Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = perennial energy crops

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 309 KB  
Article
Does Agro-Eco Efficiency Matter? Introducing Macro Circular Economy Indicator into Profitability Modeling of Serbian Farms
by Dragana Novaković, Mirela Tomaš Simin, Dragan Milić, Tihomir Novaković, Maja Radišić and Mladen Radišić
Agriculture 2026, 16(1), 88; https://doi.org/10.3390/agriculture16010088 - 30 Dec 2025
Viewed by 263
Abstract
The transition toward sustainable and circular agricultural systems is increasingly important, yet evidence linking circularity and farm profitability in transition economies remains limited. This study examines the determinants of farm profitability in Serbia by combining micro-level structural and productivity indicators with a macro-level [...] Read more.
The transition toward sustainable and circular agricultural systems is increasingly important, yet evidence linking circularity and farm profitability in transition economies remains limited. This study examines the determinants of farm profitability in Serbia by combining micro-level structural and productivity indicators with a macro-level agro-eco efficiency measure, used here as a sector-wide ecological pressure indicator rather than a direct proxy for circular practices. Using a balanced Farm Accountancy Data Network (FADN) panel of 443 farms (2015–2022) across dairy, mixed, field crop, and fruit & wine sectors, dynamic panel estimators (difference and system Generalized Method of Moments-GMM) reveal strong sectoral heterogeneity. Asset turnover is the primary driver of profitability in field crops and perennial systems, while dairy farms benefit from scale and land productivity. Energy intensity consistently reduces profitability across all sectors. Agro-eco efficiency shows a negative effect in livestock-based systems, indicating higher sensitivity to macro-ecological pressures. These findings suggest that environmental and economic vulnerabilities differ across production systems, highlighting the need for sector-specific strategies aimed at improving resilience rather than inferring the profitability of circular technologies. Full article
(This article belongs to the Special Issue Application of Biomass in Agricultural Circular Economy)
19 pages, 11088 KB  
Article
Unraveling the Saline–Alkali–Tolerance Mystery of Leymus chinensis Nongjing–4: Insights from Integrated Transcriptome and Metabolome Analysis
by Jianli Wang, Mingyu Wang, Zijian Zhang, Jinxia Li, Qiuping Shen, Yuanhao Zhang, Dongmei Zhang, Linlin Mou, Xu Zhuang, Wenhui Wang, Zhaohui Li, Long Han, Zhongbao Shen and Lixin Li
Plants 2025, 14(24), 3852; https://doi.org/10.3390/plants14243852 - 17 Dec 2025
Viewed by 484
Abstract
Soil salinization–alkalization is a critical abiotic constraint on global agriculture, threatening agroecosystem sustainability. Leymus chinensis, a high–quality perennial forage with strong stress resilience, is an ideal model for studying saline–alkali tolerance in graminaceous crops. We integrated physiological, transcriptomic, and metabolomic profiling to [...] Read more.
Soil salinization–alkalization is a critical abiotic constraint on global agriculture, threatening agroecosystem sustainability. Leymus chinensis, a high–quality perennial forage with strong stress resilience, is an ideal model for studying saline–alkali tolerance in graminaceous crops. We integrated physiological, transcriptomic, and metabolomic profiling to dissect its responses under moderate vs. severe carbonate stress, mimicking natural saline–alkali soils rather than single salt stress treatments. Multi–omics analysis revealed drastic reprogramming of energy metabolism, carbohydrate homeostasis, water transport, and secondary metabolism. Our novel finding reveals that L. chinensis uses stress–severity–dependent mechanisms, with flavonoid biosynthesis as a central “regulatory hub”: moderate saline–alkali stress acts as a stimulus for “Adaptive Activation” (energy + antioxidants), promoting growth, while severe stress exceeds tolerance thresholds, causing “systemic imbalance” (oxidative damage + metabolic disruption) and growth retardation. Via WGCNA and metabolome–transcriptome modeling, 22 transcription factors linked to key flavonoid metabolites were identified, functioning as molecular switches for stress tolerance. Our integrated approach provides novel insights into L. chinensis’ tolerance networks, and the flavonoid biosynthesis pathways and regulatory genes offer targets for precision molecular breeding to enhance forage stress resistance and mitigate yield losses from salinization–alkalization. Full article
Show Figures

