Distribution and Ecological Risk Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances in Chinese Soils: A Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Areas, Sampling Sites, and PFAS Detection Methods
2.3. Data Analysis and Ecological Risk Assessment for PFAS Contamination
2.4. Mobility Assessment for PFAS Contamination
3. Distribution and Ecological Risk of PFAS in Chinese Soils
3.1. Spatial Patterns of Total PFAS Concentrations
Provinces | TFA | PFPrA | PFBA | PFPeA | PFHxA | PFHpA | PFOA | PFNA | PFDA | PFUnDA | PFBS | PFHxS | PFOS | ∑n PFAS | ∑PFAS (ng/g) | Median (ng/g) | Maximum (ng/g) | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anhui | - | - | 0.022 | 0.034 | 0.026 | 0.016 | 0.094 | 0.049 | 0.011 | 0.026 | 0.006 | <MDL | 0.01 | 18 | 0.381 ± 0.025 | 0.022 | 0.094 | [39] |
Beijing | - | - | 0.049 | 0.03 | 0.012 | 0.009 | 0.09 | 0.029 | 0.017 | 0.011 | 0.007 | <MDL | 0.023 | 20 | 0.334 ± 0.0026 | 0.017 | 0.09 | [39] |
Chongqing | - | - | 2.762 | 1.382 | 1.653 | 0.848 | 0.772 | 0.096 | 0.147 | 0.067 | 4.105 | 1.206 | 1.08 | 17 | 14.23 ± 1.223 | 1.08 | 4.105 | [26] |
Fujian | - | - | 14.5 | 10.8 | 15.7 | 8.75 | 47.7 | 0.42 | 0.69 | 0.76 | 625 | 426 | 4330 | 18 | 6240 ± 1220.35 | 15.7 | 4330 | [23] |
Fujian | - | - | 0.021 | 0.029 | 0.04 | 0.017 | 0.07 | 0.038 | 0.025 | 0.023 | 0.011 | <MDL | 0.014 | 21 | 0.367 ± 0.0194 | 0.023 | 0.07 | [39] |
Guangdong | - | - | n.d. | 0.83 | - | n.d. | 1.79 | - | 1.67 | 0.17 | 34.87 | 2.32 | 136.8 | 12 | 230.89 ± 48.67 | 1.79 | 136.8 | [22] |
Guangdong | - | - | 0.034 | 0.032 | 0.02 | 0.004 | 0.021 | 0.008 | 0.01 | 0.009 | 0.017 | <MDL | 0.035 | 20 | 0.257 ± 0.005 | 0.017 | 0.035 | [39] |
Hebei | - | - | 0.25 | 0.19 | 0.05 | 0.06 | 4.14 | 0.13 | 0.07 | 0.06 | 0.02 | 0.02 | 1.1 | 12 | 6.17 ± 1.158 | 0.095 | 4.14 | [24] |
Hebei | - | - | 0.038 | 0.039 | 0.02 | 0.011 | 0.126 | 0.024 | 0.016 | 0.013 | 0.005 | <MDL | 0.011 | 24 | 0.45 ± 0.045 | 0.016 | 0.126 | [39] |
Jiangsu | - | - | 0.75 | 0.25 | 0.06 | 0.07 | 4.14 | 0.13 | 0.11 | 0.1 | 0.02 | 0.02 | 1.24 | 12 | 6.95 ± 1.184 | 0.11 | 4.14 | [24] |
Jiangsu | - | - | 0.014 | 0.091 | 0.013 | 0.007 | 0.083 | 0.019 | 0.024 | 0.012 | 0.004 | <MDL | 0.005 | 19 | 0.325 ± 0.0261 | 0.014 | 0.091 | [39] |
Jiangsu | - | - | - | - | - | - | 7.59 | 0.482 | 1.5 | 0.425 | <0.5 | <0.5 | <0.5 | - | 9.62 ± 3.062 | 0.5 | 7.59 | [41] |
Liaoning | - | - | 0.59 | 0.27 | 0.06 | 0.07 | 3.71 | 0.14 | 0.08 | 0.07 | 0.02 | 0.01 | 1.36 | 12 | 6.43 ± 1.08 | 0.08 | 3.71 | [24] |
Sichuan | - | - | 0.162 | 0.035 | 0.058 | 0.051 | 0.323 | 0.086 | 0.063 | 0.054 | 0.06 | - | 0.077 | 11 | 0.98 ± 0.045 | 0.063 | 0.323 | [42] |
Shanghai | 135.963 | - | 0.641 | 1.039 | 0.588 | 0.444 | 35.248 | 0.431 | 0.443 | 0.278 | 0.182 | 0.272 | 9.541 | 15 | 184.74 ± 41.36 | 0.588 | 135.396 | [30] |
Shanghai | - | - | nd.-54.5 | nd.-8.08 | 0.04–3.54 | 0.04–3.54 | 0.11–96.7 | nd.-1.59 | nd.-3.05 | nd.-1.59 | nd.-4.52 | nd.-1.11 | nd.-241 | 18 | 0.64−294 | 3.54 | 241 | [40] |
Shanghai | - | - | 0.011 | 0.095 | 0.039 | 0.029 | 0.316 | 0.06 | 0.047 | 0.023 | 0.011 | <MDL | 0.035 | 17 | 0.704 ± 0.045 | 0.035 | 0.316 | [39] |
Shandong | - | - | 0.016 | 0.015 | 0.011 | 0.009 | 0.339 | 0.024 | 0.011 | 0.008 | 0.007 | <MDL | 0.011 | 19 | 0.697 ± 0.099 | 0.011 | 0.339 | [39] |
