluated using biomarkers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin, and the fatty liver index (FLI). Descriptive statistics and multivariable linear regression analyses were employed to assess the associations between exposures and liver outcomes. Bayesian Kernel Machine Regression (BKMR) was utilized to explore the nonlinear and interactive effects of these exposures. To determine the relative influence of each factor on liver health, Posterior Inclusion Probabilities (PIPs) were calculated. Results: Linear regression analyses indicated that income and education were inversely associated with several liver injury biomarkers, while alcohol use and smoking demonstrated stronger and more consistent associations. Bayesian Kernel Machine Regression (BKMR) further highlighted alcohol and smoking as the most influential predictors, particularly for GGT and total bilirubin, with posterior inclusion probabilities (PIPs) close to 1.0. In contrast, PFAS showed weaker associations. Regression coefficients were small and largely non-significant, and PIPs were comparatively lower across most liver outcomes. Notably, education had a higher PIP for ALT and GGT than PFAS, suggesting a more protective role in liver health. People with higher education levels tend to live healthier lifestyles, have better access to healthcare, and are generally more aware of health risks. These factors can all help reduce the risk of liver problems. Overall mixture effects demonstrated nonlinear trends, including U-shaped relationships for ALT and GGT, and inverse associations for AST, FLI, and ALP. Conclusion: These findings underscore the importance of considering both environmental and social–behavioral determinants in liver health. While PFAS exposures remain a long-term concern, modifiable lifestyle and structural factors, particularly alcohol, smoking, income, and education, exert more immediate and pronounced effects on hepatic biomarkers in the general population. Full article
Show Figures

Figure 1

13 pages, 529 KiB  
Article
Emerging Pollutants in Chinstrap Penguins and Krill from Deception Island (South Shetland Islands, Antarctica)
by Miguel Motas, Silvia Jerez-Rodríguez, José Manuel Veiga-del-Baño, Juan José Ramos, José Oliva, Miguel Ángel Cámara, Pedro Andreo-Martínez and Simonetta Corsolini
Toxics 2025, 13(7), 549; https://doi.org/10.3390/toxics13070549 - 29 Jun 2025
Viewed by 363
Abstract
This study aimed to evaluate the presence of emerging pollutants [perfluorinated compounds, phthalates and bisphenol A (BPA)] in chinstrap penguins (Pygoscelis antarctica) and krill (Euphausia superba) from Deception Island (South Shetland Islands, Antarctica) to provide data on the occurrence [...] Read more.
This study aimed to evaluate the presence of emerging pollutants [perfluorinated compounds, phthalates and bisphenol A (BPA)] in chinstrap penguins (Pygoscelis antarctica) and krill (Euphausia superba) from Deception Island (South Shetland Islands, Antarctica) to provide data on the occurrence of emerging pollutants in Antarctica. For this purpose, thirty-four samples were studied, including four samples of adult tissue and six samples of chick tissue, as well as krill samples from the area. The selected samples were subjected to extraction processes and subsequent analytical determination of perfluorooctane sulfonate, perfluorooctanoic acid, di(2-ethylhexyl) phthalate, mono(2-ethylhexyl) phthalate and BPA using high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Our results highlight that the analyzed organic pollutants, except for BPA, are clearly present in Pygoscelis antarctica and Euphausia superba from Deception Island. Full article
(This article belongs to the Special Issue Environmental Toxicology and Risk Assessment of Priority Substances)
Show Figures