Figure 1

22 pages, 3628 KB  
Article
A Decision Support System (DSS) for Irrigation Oversizing Diagnosis Using Geospatial Canopy Data and Irrigation Ecolabels
by Sergio Vélez, Raquel Martínez-Peña, João Valente, Mar Ariza-Sentís, Igor Sirnik and Miguel Ángel Pardo
AgriEngineering 2025, 7(12), 429; https://doi.org/10.3390/agriengineering7120429 - 12 Dec 2025
Viewed by 687
Abstract
Agriculture faces growing pressure to optimize water use, particularly in woody perennial crops where irrigation systems are installed once and seldom redesigned despite changes in canopy structure, soil conditions, or plant mortality. Such static layouts may accumulate inefficiencies over time. This study introduces [...] Read more.
Agriculture faces growing pressure to optimize water use, particularly in woody perennial crops where irrigation systems are installed once and seldom redesigned despite changes in canopy structure, soil conditions, or plant mortality. Such static layouts may accumulate inefficiencies over time. This study introduces a decision support system (DSS) that evaluates the hydraulic adequacy of existing irrigation systems using two new concepts: the Resource Overutilization Ratio (ROR) and the Irrigation Ecolabel. The ROR quantifies the deviation between the actual discharge of an installed irrigation network and the theoretical discharge required from crop water needs and user-defined scheduling assumptions, while the ecolabel translates this value into an intuitive A+++–D scale inspired by EU energy labels. Crop water demand was estimated using the FAO-56 Penman–Monteith method and adjusted using canopy cover derived from UAV-based canopy height models. A vineyard case study in Galicia (Spain) serves an example to illustrate the potential of the DSS. Firstly, using a fixed canopy cover, the FAO-based workflow indicated moderate oversizing, whereas secondly, UAV-derived canopy measurements revealed substantially higher oversizing, highlighting the limitations of non-spatial or user-estimated canopy inputs. This contrast (A+ vs. D rating) illustrates the diagnostic value of integrating high-resolution geospatial information when canopy variability is present. The DSS, released as open-source software, provides a transparent and reproducible framework to help farmers, irrigation managers, and policymakers assess whether existing drip systems are hydraulically oversized and to benchmark system performance across fields or management scenarios. Rather than serving as an irrigation scheduler, the DSS functions as a standardized diagnostic tool for identifying oversizing and supporting more efficient use of water, energy, and materials in perennial cropping systems. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

27 pages, 6956 KB  
Article
Comparative Analysis of Evapotranspiration from METRIC (Landsat 8/9), AquaCrop, and FAO-56 in a Hyper-Arid Olive Orchard, Southern Peru
by José Huanuqueño-Murillo, David Quispe-Tito, Javier Quille-Mamani, German Huayna-Felipe, Carolina Cruz-Rodriguez, Bertha Vera-Barrios, Lia Ramos-Fernández and Edwin Pino-Vargas
Agriculture 2025, 15(23), 2423; https://doi.org/10.3390/agriculture15232423 - 25 Nov 2025
Viewed by 714
Abstract
Accurate estimation of evapotranspiration (ET) is critical for precision irrigation in hyper-arid perennial systems. This study quantified ET in an 8 ha olive orchard in La Yarada–Los Palos (Tacna, Peru) by integrating the METRIC satellite-based energy-balance model (Landsat 8/9, Google Earth Engine) with [...] Read more.
Accurate estimation of evapotranspiration (ET) is critical for precision irrigation in hyper-arid perennial systems. This study quantified ET in an 8 ha olive orchard in La Yarada–Los Palos (Tacna, Peru) by integrating the METRIC satellite-based energy-balance model (Landsat 8/9, Google Earth Engine) with the process-based AquaCrop model, using ETFAO-56 as an empirical benchmark. Sixteen cloud-free Landsat scenes from two contrasting seasons—2021–2022 (high-yield) and 2023–2024 (water-limited)—were processed to derive daily ET maps and model simulations aligned with satellite overpasses. Results revealed marked intra-parcel heterogeneity and clear seasonal dynamics. METRIC detected local ET peaks of ~6–7 mm d−1 in densely vegetated central blocks and orchard-mean values up to 4.25 ± 1.76 mm d−1. During the high-yield season, ETMETRIC and ETAQUACROP showed excellent agreement (R2 = 0.94; RMSE = 0.21 mm d−1; bias μ = 0.11 mm d−1), whereas FAO-56 consistently underestimated ET (R2 = 0.88; RMSE = 0.82 mm d−1). Under water-limited conditions, model correspondence remained strong but attenuated (ETMETRIC–ETAQUACROP: R2 = 0.75; RMSE = 0.64 mm d−1; ETMETRIC–ETFAO-56: R2 = 0.95; RMSE = 0.59 mm d−1), with METRIC exhibiting a persistent positive bias (μ = 0.43–0.56 mm d−1) attributable to localized soil evaporation and micro-advection. Overall, METRIC provided high-resolution spatial diagnostics of canopy stress, while AquaCrop offered daily continuity and explicit evaporation/transpiration (E/Tr) partitioning, enabling a coherent multiscale assessment of ET. The integrated framework enhances operational monitoring of water use and supports deficit-irrigation optimization in hyper-arid olive systems. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