Shandong | - | - | 0.5 | 0.23 | 0.13 | 0.09 | 3.6 | 0.22 | 0.1 | 0.11 | 0.04 | 0.02 | 2.32 | 12 | 7.44 ± 1.113 | 0.13 | 3.6 | [24] |
Tianjin | - | - | 0.34 | 0.14 | 0.09 | 0.11 | 4.28 | 0.31 | 0.29 | 0.22 | 0.02 | 0.01 | 1.1 | 12 | 7.07 ± 1.186 | 0.22 | 4.28 | [24] |
Tianjin | - | - | 0.044 | 0.026 | 0.013 | 0.008 | 0.082 | 0.023 | 0.021 | 0.009 | 0.014 | <MDL | 0.012 | 20 | 0.363 ± 0.024 | 0.014 | 0.082 | [39] |
Tianjin | 0.47 | 16.6 | 2.3 | 0.04 | 0.1 | 0.1 | 1.14 | 0.1 | 0.1 | 0.1 | 1.75 | 0.04 | 2.82 | 20 | 26.6 ± 7.61 | 0.285 | 16.6 | [43] |
Tianjin | - | - | - | - | - | - | 0.5 | - | - | - | - | - | 0.11 | - | 1.37 ± 0.275 | 0.305 | 0.5 | [27] |
Zhejiang | - | - | <MDL | <MDL | 0.07 | <MDL | 1.05 | 0.21 | 0.61 | 0.38 | <MDL | 0.06 | 0.57 | 25 | 4.7 ± 0.321 | 0.21 | 1.05 | [31] |
Zhejiang | - | - | 0.45 | 0.16 | 5.26 | 1.65 | 3.76 | 0.68 | 0.07 | 0.32 | 1.46 | 9 | 10.08 ± 0.928 | 0.68 | 5.26 | [25] | ||
Zhejiang | - | - | 0.013 | 0.03 | 0.024 | 0.016 | 0.158 | 0.039 | 0.049 | 0.023 | 0.008 | <MDL | 0.024 | 20 | 0.486 ± 0.055 | 0.024 | 0.158 | [39] |
Yunnan Guizhou Sichuan | 1.27 | 0.1 | 0.96 | 0.06 | 0.11 | 0.02 | 0.11 | 0.03 | 0.03 | 0.03 | 0.02 | 0.05 | 0.34 | 34 | 5.85 ± 0.334 | 0.06 | 1.27 | [44] |
3.2. PFAS Occurrence, Composition, and Predominant Compounds
3.3. Ecological Risk Assessment of PFAS Contamination
4. Sources and Environmental Pathways of PFAS Contamination in Chinese Soils
5. Implications for Water Quality and Human Health
5.1. Soil–Groundwater Interactions
5.2. Health Risks and Bioaccumulation of PFAS
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ryu, H.; Li, B.; De Guise, S.; McCutcheon, J.; Lei, Y. Recent progress in the detection of emerging contaminants PFASs. J. Hazard. Mater. 2021, 408, 124437. [Google Scholar] [CrossRef]
- Gaines, L.G.T. Historical and current usage of per- and polyfluoroalkyl substances (PFAS): A literature review. Am. J. Ind. Med. 2022, 66, 353–378. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Bezerra de Souza, B.; Casarini, M.M.; Kewalramani, J.A. A Review of PFAS Destruction Technologies. Int. J. Environ. Res. Public Health 2022, 19, 16397. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.U.; Crimi, M.; Andreescu, S. Current and emerging analytical techniques for the determination of PFAS in environmental samples. Trends Environ. Anal. Chem. 2023, 37, e00198. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, N.; Kumar Yadav, A.; Singh, R.; Kumar, K. Per-and polyfluoroalkyl substances (PFAS) as a health hazard: Current state of knowledge and strategies in environmental settings across Asia and future perspectives. Chem. Eng. J. 2023, 475, 145064. [Google Scholar] [CrossRef]
- Li, B.-B.; Hu, L.-X.; Yang, Y.-Y.; Wang, T.-T.; Liu, C.; Ying, G.-G. Contamination profiles and health risks of PFASs in groundwater of the Maozhou River basin. Environ. Pollut. 2020, 260, 113996. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Mei, J.; Jiang, J.; Xu, K.; Gao, X.; Jiang, S.; Liu, Y. PFAS in PMs might be the escalating hazard to the lung health. Nano Res. 2023, 16, 13113–13133. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, H.; Liang, Y. Plant uptake and soil fractionation of five ether-PFAS in plant-soil systems. Sci. Total Environ. 2021, 771, 144805. [Google Scholar] [CrossRef]