Graphical abstract

23 pages, 1900 KiB  
Article
Application of a Dynamic Exposure Population Toxicokinetic Model for Perfluorooctane Sulfonic Acid (PFOS) and Extension to Perfluorodecanoic Acid (PFDA) at a North American Beef Cattle Farm with a History of Biosolids Land Application
by Barbara A. Astmann, Antti T. Mikkonen, Thomas L. Simones, Meghan Flanagan, Duncan Pfaehler, Ivan Lenov and Andrew E. Smith
Toxics 2025, 13(7), 541; https://doi.org/10.3390/toxics13070541 - 27 Jun 2025
Cited by 1 | Viewed by 749
Abstract
Historical application of wastewater treatment sludge (biosolids) has introduced per- and polyfluoroalkyl substances (PFAS) into agricultural systems and led to contamination of crops and livestock. Previous work validated a dynamic exposure and population toxicokinetic (DE_PopTK) modeling approach for estimating perfluorooctane sulfonic acid (PFOS) [...] Read more.
Historical application of wastewater treatment sludge (biosolids) has introduced per- and polyfluoroalkyl substances (PFAS) into agricultural systems and led to contamination of crops and livestock. Previous work validated a dynamic exposure and population toxicokinetic (DE_PopTK) modeling approach for estimating perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) concentrations in cattle tissues at sites primarily dominated by water contamination. This work expands the efforts to validate the DE_PopTK model at a self-contained beef farm in Maine with PFAS exposures from feed grown on site where soil is contaminated from historical biosolids applications. The model is also extended to estimate perfluorodecanoic acid (PFDA) exposure and tissue levels. Farm-specific data were obtained to consider farm management practices, spatial variation of PFAS in soil, animal growth, and seasonal and annual variability in estimating daily exposures based on water, feed, and soil intake. A dynamic exposure pattern was observed as cattle accumulated PFAS while consuming feed grown on contaminated land and eliminated it while grazing on non-contaminated pastures. Model-estimated PFOS and PFDA levels in serum and muscle were in good agreement with biomonitoring data collected at the farm over a four-year period to reflect periods of accumulation and depuration, with the percentage error ranging from 16% to 73% when comparing modeled and measured data. Our findings demonstrated that understanding farm exposures and collecting site-specific data were integral to model performance. The model was applied to simulate management strategies and complement economic analyses to demonstrate that, with modifications to management practices, it is feasible for the farm to achieve lower PFOS and PFDA levels in beef and maintain economic viability despite elevated PFAS soil levels. Full article
Show Figures

Graphical abstract

19 pages, 13134 KiB  
Article
Improving PFAS Rejection by Ultrafiltration Membranes via Polyelectrolyte Multilayer Coating
by Oruc Kaan Turk, Mehmet Cakmakci, Ismail Hakki Zengin, Dogan Karadag and Ebubekir Yuksel
Membranes 2025, 15(6), 172; https://doi.org/10.3390/membranes15060172 - 7 Jun 2025
Viewed by 1309
Abstract
Per- and polyfluoroalkyl substances (PFASs), used since the 1940s, are persistent and carcinogenic pollutants. Water is a major exposure route; effective removal is essential. While nanofiltration (NF) and reverse osmosis (RO) are effective but costly, ultrafiltration (UF) membranes offer advantages such as lower [...] Read more.
Per- and polyfluoroalkyl substances (PFASs), used since the 1940s, are persistent and carcinogenic pollutants. Water is a major exposure route; effective removal is essential. While nanofiltration (NF) and reverse osmosis (RO) are effective but costly, ultrafiltration (UF) membranes offer advantages such as lower cost and higher flux, but their relatively large pore size makes them ineffective for PFAS compounds like perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Since PFAS removal depends on both pore size and surface properties, this study investigates the effect of polyelectrolyte multilayer coatings using poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) on the zeta potential of UF membranes. Pristine UF membranes showed limited performance (UP150: ~2% for both PFOS and PFOA; UP020: 34.4% PFOS, 24.1% PFOA), while coating significantly enhanced removal (coated UP150: 45.3% PFOS, 43.4% PFOA; coated UP020: 77.8% PFOS, 73.3% PFOA). The modified UF membranes achieved PFAS removal efficiencies significantly closer to NF membranes, though still below those of RO (e.g., BW30XLE: up to 91.0% PFOS, 88.3% PFOA; NP030: up to 81.0% PFOS, 79.3% PFOA). Findings emphasize the importance of membrane surface charge and suggest that modified UF membranes offer a promising, low-cost alternative for PFAS removal under low-pressure conditions. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Graphical abstract