33 pages, 8302 KB  
Article
Pilot-Scale Thermo-Pressure Hydrolysis of Biowaste and Silphium perfoliatum for Efficient Natural Fiber and Pulp Utilization in Paper and Biogas Applications
by Marian Baumgart, Franziska Müller, Benedikt Hülsemann, Joachim Müller and Hans Oechsner
Sustainability 2025, 17(21), 9667; https://doi.org/10.3390/su17219667 - 30 Oct 2025
Viewed by 700
Abstract
Residual and waste materials such as biowaste and the perennial energy crop Silphium perfoliatum (cup-plant) contain high fiber contents, which limit their energetic utilization in biogas plants. Pre-separating the fiber fraction can improve overall valorization. The recovered natural fibers can be further used [...] Read more.
Residual and waste materials such as biowaste and the perennial energy crop Silphium perfoliatum (cup-plant) contain high fiber contents, which limit their energetic utilization in biogas plants. Pre-separating the fiber fraction can improve overall valorization. The recovered natural fibers can be further used as raw materials, e.g., in paper production or fiber-reinforced composites. This study aimed to optimize fiber extraction from biogenic residues and renewable raw materials using pilot-scale Thermal-pressure hydrolysis (TPH). Biowaste and cup-plant were used as substrates. Process parameters (150, 160, 170 °C; 15, 30, 60 min) were systematically varied to evaluate their influence on process efficiency, chemical composition, and functional properties of the resulting fiber and pulp fractions. Biowaste and cup-plant produced final products with similar dry matter (DM) contents—fibers (~36% DM) and pulp (~3.2% DM)—but differed markedly in chemical composition: biowaste was richer in nutrients, whereas the cup plant contained more fiber. Sugar release from the cup-plant increased by over 1900% during TPH and, like the organic acids, was largely relocated to the pulp fraction. Methane yields of the resulting pulps ranged between 310 and 375 LCH4kgODM−1, significantly higher than those measured in the fiber fractions, which ranged from 180 to 250 LCH4kgODM−1. Approximately 55% of the total energy potential was transferred into the pulp. Despite the formation of organic acids and potential inhibitors during TPH, no critical threshold values were exceeded. The energy balance of the Biowaste fiber processing was neutral (biowaste: energy demand 475 kWh/t, energy yield from biogas 484 kWh/t). For papermaking applications, the cup-plant proved to be significantly more suitable, as the heterogeneity and contamination of biowaste limited its material usability. The results highlight the potential of TPH for the combined energetic and material utilization of biogenic residues. Full article
Show Figures

Graphical abstract

26 pages, 2503 KB  
Article
Land Use and Production Practices Shape Unequal Labour Demand in Agriculture and Forestry
by Una Diana Veipane, Irina Pilvere, Jüri Lillemets, Kristine Bilande and Aleksejs Nipers
Land 2025, 14(10), 2097; https://doi.org/10.3390/land14102097 - 21 Oct 2025
Viewed by 1033
Abstract
Agriculture and forestry remain vital sources of rural employment; yet, both sectors face challenges of low labour productivity, demographic change, and structural inefficiencies. Modernisation improves productivity but often reduces labour demand, creating a policy dilemma between innovation and job preservation. Therefore, this study [...] Read more.
Agriculture and forestry remain vital sources of rural employment; yet, both sectors face challenges of low labour productivity, demographic change, and structural inefficiencies. Modernisation improves productivity but often reduces labour demand, creating a policy dilemma between innovation and job preservation. Therefore, this study aims to quantify labour input across different land use types and farm sizes in agriculture and forestry. Latvia was used as a case region representing a sparsely populated territory suitable for both agricultural activities and forestry. This study develops a multi-stage framework to quantify labour inputs across agricultural and forestry land uses. The research findings suggest that labour use intensity decreases as farm size increases; however, it exhibits greater variation across agricultural production types. Perennial plantations, vegetable and potato cultivation, and dairy farming show the highest labour demands, whereas energy crops and grass-based systems require the least. In forestry, establishment and tending dominate labour needs, while mechanised harvesting reduces input requirements. These findings highlight the strategic role of labour-intensive, high-value activities in sustaining rural employment and the need for targeted rural development policies that recognise this pattern, supporting employment in rural areas without discouraging improvements in labour productivity. Full article
Show Figures