- Gebbink, W.A.; van Asseldonk, L.; van Leeuwen, S.P.J. Presence of Emerging Per- and Polyfluoroalkyl Substances (PFASs) in River and Drinking Water near a Fluorochemical Production Plant in the Netherlands. Environ. Sci. Technol. 2017, 51, 11057–11065. [Google Scholar] [CrossRef]
- Pétré, M.A.; Salk, K.R.; Stapleton, H.M.; Ferguson, P.L.; Tait, G.; Obenour, D.R.; Knappe, D.R.U.; Genereux, D.P. Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina. Sci. Total Environ. 2022, 831, 154763. [Google Scholar] [CrossRef]
- Hill, P.J.; Taylor, M.; Goswami, P.; Blackburn, R.S. Substitution of PFAS chemistry in outdoor apparel and the impact on repellency performance. Chemosphere 2017, 181, 500–507. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Anderson, R.H.; Guo, B. PFAS concentrations in soils: Background levels versus contaminated sites. Sci. Total Environ. 2020, 740, 140017. [Google Scholar] [CrossRef]
- Sofo, A.; Zanella, A.; Ponge, J.F. Soil quality and fertility in sustainable agriculture, with a contribution to the biological classification of agricultural soils. Soil Use Manag. 2021, 38, 1085–1112. [Google Scholar] [CrossRef]
- Röhler, K.; Susset, B.; Grathwohl, P. Production of perfluoroalkyl acids (PFAAs) from precursors in contaminated agricultural soils: Batch and leaching experiments. Sci. Total Environ. 2023, 902, 166555. [Google Scholar] [CrossRef] [PubMed]
- Kopittke, P.M.; Minasny, B.; Pendall, E.; Rumpel, C.; McKenna, B.A. Healthy soil for healthy humans and a healthy planet. Crit. Rev. Environ. Sci. Technol. 2023, 54, 210–221. [Google Scholar] [CrossRef]
- Schroeder, T.; Bond, D.; Foley, J. PFAS soil and groundwater contamination via industrial airborne emission and land deposition in SW Vermont and Eastern New York State, USA. Environ. Sci. Process. Impacts 2021, 23, 291–301. [Google Scholar] [CrossRef]
- Kotthoff, M.; Fliedner, A.; Rüdel, H.; Göckener, B.; Bücking, M.; Biegel-Engler, A.; Koschorreck, J. Per-and polyfluoroalkyl substances in the German environment–levels and patterns in different matrices. Sci. Total Environ. 2020, 740, 140116. [Google Scholar] [CrossRef]
- Göckener, B.; Fliedner, A.; Rüdel, H.; Fettig, I.; Koschorreck, J. Exploring unknown per-and polyfluoroalkyl substances in the German environment–the total oxidizable precursor assay as helpful tool in research and regulation. Sci. Total Environ. 2021, 782, 146825. [Google Scholar] [CrossRef]
- Röhler, K.; Haluska, A.A.; Susset, B.; Liu, B.; Grathwohl, P. Long-term behavior of PFAS in contaminated agricultural soils in Germany. J. Contam. Hydrol. 2021, 241, 103812. [Google Scholar] [CrossRef]
- Dauchy, X. Evidence of large-scale deposition of airborne emissions of per- and polyfluoroalkyl substances (PFASs) near a fluoropolymer production plant in an urban area. Chemosphere 2023, 337, 139407. [Google Scholar] [CrossRef]
- Sammut, G.; Sinagra, E.; Sapiano, M.; Helmus, R.; de Voogt, P. Perfluoroalkyl substances in the Maltese environment—(II) sediments, soils and groundwater. Sci. Total Environ. 2019, 682, 180–189. [Google Scholar] [CrossRef]