18 pages, 3754 KiB  
Article
N, S-Doped Carbon Dots (N, S-CDs) for Perfluorooctane Sulfonic Acid (PFOS) Detection
by Hani Nasser Abdelhamid
C 2025, 11(2), 36; https://doi.org/10.3390/c11020036 - 29 May 2025
Cited by 1 | Viewed by 1552
Abstract
Nitrogen and sulfur-co-doped carbon dots (N, S-CDs) were synthesized using a simple, eco-friendly hydrothermal technique with L-cysteine as the precursor. The synthesis approach produced highly water-dispersible, heteroatom-doped CDs with surface functional groups comprising amine, carboxyl, thiol, and sulfonic acid. Data analysis of X-ray [...] Read more.
Nitrogen and sulfur-co-doped carbon dots (N, S-CDs) were synthesized using a simple, eco-friendly hydrothermal technique with L-cysteine as the precursor. The synthesis approach produced highly water-dispersible, heteroatom-doped CDs with surface functional groups comprising amine, carboxyl, thiol, and sulfonic acid. Data analysis of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) confirmed their amorphous nature, nanoscale dimensions (1–8 nm, average particle size of 2.6 nm), and surface chemistry. Optical examination revealed intense and pure blue fluorescence emission under UV excitation, with excitation-dependent emission behavior attributed to surface defects and heteroatom doping. The N, S-CDs were applied as fluorescent probes for detecting perfluorooctanesulfonic acid (PFOS), a notable component of the perfluoroalkyl substances (PFAS) family, demonstrating pronounced and concentration-dependent fluorescence quenching. A linear detection range of 3.33–20 µM and a limit of detection (LOD) of 2 µM were reported using the N, S-CDs probe. UV-Vis spectral shifts and dye-interaction investigations indicated that the sensing mechanism is regulated by non-covalent interactions, primarily electrostatic and hydrophobic forces. These findings confirm the potential of N, S-CDs to be used as effective optical sensors for detecting PFOS in environmental monitoring applications. Full article
Show Figures

Graphical abstract

17 pages, 873 KiB  
Article
Association of PFAS and Metals with Cardiovascular Disease Risk: Exploring the Mediating Effect of Diet
by Augustina Odediran, Kenneth Bollen and Emmanuel Obeng-Gyasi
Environments 2025, 12(6), 178; https://doi.org/10.3390/environments12060178 - 28 May 2025
Cited by 1 | Viewed by 767
Abstract
Background: Cardiovascular disease (CVD) is a major global health burden influenced by genetic, behavioral, and environmental factors. Among these, exposure to per- and poly-fluoroalkyl substances (PFASs) and toxic metals has been increasingly implicated in adverse cardiovascular outcomes. However, the mediating role of dietary [...] Read more.
Background: Cardiovascular disease (CVD) is a major global health burden influenced by genetic, behavioral, and environmental factors. Among these, exposure to per- and poly-fluoroalkyl substances (PFASs) and toxic metals has been increasingly implicated in adverse cardiovascular outcomes. However, the mediating role of dietary inflammation in these associations remains unclear. Objective: This study investigates the relationship between PFAS and metal exposures and CVD risk, focusing on the potential mediating role of diet, operationalized through the Dietary Inflammatory Index (DII). Additionally, this study examines age as an effect modifier in these associations. Methods: Utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2017–2018 cycle (n = 660), we assessed environmental exposures (lead, cadmium, mercury, perfluorooctanoic acid-PFOA, perfluorooctane sulfonate-PFOS), dietary inflammatory potential (DII), and cardiovascular markers (blood pressure, lipid profile, C-reactive protein). Statistical analyses included linear regression and Bayesian Kernel Machine Regression-Causal Mediation Analysis (BKMR-CMA) to estimate the direct, indirect (through DII), and total effects of exposure on CVD risk biomarkers. Results: Linear regression revealed significant associations between mercury and reduced systolic blood pressure (SBP) (p = 0.017) and cadmium with increased C-reactive protein (CRP) (p = 0.006). Mediation analysis suggested dietary inflammation may play a role, though estimates were imprecise. Conclusions: PFAS and metals may influence CVD risk through inflammatory pathways, with potential age-related differences. Future longitudinal studies are needed to clarify these complex interactions, reduce measurement error, and guide age-specific exposure regulations. Full article
Show Figures