Figure 1

19 pages, 1862 KB  
Article
Yield and Plant Gas Exchange in Perennial Biomass Crops (BPGs) Under Different Water Regimes
by Elena Crapio, Sebastiano Andrea Corinzia, Alessandra Piccitto, Salvatore Luciano Cosentino and Giorgio Testa
Agronomy 2025, 15(8), 2007; https://doi.org/10.3390/agronomy15082007 - 21 Aug 2025
Viewed by 742
Abstract
The increasing demand for renewable energy, coupled with the urgent challenges posed by climate change, has positioned perennial biomass crops (BPGs) as essential and sustainable alternatives for bioenergy production. This study investigated the impact of irrigation regimes on the physiological performance of three [...] Read more.
The increasing demand for renewable energy, coupled with the urgent challenges posed by climate change, has positioned perennial biomass crops (BPGs) as essential and sustainable alternatives for bioenergy production. This study investigated the impact of irrigation regimes on the physiological performance of three BPG species—Arundo donax L., Saccharum spontaneum, and Miscanthus—with a focus on leaf gas exchange (net assimilation rate and transpiration rate) and instantaneous water use efficiency (iWUE) at varying levels of irrigation input, adopting a split-plot experimental design under the Mediterranean climatic conditions of Sicily (Italy). The results clearly showed that A. donax, a C3 species, outperformed the C4 species S. spontaneum and Miscanthus, exhibiting significantly higher stomatal conductance and net photosynthesis, especially under irrigated conditions. S. spontaneum demonstrated the highest iWUE, particularly in rainfed treatments, reflecting its efficient use of water. Miscanthus showed the greatest sensitivity to water stress, with a more pronounced decline in photosynthesis during drought periods. This study accentuated the role of effective water management and genotype selection in optimizing biomass yield and resource efficiency, providing valuable insights for improving crop productivity in Mediterranean and other semi-arid regions. Full article
Show Figures

Figure 1

18 pages, 10425 KB  
Article
Synergistic Response Mechanism and Gene Regulatory Network of Arundo donax Leaf Under Multiple Stresses
by Yixin Huangfu, Yibo Sun, Weiwei Chen, Gongyao Shi, Baoming Tian, Gangqiang Cao, Luyue Zhang, Jialin Guo, Fang Wei and Zhengqing Xie
Horticulturae 2025, 11(8), 985; https://doi.org/10.3390/horticulturae11080985 - 19 Aug 2025
Viewed by 796
Abstract
Arundo donax exhibits strong comprehensive stress resistance and high levels of crude protein and crude fiber, making it an ideal perennial forage crop. It adapts to various abiotic stresses and serves as a new model for studying plant stress response mechanisms. A. donax [...] Read more.
Arundo donax exhibits strong comprehensive stress resistance and high levels of crude protein and crude fiber, making it an ideal perennial forage crop. It adapts to various abiotic stresses and serves as a new model for studying plant stress response mechanisms. A. donax frequently encounters diverse environmental stresses during agricultural production, including drought, waterlogging, and temperature extremes. However, the response mechanisms of A. donax to multiple stresses remains elusive. By analyzing publicly available transcriptome data, we identified 9089, 19,272, and 8585 differentially expressed genes (DEGs) and 742 DEGs shared in the leaves of A. donax under drought, waterlogging, and cold conditions. The data showed that A. donax exhibits differential activation patterns in endogenous hormone signaling (jasmonate/gibberellin), energy metabolism (UDP-glucosyltransferase), and nitrogen metabolism pathways (acyltransferase) under these stresses. DEGs involved in the nitrogen metabolism and phenylpropanoid metabolism pathways were significantly enriched, while the gene expression patterns of these pathways varied among the drought, waterlogging, and cold stress conditions. Different stresses could affect the nitrogen accumulation in A. donax leaves. In addition, pairwise DEG comparisons indicated active roles of antioxidant defense and photosynthetic system in multiple stress responses. Physiological measurements validated these transcriptional changes: the activities of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD)) increased significantly, minimizing oxidative damage. Meanwhile, the photosynthetic pigments content also decreased in response to the three stresses. Soluble sugars, pyruvate, malate, and citrate, which are involved in energy metabolism in the leaves of A. donax, accumulated to sustain themaintenance of the plant’s own energy metabolism. In conclusion, our study revealed the transcriptome-based regulatory network related with synergistic response mechanisms of A. donax leaves under multiple stress conditions. Full article
Show Figures