- Hu, H.; Zeng, X.; Zheng, K.; Zeng, Z.; Dai, C.; Huo, X. Risk assessment and partitioning behavior of PFASs in environmental matrices from an e-waste recycling area. Sci. Total Environ. 2023, 905, 167707. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Li, X.; Zhou, L.; Hui, Y.; Li, W.; Cai, Y.; Shi, Y. Variations of the Level, Profile, and Distribution of PFAS around POSF Manufacturing Facilities in China: An Overlooked Source of PFCA. Environ. Sci. Technol. 2023, 57, 5264–5274. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Wang, T.; Song, S.; Wang, P.; Li, Q.; Zhou, Y.; Lu, Y. Tracing perfluoroalkyl substances (PFASs) in soils along the urbanizing coastal area of Bohai and Yellow Seas, China. Environ. Pollut. 2018, 238, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Liu, X.; Yang, G.; Xia, J.; Zhang, N.; Wang, D.; Deng, H.; Mao, M.; Li, X.; Ni, B.-J. Spatial distribution, sources and risk assessment of perfluoroalkyl substances in surface soils of a representative densely urbanized and industrialized city of China. Catena 2021, 198, 105059. [Google Scholar] [CrossRef]
- Huang, X.; Wei, X.; Liu, H.; Li, W.; Shi, D.; Qian, S.; Sun, W.; Yue, D.; Wang, X. Occurrence of per- and polyfluoroalkyl substances (PFAS) in municipal solid waste landfill leachates from western China. Environ. Sci. Pollut. Res. 2022, 29, 69588–69598. [Google Scholar] [CrossRef]
- Ma, D.; Zhong, H.; Lv, J.; Wang, Y.; Jiang, G. Levels, distributions, and sources of legacy and novel per- and perfluoroalkyl substances (PFAS) in the topsoil of Tianjin, China. J. Environ. Sci. 2022, 112, 71–81. [Google Scholar] [CrossRef]
- Huset, C.A.; Barry, K.M. Quantitative determination of perfluoroalkyl substances (PFAS) in soil, water, and home garden produce. MethodsX 2018, 5, 697–704. [Google Scholar] [CrossRef]
- Simon, F.; Gehrenkemper, L.; von der Au, M.; Wittwer, P.; Roesch, P.; Pfeifer, J.; Cossmer, A.; Meermann, B. A fast and simple PFAS extraction method utilizing HR–CS–GFMAS for soil samples. Chemosphere 2022, 295, 133922. [Google Scholar] [CrossRef]
- Li, F.; Zhang, C.; Qu, Y.; Chen, J.; Chen, L.; Liu, Y.; Zhou, Q. Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China. Sci. Total Environ. 2010, 408, 617–623. [Google Scholar] [CrossRef]
- Liu, T.; Hu, L.-X.; Han, Y.; Dong, L.-L.; Wang, Y.-Q.; Zhao, J.-H.; Liu, Y.-S.; Zhao, J.-L.; Ying, G.-G. Non-target and target screening of per- and polyfluoroalkyl substances in landfill leachate and impact on groundwater in Guangzhou, China. Sci. Total Environ. 2022, 844, 157021. [Google Scholar] [CrossRef] [PubMed]
- Gonda, N.; Zhang, C.; Tepedelen, D.; Smith, A.; Schaefer, C.; Higgins, C.P. Quantitative assessment of poly- and perfluoroalkyl substances (PFASs) in aqueous film forming foam (AFFF)–impacted soils: A comparison of analytical protocols. Anal. Bioanal. Chem. 2024, 416, 6879–6892. [Google Scholar] [CrossRef]
- Dhiman, S.; Jain, H.V.; Yadav, A.; Ansari, N.G. Probing the fate and transport of PFAS in urban soils: Insights from ASE-LC-HR/MS analysis. J. Hazard. Mater. 2025, 494, 138635. [Google Scholar] [CrossRef] [PubMed]
- Norwegian Pollution Control Authority. Screening of Polyfluorinated Organic Compounds at Four Fire Training Facilities in Norway. (TA-2444/2008). 2008. Available online: https://kudos.dfo.no/documents/9379/files/9266.pdf (accessed on 5 July 2025).