Figure 1

13 pages, 1949 KiB  
Article
Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) in the Surface Waters of China: A Meta-Analysis
by Mingdong Chang, Ru Yin, Jianqiao Wang, Mengyang You, Nana Wang, Yong Jie Wong and Tangfu Xiao
Water 2025, 17(9), 1275; https://doi.org/10.3390/w17091275 - 24 Apr 2025
Cited by 1 | Viewed by 939
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are recognized as persistent emerging pollutants worldwide, and long-term exposure will seriously harm natural ecosystems and human health. However, as the largest producer and consumer of fluorochemicals, China has limited research on the environmental fate and [...] Read more.
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are recognized as persistent emerging pollutants worldwide, and long-term exposure will seriously harm natural ecosystems and human health. However, as the largest producer and consumer of fluorochemicals, China has limited research on the environmental fate and influencing factors of PFOA and PFOS in surface waters. To address this gap, a meta-analysis was conducted using 34 articles related to PFAS pollution in China’s surface waters, published between 2000 and 2023, selected from the PubMed and Web of Science databases. Existing investigations indicate that the average concentrations of PFOA and PFOS in the surface water from industrial areas in southeast China are 1615.17 ng/L and 8.41 ng/L, respectively, with industrial wastewater being the primary pollution source. Meanwhile, the analysis revealed that PFOA and PFOS concentrations are positively correlated with surface water pH but negatively correlated with dissolved oxygen, total organic carbon of sediment, and salinity. Additionally, monitoring data show that PFOA/PFOS pollution levels in European countries have declined since 2015, which is attributed to restrictive measures on the usage of PFAS. In conclusion, this study provides a scientific basis for developing PFOA/PFOS pollution control and management strategies for surface water in China. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

14 pages, 3219 KiB  
Article
Bioaccumulation, Biotransformation and Oxidative Stress of 6:2 Fluorotelomer Sulfonamidoalkyl Betaine (6:2 FTAB) in Earthworms (Eisenia fetida)
by Xinlei Zhang, Mengyao Fang, Zhiyuan Bai, Yulu Zong, Shuyan Zhao and Jingjing Zhan
Toxics 2025, 13(5), 337; https://doi.org/10.3390/toxics13050337 - 24 Apr 2025
Cited by 1 | Viewed by 479
Abstract
As a novel perfluorooctane sulfonate (PFOS) alternative, 6:2 fluorotelomer sulfonamide alkylbetaine (6: 2 FTAB) has been detected in the environment and biotas. However, its behaviors and toxicity in earthworms remain unclear. Here, earthworms (Eisenia fetida) were exposed to 6:2 FTAB to [...] Read more.
As a novel perfluorooctane sulfonate (PFOS) alternative, 6:2 fluorotelomer sulfonamide alkylbetaine (6: 2 FTAB) has been detected in the environment and biotas. However, its behaviors and toxicity in earthworms remain unclear. Here, earthworms (Eisenia fetida) were exposed to 6:2 FTAB to investigate its bioaccumulation, biotransformation and toxicity. Results indicated that 6:2 FTAB could be biodegraded in soil into perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), perfluorobutanoic acid (PFBA) and perfluoropropionic acid (PFPrA). The uptake rate constant (ku) and the bioaccumulation factor (BAF) of 6:2 FTAB in earthworms were 0.0504 goc gww−1 d and 1.65 goc gww−1, respectively. 6:2 FTAB was biotransformed to form PFHxA, PFPeA, PFBA and PFPrA in earthworms after in vivo and in vitro exposure. The aerobic bacteria isolated from worm gut could degrade 6:2 FTAB to form PFPeA and PFHxA, while the anaerobic bacteria did not contribute to 6:2 FTAB biodegradation in worms. Peroxidase (POD) and superoxide dismutase (SOD) activities were significantly increased, while no significant changes were observed for catalase (CAT) activities, demonstrating activation of the primary antioxidant defense system against oxidative stress in earthworms after exposure to 6:2 FTAB. The significant increase of glutathione-S-transferase (GST) activities suggested indirect evidence on the conjugation of 6:2 FTAB or its metabolites in phase II of detoxication. This study provides important information on the fate of 6:2 FTAB in earthworms. Full article
Show Figures