Figure 1

23 pages, 20076 KB  
Article
Transcriptomic Analysis Identifies Molecular Response of the Tolerant Alfalfa (Medicago sativa) Cultivar Nongjing 1 to Saline-Alkali Stress
by Dongmei Zhang, Jinxia Li, Yiming Zhang, Yuanhao Zhang, Wenhui Wang, Zhaohui Li, Peng Zhu, Yongshun Huang, Long Han, Mingyu Wang, Zijian Zhang, Zhongbao Shen, Weibo Han, Linlin Mou, Xu Zhuang, Qiuying Pang, Jianli Wang and Lixin Li
Biology 2025, 14(4), 439; https://doi.org/10.3390/biology14040439 - 18 Apr 2025
Cited by 4 | Viewed by 1041
Abstract
Alfalfa (Medicago sativa) is a perennial forage crop with significant economic and ecological significance. If alfalfa can be planted in saline-alkali land, it will not only improve the utilization rate of marginal land and alleviate the competition between forage and cereal [...] Read more.
Alfalfa (Medicago sativa) is a perennial forage crop with significant economic and ecological significance. If alfalfa can be planted in saline-alkali land, it will not only improve the utilization rate of marginal land and alleviate the competition between forage and cereal crops for arable land but will also increase the yield of high-quality domestic forage. In this study, we conducted transcriptomic analysis on the saline-alkali-tolerant alfalfa cultivar NQ-1 and compared its metabolite accumulation levels with saline-alkali-sensitive cultivars. The results showed that under saline-alkali stress, the photosynthesis and some secondary metabolic pathways in NQ-1 were activated, such as α-Linolenic acid metabolism, Phenylpropanoid and Flavonoid biosynthesis, and Photosynthesis-related pathways, providing substances and energy for enhancing NQ-1 stress tolerance. Furthermore, some specific flavonoids were detected that may contribute to the saline-alkali tolerance of NQ-1. In addition, transcription factors that may regulate flavonoid biosynthesis in NQ-1 under saline-alkali stress were also identified. This study deepens the understanding of the resistance mechanism of saline-alkali-tolerant cultivars of alfalfa and provides valuable information for molecular design breeding strategies for stress-resistant alfalfa. Full article
Show Figures

Figure 1

24 pages, 4146 KB  
Article
Assessing the Effects of Bioenergy Cropping Scenarios on the Surface Water and Groundwater of an Intensively Agricultural Basin in Central Greece
by Maria Sismanidi, Lamprini Kokkinaki, Sofia Kavalieratou, Haralampos Georgoussis, Kyriakos D. Giannoulis, Elias Dimitriou and Yiannis Panagopoulos
Hydrology 2025, 12(4), 66; https://doi.org/10.3390/hydrology12040066 - 22 Mar 2025
Cited by 2 | Viewed by 2644
Abstract
Pinios river basin constitutes the most important agricultural production area in Greece but contributes to the degradation of the quality and quantity of surface water and groundwater bodies. Bioenergy crops implemented as part of the existing cropping systems could be a novel and [...] Read more.
Pinios river basin constitutes the most important agricultural production area in Greece but contributes to the degradation of the quality and quantity of surface water and groundwater bodies. Bioenergy crops implemented as part of the existing cropping systems could be a novel and efficient mitigation strategy against water degradation, contributing to the production of energy through renewable sources. This study uses the Soil and Water Assessment Tool (SWAT) to first develop a representative model of Pinios river basin and evaluate its current state with respect to water availability and nitrate water pollution. A low-input perennial bioenergy crop, switchgrass, is then simulated closely to the Greek conditions to investigate its potential effects on water in three implementation scenarios: the installation and growth of switchgrass in the entire irrigated cropland, exclusively in irrigated sloping (slopes > 1.5%) cropland, and exclusively in irrigated non-sloping cropland. The simulated results demonstrate that under all scenarios, the water quality improvements with respect to the nitrate loads entering surface water and groundwater bodies were significant, with their reduction being directly affected by the extent to which switchgrass replaced resource-demanding conventional crops. Specifically, the reduction in the annual nitrate loads in the surface water under these three scenarios varied from 7% to 18% at the river basin scale, while in certain cropland areas, the respective reduction even exceeded a level of 80%. The potential to improve the water status was also considerable, as the implementation of the bioenergy crop reduced the irrigation water used annually in the basin by 10% (64 Mm3) when switchgrass replaced the conventional crops only on the sloping land and by almost 30% (187 Mm3) when it replaced them throughout the irrigated land. At the same time, significant biomass production above 18 t/ha/y applied in all of the simulations. This study also highlights the contribution of the bioenergy crop to the rehabilitation of the groundwater levels across the basin, with the possibility of increasing them by >50% compared to the baseline, implying that the adoption of switchgrass could be a promising means against water scarcity. Full article
Show Figures