- Jeong, S.-W.; An, Y.-J. Significant Parameters for Assessing Soil Contaminant-Leaching to Groundwater and Determining Soil Sample Size in Field Survey. Environ. Eng. Res. 2008, 13, 73–78. [Google Scholar] [CrossRef]
- Cai, Q.; Li, X.; Zhang, F.; Yang, J.; Liu, S.; Chen, C. In situ analysis of distribution characteristics of per-/polyfluoroalkyl substances (PFAS) in water-sediment systems using diffusive gradients in thin-films (DGT). Anal. Chem. 2025, 53, 300–318. (In Chinese) [Google Scholar] [CrossRef]
- Dimitrakopoulou, M.-E.; Karvounis, M.; Marinos, G.; Theodorakopoulou, Z.; Aloizou, E.; Petsangourakis, G.; Papakonstantinou, M.; Stoitsis, G. Comprehensive analysis of PFAS presence from environment to plate. Npj Sci. Food 2024, 8, 80. [Google Scholar] [CrossRef]
- Xie, X.; Lu, Y.; Wang, P.; Lei, H.; Chen, N.; Liang, Z.; Jiang, X.; Li, J.; Cao, Z.; Liao, J.; et al. Per- and polyfluoroalkyl substances in a subtropical river-mangrove estuary-bay system. J. Hazard. Mater. 2024, 464, 132937. [Google Scholar] [CrossRef]
- Cheng, Y.; An, Q.; Qi, H.; Li, R.; Liu, W.; Gu, B.; Liu, K. Temporal Trends of Legacy and Emerging PFASs from 2011 to 2021 in Agricultural Soils of Eastern China: Impacts of the Stockholm Convention. Environ. Sci. Technol. 2023, 57, 9277–9286. [Google Scholar] [CrossRef]
- Zhu, Q.; Qian, J.; Huang, S.; Li, Q.; Guo, L.; Zeng, J.; Zhang, W.; Cao, X.; Yang, J. Occurrence, distribution, and input pathways of per- and polyfluoroalkyl substances in soils near different sources in Shanghai. Environ. Pollut. 2022, 308, 119620. [Google Scholar] [CrossRef]
- Lu, G.-H.; Jiao, X.-C.; Piao, H.-T.; Wang, X.-C.; Chen, S.; Tan, K.-Y.; Gai, N.; Yin, X.-C.; Yang, Y.-L.; Pan, J. The Extent of the Impact of a Fluorochemical Industrial Park in Eastern China on Adjacent Rural Areas. Arch. Environ. Contam. Toxicol. 2017, 74, 484–491. [Google Scholar] [CrossRef]
- Gan, C.-D.; Peng, M.-Y.; Liu, H.-B.; Yang, J.-Y. Concentration and distribution of metals, total fluorine, per- and poly-fluoroalkyl substances (PFAS) in vertical soil profiles in industrialized areas. Chemosphere 2022, 302, 134855. [Google Scholar] [CrossRef]
- Meng, Y.; Yao, Y.; Chen, H.; Li, Q.; Sun, H. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Dagang Oilfield: Multimedia distribution and contributions of unknown precursors. J. Hazard. Mater. 2021, 412, 125177. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Yao, Y.; Dong, X.; Baqar, M.; Fang, B.; Chen, H.; Sun, H. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances (PFAS) in Soils from an Oil Refinery in Southwestern China: A Combined Approach with TOP Assay. Environ. Sci. Technol. 2023, 57, 20194–20205. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, H.; Chen, Y.; Wang, Y.; Luo, Y.; Sang, L.; Jin, T.; Wu, S. Perfluoroalkyl acids (PFAAs) and their precursors in sediments and adjacent riparian soils from the Three Gorges Reservoir, China: Contamination characteristics, source apportionment and ecological risks. Environ. Res. 2025, 274, 121202. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Wang, G.; Liu, S.; Chen, H.; Dong, X.; Wang, H.; Liu, Y. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in agricultural soils affected by fluorochemical manufacturing facilities, North China: Occurrence, region-specific distribution, substitution trend and source appointment. J. Hazard. Mater. 2024, 474, 134770. [Google Scholar] [CrossRef]
- Choi, G.-H.; Lee, D.-Y.; Jeong, D.-K.; Kuppusamy, S.; Lee, Y.B.; Park, B.-J.; Kim, J.-H. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) concentrations in the South Korean agricultural environment: A national survey. J. Integr. Agric. 2017, 16, 1841–1851. [Google Scholar] [CrossRef]
- Sörengård, M.; Kikuchi, J.; Wiberg, K.; Ahrens, L. Spatial distribution and load of per- and polyfluoroalkyl substances (PFAS) in background soils in Sweden. Chemosphere 2022, 295, 133944. [Google Scholar] [CrossRef]
- Xiao, F.; Simcik, M.F.; Halbach, T.R.; Gulliver, J.S. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: Migration and implications for human exposure. Water Res. 2015, 72, 64–74. [Google Scholar] [CrossRef]
- Arp, H.P.H.; Gredelj, A.; Gluge, J.; Scheringer, M.; Cousins, I.T. The Global Threat from the Irreversible Accumulation of Trifluoroacetic Acid (TFA). Environ. Sci. Technol. 2024, 58, 19925–19935. [Google Scholar] [CrossRef]
- Hyslop, N.P.; Liu, Y.; Yatkin, S.; Trzepla, K. Application of the U.S. EPA procedure for determining method detection limits to EDXRF measurement of filter-based aerosol samples. J. Air Waste Manag. Assoc. 2022, 72, 905–913. [Google Scholar] [CrossRef]
- Top 10 Provinces in China’s Industrial Strength 2024: Guangdong Secures Top Position, Anhui Leads in Growth Rate. 2024. Available online: https://baijiahao.baidu.com/s?id=1834091371028871077&wfr=spider&for=pc (accessed on 5 July 2025). (In Chinese).