Figure 1

17 pages, 3101 KiB  
Article
Removal of Per- and Polyfluoroalkyl Substances Using Commercially Available Sorbents
by Zhiming Zhang, Sevda Joudiazar, Anshuman Satpathy, Eustace Fernando, Roxana Rahmati, Junchul Kim, Giacomo de Falco, Rupali Datta and Dibyendu Sarkar
Materials 2025, 18(6), 1299; https://doi.org/10.3390/ma18061299 - 15 Mar 2025
Cited by 1 | Viewed by 2344
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants of growing environmental and human health concern, widely detected across various environmental compartments. Effective remediation strategies are essential to mitigate their widespread impacts. This study compared the performance of two types of commercially available [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants of growing environmental and human health concern, widely detected across various environmental compartments. Effective remediation strategies are essential to mitigate their widespread impacts. This study compared the performance of two types of commercially available sorbent materials, granular activated carbon (GAC, Filtrasorb-400) and organoclays (OC-200, and modified organoclays Fluoro-sorb-100 and Fluoro-sorb-200) for the removal of three representative PFAS compounds: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS) from water. Both organoclays and modified organoclays outperformed GAC, likely due to electrostatic interactions between the anionic PFAS compounds and the cationic functional groups of the modified organoclays. A pseudo-second-order kinetic model best described the rapid sorption kinetics of PFOA, PFNA, and PFOS. For PFOA, OC-200 demonstrated the highest adsorption capacities (qmax = 47.17 µg/g). For PFNA and PFOS, Fluoro-sorb-100 was the most effective sorbent, with qmax values at 99.01 µg/g and 65.79 µg/g, respectively. Desorption studies indicated that the sorption of the three PFAS compounds on these commercially available sorbents was largely irreversible. This study highlights the effectiveness and sorption capacities of different types of commercial sorbents for PFAS removal and offers valuable insights into the selection of reactive media for PFAS removal from water under environmentally relevant conditions. Full article
(This article belongs to the Special Issue Advanced Nanoporous and Mesoporous Materials)
Show Figures

Figure 1

16 pages, 3485 KiB  
Article
Effects of Perfluorooctane Sulfonic Acid Exposure on Intestinal Microbial Community, Lipid Metabolism, and Liver Lesions in Mice
by Qianfeng Chen, Yulang Chi, Qingyu Zhu, Nana Ma, Lingli Min and Shouping Ji
Int. J. Mol. Sci. 2025, 26(6), 2648; https://doi.org/10.3390/ijms26062648 - 14 Mar 2025
Viewed by 794
Abstract
Perfluorooctane sulfonic acid (PFOS) is a persistent organic pollutant that has attracted much attention due to its wide environmental distribution and potential toxicity. Intestinal microbiota is an important regulator of host health, and its composition and metabolic function are easily interfered with by [...] Read more.
Perfluorooctane sulfonic acid (PFOS) is a persistent organic pollutant that has attracted much attention due to its wide environmental distribution and potential toxicity. Intestinal microbiota is an important regulator of host health, and its composition and metabolic function are easily interfered with by environmental pollutants. In this study, the effects of PFOS exposure on gut microbiota, lipid metabolism, and host health were investigated in mice. The results showed that PFOS exposure did not significantly change α diversity, but significantly affected the β diversity and community structure of intestinal microflora in mice. At the taxonomic level, the ratio of Firmicutes to Bacteroidetes decreased, and the changes in the abundance of specific bacteria were closely related to liver diseases and lipid metabolism disorders. PFOS exposure also interfered with the gut–liver axis mechanism, increased blood lipids and liver function related indicators in mice, and induced intestinal and liver histological lesions. This study revealed the toxic mechanism of PFOS mediated by intestinal microbiota, providing a new research perspective for health problems caused by environmental pollutants and theoretical support for the formulation of relevant public health policies. Full article
(This article belongs to the Collection New Advances in Molecular Toxicology)
Show Figures