Figure 1

17 pages, 1183 KB  
Article
Perennial Forage Systems Enhance Ecosystem Quality Variables Compared with Annual Forage Systems
by Ogechukwu Igboke, Elisandra S. O. Bortolon, Amanda J. Ashworth, Joel Tallaksen, Valentin D. Picasso and Marisol T. Berti
Sustainability 2024, 16(23), 10160; https://doi.org/10.3390/su162310160 - 21 Nov 2024
Cited by 1 | Viewed by 1722
Abstract
There is an intense argument about the environmental impact of annual vs. perennial forage production systems. In this study, a systematic review was employed to obtain 47 empirical studies from 13 published papers between the years 2017–2023 to help clarify the issue. The [...] Read more.
There is an intense argument about the environmental impact of annual vs. perennial forage production systems. In this study, a systematic review was employed to obtain 47 empirical studies from 13 published papers between the years 2017–2023 to help clarify the issue. The objective of this study was to determine how perennial and annual forage (business-as-usual, BAU) production systems affect dry matter yield (DM) and energy of production including specific environmental impact variables. Impact variables were classified into three main groups: human health, ecosystem quality, and resource consumption. Net energy of lactation (NEL) was considered as a functional unit. Overall, perennial forage production systems varied less in DM yield and energy production than annual monocrop systems, indicating stability in perennial production. There was no statistically significant difference in human health and resource consumption variables between perennial and annual forage production systems, except for ozone layer depletion potential. However, perennial forage systems significantly lowered variables within the ecosystem quality category. Ecotoxicity potential decreased by two and 18 times compared with BAU—control (only annual monoculture forages), and BAU—improved (any annual cropping system other than BAU—control), respectively. Perennial forage systems showed a significant effect size of −8.16, which was slightly less than the effect size of the BAU—improved system but two times less than BAU—control in terms of terrestrial acidification potential. While BAU—control showed an insignificant effect size in relation to eutrophication potential (EUP), perennial forage systems reduced EUP by approximately five and two times compared with BAU—control and BAU—improved, respectively. Therefore, this study highlights the importance of promoting perennial forage production system to foster resilience and stability in DM yield and energy production, with improvements in environmental human health (ozone layer depletion potential) and ecosystem quality variables. Full article
(This article belongs to the Special Issue Sustainability Assessment of Agricultural Cropping Systems)
Show Figures