- Cao, X.; Wang, C.; Lu, Y.; Zhang, M.; Khan, K.; Song, S.; Wang, P.; Wang, C. Occurrence, sources and health risk of polyfluoroalkyl substances (PFASs) in soil, water and sediment from a drinking water source area. Ecotoxicol. Environ. Saf. 2019, 174, 208–217. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, H.; Yu, Y.; Xie, L.; Li, J.; Wang, X.; Dong, W. Perfluorinated Compounds (PFCs) in Soil of the Pearl River Delta, China: Spatial Distribution, Sources, and Ecological Risk Assessment. Arch. Environ. Contam. Toxicol. 2019, 78, 182–189. [Google Scholar] [CrossRef]
- Qie, M.; Jia, X.; Li, X.; Li, Y.; Wu, X.; Shi, Y.; Cai, Y. Spatial distribution, source, and fate of per- and polyfluoroalkyl substances in the surrounding environment of closed and converted fluorochemical factories in Fujian, China. Sci. Total Environ. 2024, 930, 172766. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Shi, G.; Liu, C.; Hao, Q.; Wu, L. Occurrence and Risk Assessment of Perfluorooctanoate (PFOA) and Perfluorooctane Sulfonate (PFOS) in Surface Water, Groundwater and Sediments of the Jin River Basin, Southeastern China. Bull. Environ. Contam. Toxicol. 2022, 108, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Lu, Y.; Cao, Z.; Huang, X.; Lei, H.; Li, J.; Wu, Z.; An, X.; Wang, P. Co-emissions of fluoride ion, fluorinated greenhouse gases, and per- and polyfluoroalkyl substances (PFAS) from different fluorochemical production processes. Environ. Pollut. 2024, 360, 124609. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Cao, Y.; Li, D.; Wu, C.; Wu, K.; Song, Y.; Huang, Z.; Luan, H.; Meng, X.; Yang, Z.; et al. Nontarget Analysis of Legacy and Emerging PFAS in a Lithium-Ion Power Battery Recycling Park and Their Possible Toxicity Measured Using High-Throughput Phenotype Screening. Environ. Sci. Technol. 2024, 58, 14530–14540. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, J.; Han, L.; Wu, W.; Chen, M. Human health risk-based soil generic assessment criteria of representative perfluoroalkyl acids (PFAAs) under the agricultural land use in typical Chinese regions. Environ. Pollut. 2023, 335, 122368. [Google Scholar] [CrossRef]
- Li, J.; Sha, H.; Liu, W.; Yuan, Y.; Zhu, G.; Meng, F.; Xi, B.; Tan, W. Transport of per-/polyfluoroalkyl substances from leachate to groundwater as affected by dissolved organic matter in landfills. Environ. Res. 2024, 247, 118230. [Google Scholar] [CrossRef]
- Eliminating and Replacing Emerging Pollutants: Guangdong in Action. 2024. Available online: http://sthjj.gz.gov.cn/ysxw/content/post_9738889.html (accessed on 5 July 2025). (In Chinese)
- Drenning, P.; Volchko, Y.; Ahrens, L.; Rosén, L.; Söderqvist, T.; Norrman, J. Comparison of PFAS soil remediation alternatives at a civilian airport using cost-benefit analysis. Sci. Total Environ. 2023, 882, 163664. [Google Scholar] [CrossRef]
- Capozzi, S.L.; Leang, A.L.; Rodenburg, L.A.; Chandramouli, B.; Delistraty, D.A.; Carter, C.H. PFAS in municipal landfill leachate: Occurrence, transformation, and sources. Chemosphere 2023, 334, 138924. [Google Scholar] [CrossRef]
- Göen, T.; Abballe, A.; Bousoumah, R.; Godderis, L.; Iavicoli, I.; Ingelido, A.M.; Leso, V.; Müller, J.; Ndaw, S.; Porras, S.P.; et al. HBM4EU chromates study—PFAS exposure in electroplaters and bystanders. Chemosphere 2024, 346, 140613. [Google Scholar] [CrossRef]
- Wang, Q.; Ruan, Y.; Zhao, Z.; Zhang, L.; Hua, X.; Jin, L.; Chen, H.; Wang, Y.; Yao, Y.; Lam, P.K.S.; et al. Per- and polyfluoroalkyl substances (PFAS) in the Three-North Shelter Forest in northern China: First survey on the effects of forests on the behavior of PFAS. J. Hazard. Mater. 2022, 427, 128157. [Google Scholar] [CrossRef]
- D’Ambro, E.L.; Murphy, B.N.; Bash, J.O.; Gilliam, R.C.; Pye, H.O.T. Predictions of PFAS regional-scale atmospheric deposition and ambient air exposure. Sci. Total Environ. 2023, 902, 166256. [Google Scholar] [CrossRef]