Figure 1

16 pages, 1416 KiB  
Article
Association of Personal Care and Consumer Product Chemicals with Long-Term Amenorrhea: Insights into Serum Globulin and STAT3
by Ziyi Li, Xue Song, Daniel Abdul Karim Turay, Yanling Chen, Guohong Zhao, Yingtong Jiang, Kun Zhou, Xiaoming Ji, Xiaoling Zhang and Minjian Chen
Toxics 2025, 13(3), 187; https://doi.org/10.3390/toxics13030187 - 5 Mar 2025
Viewed by 1097
Abstract
Chemicals in personal care and consumer products are suspected to disrupt endocrine function and affect reproductive health. However, the link between mixed exposure and long-term amenorrhea is not well understood. This study analyzed data from 684 women (2013–2018 National Health and Nutrition Examination [...] Read more.
Chemicals in personal care and consumer products are suspected to disrupt endocrine function and affect reproductive health. However, the link between mixed exposure and long-term amenorrhea is not well understood. This study analyzed data from 684 women (2013–2018 National Health and Nutrition Examination Survey) to assess exposure to eight polyfluorinated alkyl substances (PFASs), 15 phthalates (PAEs), six phenols, and four parabens. Various statistical models for robustness tests and mediation analysis were used to explore associations with long-term amenorrhea and the role of serum globulin. Biological mechanisms were identified through an integrated strategy involving target analysis of key chemicals and long-term amenorrhea intersections, pathway analysis, and target validation. Results showed that women with long-term amenorrhea had higher exposure levels of Perfluorodecanoic acid, Perfluorohexane sulfonic acid (PFHxS), Perfluorononanoic acid, n-perfluorooctanoic acid (n_PFOA), n-perfluorooctane sulfonic acid, and Perfluoromethylheptane sulfonic acid isomers. Logistic regression with different adjustments consistently found significant associations between elevated PFAS concentrations and increased long-term amenorrhea risk, confirmed by Partial Least Squares Discriminant Analysis. Mediation analysis revealed that serum globulin partially mediated the relationship between PFAS exposure and long-term amenorrhea. Network and target analysis suggested that PFHxS and n_PFOA may interact with Signal Transducer and Activator of Transcription 3 (STAT3). This study highlights significant associations between PFAS exposure, particularly PFHxS and n_PFOA, and long-term amenorrhea, with serum globulin and STAT3 serving as mediators in the underlying mechanisms. Full article
Show Figures

Graphical abstract

18 pages, 1426 KiB  
Article
Association Between Per- and Polyfluoroalkyl Substances and All-Cause Mortality in Diabetic Patients: Insights from a National Cohort Study and Toxicogenomic Analysis
by Zhengxiao Wei, Jinyu Chen, Xue Mei and Yi Yu
Toxics 2025, 13(3), 168; https://doi.org/10.3390/toxics13030168 - 27 Feb 2025
Viewed by 815
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of environmental contaminants associated with various health risks; however, their relationship with all-cause mortality in individuals with diabetes remains unclear. A total of 1256 participants from the National Health and Nutrition Examination Survey (NHANES) were [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are a group of environmental contaminants associated with various health risks; however, their relationship with all-cause mortality in individuals with diabetes remains unclear. A total of 1256 participants from the National Health and Nutrition Examination Survey (NHANES) were included to explore the association between seven PFAS compounds and all-cause mortality in diabetic patients. Preliminary logistic regression identified three PFAS compounds (perfluorooctanoic acid [PFOA], perfluorooctane sulfonic acid [PFOS], and 2-(N-methyl-PFOSA) acetate acid [MPAH]) as significantly associated with mortality in the diabetic population. The optimal cut-off values for PFOS, PFOA, and MPAH were determined using the X-tile algorithm, and participants were categorized into high- and low-exposure groups. Kaplan–Meier survival curves and multivariable Cox proportional hazards regression models were used to assess the relationship between PFAS levels and mortality risk. The results showed that high levels of PFOS were significantly associated with increased all-cause mortality risk in diabetic patients (hazard ratio [HR]: 1.55, 95% confidence interval [CI]: 1.06–2.29), while PFOA and MPAH showed no significant associations. To explore mechanisms underlying the PFOS–mortality link, toxicogenomic analysis identified 95 overlapping genes associated with PFOS exposure and diabetes-related mortality using the Comparative Toxicogenomics Database (CTD) and GeneCards. Functional enrichment analysis revealed key biological processes, such as glucose homeostasis and response to peptide hormone, with pathways including the longevity regulating pathway, apoptosis, and p53 signaling pathway. Protein–protein interaction network analysis identified 10 hub genes, and PFOS was found to upregulate or downregulate their mRNA expression, protein activity, or protein expression, with notable effects on mRNA levels. These findings suggest that PFOS exposure contributes to increased mortality risk in diabetic patients through pathways related to glucose metabolism, apoptosis, and cellular signaling. Our study provides new insights into the association between PFAS and all-cause mortality in diabetes, highlighting the need for large-scale cohort studies and further in vivo and in vitro experiments to validate these findings. Full article
Show Figures