Figure 1

23 pages, 886 KB  
Article
Jerusalem Artichoke: Nitrogen Fertilization Strategy and Energy Balance in the Production Technology of Aerial Biomass
by Krzysztof Józef Jankowski and Bogdan Dubis
Energies 2024, 17(20), 5202; https://doi.org/10.3390/en17205202 - 18 Oct 2024
Cited by 5 | Viewed by 2372
Abstract
Jerusalem artichoke (Helianthus tuberosus L.) is a plant with considerable potential for energy generation due to its rapid growth, high biomass yield, and resistance to environmental stresses. The aim of this study was to determine the influence of the nitrogen fertilization strategy [...] Read more.
Jerusalem artichoke (Helianthus tuberosus L.) is a plant with considerable potential for energy generation due to its rapid growth, high biomass yield, and resistance to environmental stresses. The aim of this study was to determine the influence of the nitrogen fertilization strategy on the yield and energy balance in the production technology of Jerusalem artichoke (JA) in a perennial cropping system. The article presents the results of a three-year experiment which was conducted in Poland to determine the effect of different N rates (0, 50, 75, and 100 kg ha−1) supplied with mineral fertilizers and liquid digestate on the energy balance in the production of JA aerial biomass. The experiment had a randomized block design with three replications. The demand for energy in JA cultivation reached 16.2–26.3 (year 1) and 2.9–14.6 GJ ha−1 (years 2 and 3). Energy inputs in the cultivation technology were reduced by 17–19% (year 1) and 35–47% (years 2 and 3) when mineral fertilizers were replaced with digestate. Jerusalem artichoke yields were lowest in the technology without fertilization (12.5 Mg ha−1 DM). Dry matter yield increased significantly (by 43–55%) after the application of 75 kg N ha−1, regardless of fertilizer type. The energy output of biomass peaked (230.1 GJ ha−1) in response to a mineral fertilizer rate of 75 kg N ha−1. In turn, the highest energy gain (218.5 GJ ha−1) was noted after the application of digestate at a rate equivalent to 75 kg N ha–1. The energy efficiency ratio was highest in the technology without fertilization (20.1) and after the application of digestate at a rate equivalent to 75 kg N ha−1 (19.7). Regardless of the factors that limit agricultural production, the energy balance of JA biomass production was most favorable when JA was fertilized with digestate at a rate equivalent to 75 kg N ha−1. The results of this study may pave the way for future research on novel agronomic strategies for sustainable bioenergy production, including nutrient recycling. Full article
(This article belongs to the Special Issue The Future of Renewable Energy: 2nd Edition)
Show Figures

Figure 1

25 pages, 5711 KB  
Article
Optimization of Productivity of Fodder Crops with Green Conveyor System in the Context of Climate Instability in the North Kazakhstan Region
by Altyn Shayakhmetova, Aldiyar Bakirov, Inna Savenkova, Beybit Nasiyev, Murat Akhmetov, Azamat Useinov, Akerke Temirbulatova, Nurbolat Zhanatalapov, Askhat Bekkaliyev, Fariza Mukanova and Mariya Auzhanova
Sustainability 2024, 16(20), 9024; https://doi.org/10.3390/su16209024 - 18 Oct 2024
Cited by 3 | Viewed by 2325
Abstract
One of the main challenges in modern animal husbandry in North Kazakhstan is ensuring an uninterrupted supply of sufficient fodder crops. This research, conducted from 2019 to 2023, aimed to develop strategies for cultivating environmentally sustainable fodder crops capable of providing a stable [...] Read more.
One of the main challenges in modern animal husbandry in North Kazakhstan is ensuring an uninterrupted supply of sufficient fodder crops. This research, conducted from 2019 to 2023, aimed to develop strategies for cultivating environmentally sustainable fodder crops capable of providing a stable fodder crop base under the changing climatic conditions of the North Kazakhstan region. The studies included analysis of air temperature and precipitation data as well as monitoring of fodder grass mixtures within a green fodder conveyor system. Different sowing dates for fodder crops and mixtures were selected for the development of the conveyor system. The range of experimental variants included fodder crops and their mixtures from various botanical families. The experiment involved both perennial (alfalfa and festulolium) and annual (corn, pea, sunflower, Sudan grass, oats, and rapeseed) crops. The highest green mass yields were achieved by the following variants: fodder crops of corn + pea—74.40 c/ha; mixtures of annual legume–grass crops in the pea + oats variant of the first sowing date—43.64 c/ha; Sudan grass + pea—45.72 c/ha; mixtures of perennial grasses in the second utilization term of alfalfa + festulolium—64.9 c/ha; and rapeseed sown at the first sowing date—46.61 c/ha. In terms of crude and digestible protein content, the best among the annual grass variants was the mixture of Sudan grass and pea (crude protein—33.59 g/kg, digestible protein—24.5 g/kg), and the best among the perennials was the variant of the first utilization term (crude protein—50.42 g/kg, digestible protein—38.2 g/kg). Regarding metabolizable energy content, the annual crop variant of corn + pea had a yield of 1.92 MJ/kg, and in the perennial variant, the mixture of alfalfa and festulolium in the first utilization term had a yield of 2.68 MJ/kg. Such an approach to creating green fodder conveyors can be crucial for developing effective strategies for adapting agriculture to climate change, including the selection of promising fodder crops and optimization of their placement. The results obtained can contribute to enhancing the productivity and sustainability of agricultural production in the North Kazakhstan region. Full article
(This article belongs to the Special Issue Advances in Sustainable Agricultural Crop Production)
Show Figures