- Hale, S.E.; Arp, H.P.H.; Slinde, G.A.; Wade, E.J.; Bjørseth, K.; Breedveld, G.D.; Straith, B.F.; Moe, K.G.; Jartun, M.; Høisæter, Å. Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility. Chemosphere 2017, 171, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Mazzieri, F.; Di Sante, M.; Fratalocchi, E.; Pasqualini, E. Modeling contaminant leaching and transport to groundwater in Tier 2 risk assessment procedures of contaminated sites. Environ. Earth Sci. 2016, 75, 1247. [Google Scholar] [CrossRef]
- Liu, G.; Usman, M.; Luo, T.; Biard, P.-F.; Lin, K.; Greenwell, H.C.; Hanna, K. Retention and transport of PFOA and its fluorinated substitute, GenX, through water-saturated soil columns. Environ. Pollut. 2023, 337, 122530. [Google Scholar] [CrossRef] [PubMed]
- Sima, M.W.; Jaffé, P.R. A critical review of modeling Poly- and Perfluoroalkyl Substances (PFAS) in the soil-water environment. Sci. Total Environ. 2021, 757, 143793. [Google Scholar] [CrossRef]
- Samuel, J.B.; Chakraborty, A. Integration of a Groundwater Model to the Noah Land Surface Model for Aquifer-Soil Interaction. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003153. [Google Scholar] [CrossRef]
- Liu, M.; Munoz, G.; Vo Duy, S.; Sauvé, S.; Liu, J. Per- and Polyfluoroalkyl Substances in Contaminated Soil and Groundwater at Airports: A Canadian Case Study. Environ. Sci. Technol. 2021, 56, 885–895. [Google Scholar] [CrossRef]
- Wallis, I.; Hutson, J.; Davis, G.; Kookana, R.; Rayner, J.; Prommer, H. Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions. Water Res. 2022, 225, 119096. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Braunig, J.; Thompson, K.; Thompson, J.; Kabiri, S.; Navarro, D.A.; Kookana, R.S.; Grimison, C.; Barnes, C.M.; Higgins, C.P.; et al. Influences of Chemical Properties, Soil Properties, and Solution pH on Soil-Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs). Environ. Sci. Technol. 2020, 54, 15883–15892. [Google Scholar] [CrossRef]
- Dai, M.; Yan, N.; Brusseau, M.L. Potential impact of bacteria on the transport of PFAS in porous media. Water Res. 2023, 243, 120350. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, J.; Zhang, X.; Wang, L.; Wang, J.; Lin, T. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: Current understandings and challenges to overcome. Environ. Sci. Pollut. Res. 2022, 29, 49513–49533. [Google Scholar] [CrossRef]
- Bao, J.; Yu, W.J.; Liu, Y.; Wang, X.; Jin, Y.H.; Dong, G.H. Perfluoroalkyl substances in groundwater and home-produced vegetables and eggs around a fluorochemical industrial park in China. Ecotoxicol. Environ. Saf. 2019, 171, 199–205. [Google Scholar] [CrossRef]
- Li, J.; Duan, W.; An, Z.; Jiang, Z.; Li, L.; Guo, M.; Tan, Z.; Zeng, X.; Liu, X.; Liu, Y.; et al. Legacy and alternative per- and polyfluoroalkyl substances spatiotemporal distribution in China: Human exposure, environmental media, and risk assessment. J. Hazard. Mater. 2024, 480, 135795. [Google Scholar] [CrossRef]
- Li, Y.; Niu, Z.; Zhang, Y. Occurrence of legacy and emerging poly- and perfluoroalkyl substances in water: A case study in Tianjin (China). Chemosphere 2022, 287 Pt 4, 132409. [Google Scholar] [CrossRef]
- Conder, J.M.; Hoke, R.A.; Wolf, W.D.; Russell, M.H.; Buck, R.C. Are PFCAs Bioaccumulative? A Critical Review and Comparison with Regulatory Criteria and Persistent Lipophilic Compounds. Environ. Sci. Technol. 2008, 42, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Qi, P.; Wang, Y.; Mu, J.; Wang, J. Aquatic predicted no-effect-concentration derivation for perfluorooctane sulfonic acid. Environ. Toxicol. Chem. 2011, 30, 836–842. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.; Kappleman, W.; DiGuiseppi, W. Ecological Considerations of Per- and Polyfluoroalkyl Substances (PFAS). Curr. Pollut. Rep. 2017, 3, 289–301. [Google Scholar] [CrossRef]