Figure 1

17 pages, 2496 KiB  
Review
Prevalent Per- and Polyfluoroalkyl Substances (PFASs) Pollution in Freshwater Basins in China: A Short Review
by Jingjing Zhang, Jiaoqin Liu, Riya Jin, Yina Qiao, Jipeng Mao and Zunyao Wang
Toxics 2025, 13(2), 135; https://doi.org/10.3390/toxics13020135 - 13 Feb 2025
Cited by 4 | Viewed by 1931
Abstract
Organic pollutants like per- and polyfluoroalkyl substances (PFASs) exhibit persistence, bioaccumulation, resistance to degradation, and high toxicity, garnering significant attention from scholars worldwide. To better address and mitigate the environmental risks posed by PFASs, this paper employs bibliometric analysis to examine the literature [...] Read more.
Organic pollutants like per- and polyfluoroalkyl substances (PFASs) exhibit persistence, bioaccumulation, resistance to degradation, and high toxicity, garnering significant attention from scholars worldwide. To better address and mitigate the environmental risks posed by PFASs, this paper employs bibliometric analysis to examine the literature on PFASs’ concentrations collected in the Web of Science (WoS) database between 2019 and 2024. The results show that the overall trend of PFASs’ pollution research is relatively stable and increasing. In addition, this study also summarizes the pollution status of traditional PFASs across different environmental media in typical freshwater basins. It analyzes PFASs’ concentrations in surface water, sediment, and aquatic organisms, elucidating their distribution characteristics and potential sources. While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) levels in water environments are declining annually, short-chain PFASs and their substitutes are emerging as primary pollutants. Short-chain PFASs are frequently detected in surface water, whereas long-chain PFASs tend to accumulate in sediments. In aquatic organisms, PFASs are more likely to concentrate in protein-rich organs and tissues. The environmental presence of PFASs is largely influenced by human activities, such as metal plating, fluoride industry development, and industrial wastewater discharge. Currently, the development of PFASs in China faces a complex dilemma, entangled by policy and legal constraints, industrial production demands, the production and use of new alternatives, and their regulation and restriction, creating a vicious cycle. Breaking this deadlock necessitates continuous and active scientific research on PFASs, particularly PFOS, with an emphasis on detailed investigations of environmental sources and sinks. Furthermore, ecological and health risk assessments were conducted using Risk Quotient (RQ) and Hazard Quotient (HQ) methods. Comprehensive comparison indicates that PFASs (such as PFOA) in the majority of freshwater basins are at a low-risk level (RQ < 0.1 or HQ < 0.2), PFOS in some freshwater basins is at a medium-risk level (0.1 < RQ < 1), and no freshwater basin is at a high-risk level. The adsorption and removal approaches of PFASs were also analyzed, revealing that the combination of multiple treatment technologies as a novel integrated treatment technology holds excellent prospects for the removal of PFASs. Full article
Show Figures

Graphical abstract

Back to TopTop