Figure 1

23 pages, 4111 KB  
Article
Digestate Improves Stinging Nettle (Urtica dioica) Growth and Fiber Production at a Chlor-Alkali Site
by Chloé Viotti, Coralie Bertheau, Françoise Martz, Loïc Yung, Vincent Placet, Andrea Ferrarini, Flavio Fornassier, Damien Blaudez, Markus Puschenreiter and Michel Chalot
Plants 2024, 13(17), 2425; https://doi.org/10.3390/plants13172425 - 30 Aug 2024
Cited by 2 | Viewed by 2026
Abstract
Marginal lands have been proposed to produce non-food crop biomass for energy or green materials. For this purpose, the selection, implementation, and growth optimization of plant species on such lands are key elements to investigate to achieve relevant plant yields. Stinging nettle ( [...] Read more.
Marginal lands have been proposed to produce non-food crop biomass for energy or green materials. For this purpose, the selection, implementation, and growth optimization of plant species on such lands are key elements to investigate to achieve relevant plant yields. Stinging nettle (Urtica dioica) is a herbaceous perennial that grows spontaneously on contaminated lands and was described as suitable to produce fibers for material applications. Two mercury-contaminated soils from industrial wastelands with different properties (grassland soil and sediment landfill) were used in this study to assess the potential growth of stinging nettle in a greenhouse mesocosm experiment. Two organic amendments were studied for their impact on nettle growth. The solid digestate from organic food wastes significantly doubled plant biomass whereas the compost from green wastes had a lower impact. The highest doses of organic amendments significantly increased the number of fibers, which doubled following digestate application, while reducing leaf Hg concentration. Both amendments significantly improved soil respiration and enzymatic activities linked to the microbial biomass in the soil from the sediment landfill by the end of the experiment. In the context of a phytomanagement scenario, solid digestate would be a preferred amendment resource to improve nettle production on industrial wastelands. Full article
(This article belongs to the Special Issue Nettle: From Weed to Green Enterprise)
Show Figures

Figure 1

26 pages, 17660 KB  
Article
Traction Force, Sowing Quality, and Deformation Characteristics of the Coulter of a Grain–Fertilizer–Grass Seeder
by Sayakhat Nukeshev, Dinara Kossatbekova, Mikalai Ramaniuk, Almat Sagitov, Yerzhan Akhmetov, Indira Mamyrbayeva, Khozhakeldi Tanbayev and Kaldybek Tleumbetov
AgriEngineering 2024, 6(3), 2326-2351; https://doi.org/10.3390/agriengineering6030136 - 19 Jul 2024
Cited by 1 | Viewed by 1984
Abstract
The development of restoration technology and meadows, improvement of run-down pastures, and productivity improvement of old crops of perennial grasses is an urgent problem in agriculture. The tillage traction force in seeder designing and manufacturing is an important indicator of energy efficiency. The [...] Read more.
The development of restoration technology and meadows, improvement of run-down pastures, and productivity improvement of old crops of perennial grasses is an urgent problem in agriculture. The tillage traction force in seeder designing and manufacturing is an important indicator of energy efficiency. The objective of this work is to reduce traction force and ensure seeding depth uniformity by justifying the optimal chisel parameters of a grain–fertilizer–grass seeder for direct seeding in sod. The Box–Behnken method was applied to investigate the traction force dependence on the seeder velocity, seed embedding depth, chisel width, and mounting angle. The obtained optimal parameters of coulters were justified by the finite element method. Structural and technological parameters were checked using the smoothed-particle hydrodynamics method on the deformation and wear of the seeder working body. The revealed optimal coulter parameters were as follows: chisel width was 20–20.97 mm, chisel length was 145–148.9 mm, mounting angle was 75°–81.6°, and achieved minimum traction force was 720 N. These parameters ensure the quality of grass seed embedding in the sod. The theoretical data of traction force (8.27–8.39 kN) are in accordance with the experimental (8.28–8.63 kN) data under field conditions. These findings are efficient in agrotechnical and mechanical predictions regarding the occurrence of chisel residual stresses and the working lifetime of the part. Full article
Show Figures

Figure 1

Back to TopTop