- Zhu, L.; Li, B.; Wu, R.; Li, W.; Wang, J.; Wang, J.; Du, Z.; Juhasz, A.; Zhu, L. Acute toxicity, oxidative stress and DNA damage of chlorpyrifos to earthworms (Eisenia fetida): The difference between artificial and natural soils. Chemosphere 2020, 255, 126982. [Google Scholar] [CrossRef]
- Wang, C.; Magnuson, J.T.; Zheng, C.; Qiu, W. Incidence of Pollution, Bioaccumulation, Biomagnification, and Toxic Effects of Per- and Polyfluoroalkyl Substances (PFAS) in Aquatic Ecosystems: A Review. Aquat. Toxicol. 2025, 286, 107469. [Google Scholar] [CrossRef]
- Fujii, Y.; Shibata, Y.; Tokuda, Y.; Ito, Y.; Kudo, N.; Harada, K.H. Human exposure and toxicity of per- and polyfluoroalkyl substances: Narrative review and perspectives. Chemosphere 2025, 385, 144508. [Google Scholar] [CrossRef]
- Lau, C.; Thibodeaux, J.R.; Hanson, R.G.; Narotsky, M.G.; Rogers, J.M.; Lindstrom, A.B.; Strynar, M.J. Effects of Perfluorooctanoic Acid Exposure during Pregnancy in the Mouse. Toxicol. Sci. 2006, 90, 510–518. [Google Scholar] [CrossRef]
- Stanifer, J.W.; Stapleton, H.M.; Souma, T.; Wittmer, A.; Zhao, X.; Boulware, L.E. Perfluorinated Chemicals as Emerging Environmental Threats to Kidney Health: A Scoping Review. Clin. J. Am. Soc. Nephrol. 2018, 13, 1479–1492. [Google Scholar] [CrossRef]
- Tursi, A.R.; Lindeman, B.; Kristoffersen, A.B.; Hjertholm, H.; Bronder, E.; Andreassen, M.; Husøy, T.; Dirven, H.; Andorf, S.; Nygaard, U.C. Immune cell profiles associated with human exposure to perfluorinated compounds (PFAS) suggest changes in natural killer, T helper, and T cytotoxic cell subpopulations. Environ. Res. 2024, 256, 119221. [Google Scholar] [CrossRef]
- MacDonald, M.M.; Warne, A.L.; Stock, N.L.; Mabury, S.A.; Solomon, K.R.; Sibley, P.K. Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid to Chironomus tentans. Environ. Toxicol. Chem. 2004, 23, 2116–2123. [Google Scholar] [CrossRef]
- van Gerwen, M.; Colicino, E.; Guan, H.; Dolios, G.; Nadkarni, G.N.; Vermeulen, R.C.H.; Wolff, M.S.; Arora, M.; Genden, E.M.; Petrick, L.M. Per- and polyfluoroalkyl substances (PFAS) exposure and thyroid cancer risk. eBioMedicine 2023, 97, 104831. [Google Scholar] [CrossRef]
- Fragki, S.; Dirven, H.; Fletcher, T.; Grasl-Kraupp, B.; Bjerve Gützkow, K.; Hoogenboom, R.; Kersten, S.; Lindeman, B.; Louisse, J.; Peijnenburg, A.; et al. Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: What do we know and what not? Crit. Rev. Toxicol. 2021, 51, 141–164. [Google Scholar] [CrossRef] [PubMed]
- Schlezinger, J.J.; Gokce, N. Perfluoroalkyl/Polyfluoroalkyl Substances: Links to Cardiovascular Disease Risk. Circ. Res. 2024, 134, 1136–1159. [Google Scholar] [CrossRef] [PubMed]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Tsogbadrakh, O.; Tian, J.; Hai, F.; Lyu, C.; Jiang, G.; Zhu, G. Distribution and Ecological Risk Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances in Chinese Soils: A Review. Water 2025, 17, 2246. https://doi.org/10.3390/w17152246
Wang J, Tsogbadrakh O, Tian J, Hai F, Lyu C, Jiang G, Zhu G. Distribution and Ecological Risk Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances in Chinese Soils: A Review. Water. 2025; 17(15):2246. https://doi.org/10.3390/w17152246
Chicago/Turabian StyleWang, Junyi, Otgontuya Tsogbadrakh, Jichen Tian, Faisal Hai, Chenpeng Lyu, Guangming Jiang, and Guoyu Zhu. 2025. "Distribution and Ecological Risk Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances in Chinese Soils: A Review" Water 17, no. 15: 2246. https://doi.org/10.3390/w17152246
APA StyleWang, J., Tsogbadrakh, O., Tian, J., Hai, F., Lyu, C., Jiang, G., & Zhu, G. (2025). Distribution and Ecological Risk Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances in Chinese Soils: A Review. Water, 17(15), 2246. https://doi.org/10.3390/w17152246