Pilot-Scale Thermo-Pressure Hydrolysis of Biowaste and Silphium perfoliatum for Efficient Natural Fiber and Pulp Utilization in Paper and Biogas Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples—Biowaste
2.2. Samples—Cup-Plant
2.3. Description of the Experimental Facility
2.4. Experimental Setup
2.5. Determination of Biogas Potential
2.6. Analytic Parameters
2.7. Investigation of the Toxicity of the Pulp
2.8. Investigation of Fiber Quality at the Institute for Natural Product Processing Stuttgart
2.8.1. Machines and Equipment Used for the Investigation of Fiber Structure and Quality
2.8.2. Separation of Fiber Samples
2.8.3. Sheet Formation
2.8.4. Determination of the Degree of Refining
2.8.5. Image-Based Fiber Analysis
2.8.6. Mechanical Strength Analysis of Laboratory Sheets
3. Results and Discussion
3.1. Results of the Weender-Van-Soest Analysis (Feed Analysis)
3.2. Results of the Acid Analysis and Specific Methane Yield
3.2.1. pH-Value
3.2.2. Lactic-, Acetic- and Butyric Acid Content
3.2.3. Specific Methane Yield
3.3. Effect of TPH Treatment on the Concentration of Toxic Substances in the Pulp
3.4. Mass and Energy Balancing of the TPH
3.4.1. Mass Flow Diagrams Through TPH
3.4.2. Energy Flow Diagrams Through TPH
3.4.3. Energy Consumption of the Pilot Plant Across the Experimental Settings in TPH
3.5. Results on Fiber Quality of Biowaste Compared to Cup-Plant
3.5.1. Substrate Properties During Dry Processing for Fiber Analysis
3.5.2. Substrate Properties During Wet Processing and Sheet Formation
3.5.3. Fiber Morphology and Composition of Biowaste Compared to Cup-Plant
3.5.4. Mechanical Properties Related to Fiber Quality: Comparison of Biowaste and Cup-Plant
3.5.5. Regression Analysis with JMP Pro for Cup-Plant
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A





References
- Kamm, B.; Gruber, P.R.; Kamm, M. Biorefineries—Industrial Processes and Products: Status Quo and Future Directions; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016. [Google Scholar]
- Röder, M.; Rötter, R. Auswirkungen der EEG-Novelle auf den Anbau von Energiepflanzen in Deutschland. Berichte Landwirtsch. 2020, 98, 124–141. [Google Scholar]
- Głowacka, K.; Krzyżaniak, M. Silphium perfoliatum (cup-plant)—Perspektiven für die Nutzung als Energiepflanze in Mitteleuropa. Renew. Energy Sustain. Dev. 2021, 7, 45–53. [Google Scholar]
- Lichtfouse, E.; Dupont, C.; Rumpel, C.; Pirot, R. Perennial energy crops for sustainable biogas production: Ecological and economic perspectives in Germany. Biomass Bioenergy 2021, 148, 106017. [Google Scholar]
- Khan, M.U. A Review of Recent Advancements in Pretreatment Technologies for Lignocellulosic Biomass. Chem. Eng. J. Adv. 2022, 11, 100314. [Google Scholar]
- Howaniec, N.; Smoliński, A. Thermochemical conversion of lignocellulosic biomass for energy production: A review. Energy Convers. Manag. 2017, 149, 483–499. [Google Scholar]
- Woźniak, A.; Kuligowski, K.; Świerczek, L.; Cenian, A. Review of Lignocellulosic Biomass Pretreatment Using Physical, Thermal and Chemical Methods for Higher Yields in Bioethanol Production. Sustainability 2025, 17, 287. [Google Scholar] [CrossRef]
- Gao, Z.; Alshehri, K.; Li, Y.; Qian, H.; Sapsford, D.; Cleall, P.; Harbottle, M. Advances in biological techniques for sustainable lignocellulosic waste utilization in biogas production. Renew. Sustain. Energy Rev. 2022, 170, 112995. [Google Scholar] [CrossRef]
- Campuzano, R.; González-Martínez, S. Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Manag. 2016, 54, 3–12. [Google Scholar] [CrossRef]
- López-Gómez, J.P.; Greenman, J.; Duff, S.J.B. Valorisation of OFMSW via microbial fermentation: Biochemical pathways and process integration. Bioresour. Technol. 2019, 293, 122155. [Google Scholar]
- Müller, W.; Strehler, A.; Rechberger, H. Hydrothermal treatment of municipal biowaste: Process evaluation and hygienization efficiency. Waste Biomass Valorization 2017, 8, 1491–1502. [Google Scholar]
- Rahmati, S.; Doherty, W.; Dubal, D.; Atanda, L.; Moghaddam, L.; Sonar, P.; Hessel, V.; Ostrikov, K. Pretreatment and fermentation of lignocellulosic biomass: Reaction mechanisms and process engineering. React. Chem. Eng. 2020, 5, 2017–2047. [Google Scholar] [CrossRef]
- Rodríguez, F.; Sánchez, A.; Parra, C. Role of Steam Explosion on Enzymatic Digestibility, Xylan Extraction, and Lignin Release of Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2017, 5, 5234–5240. [Google Scholar] [CrossRef]
- Phojaroen, J.; Jiradechakorn, T.; Kirdponpattara, S.; Sriariyanun, M.; Junthip, J.; Chuetor, S. Performance Evaluation of Combined Hydrothermal-Mechanical Pretreatment of Lignocellulosic Biomass for Enzymatic Enhancement. Polymers 2022, 14, 2313. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.B.; Gaff, M.; Li, H.; Hui, D. Effect of fiber treatment on physical and mechanical properties of natural fiber-reinforced composites: A review. Rev. Adv. Mater. Sci. 2023, 62, 20230131. [Google Scholar] [CrossRef]
- Sun, D.; Lv, Z.-W.; Rao, J.; Tian, R.; Sun, S.-N.; Peng, F. Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: A review. Carbohydr. Polym. 2022, 281, 119050. [Google Scholar] [CrossRef]
- VDI-Fachbereich Energietechnik. Fermentation of Organic Materials—Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; VDI 4630; VDI-Gesellschaft Energie und Umwelt: Düsseldorf, Germany, 2016. [Google Scholar]
- Helffrich, D.; Oechsner, H. Hohenheimer Biogasertragstest. Landtechnik 2003, 58, 148–149. [Google Scholar] [CrossRef]
- Hülsemann, B.; Zhou, L.; Merkle, W.; Hassa, J.; Müller, J.; Oechsner, H. Biomethane Potential Test: Influence of Inoculum and the Digestion System. Appl. Sci. 2020, 10, 2589. [Google Scholar] [CrossRef]
- DIN EN 12879; Sludge, Treated Biowaste and Soil—Determination of Dry Residue and Water Content. Beuth Verlag: Berlin, Germany, 2018.
- DIN EN 12880; Sludge, Treated Biowaste and Soil—Determination of Organic Matter Content by Ignition. Beuth Verlag: Berlin, Germany, 2018.
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- ISO 6964:2017; Plastics—Determination of Carbon Black Content—Thermal Analysis Method. ISO: Geneva, Switzerland, 2017.
- DIN 38409 Teil H16; Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung—Organisch-Chemische Untersuchungsverfahren; Bestimmung des Kohlenstoffs Mittels Verbrennung. Beuth Verlag: Berlin, Germany, 2018.
- ISO 5263-2:2022; Pulps—Laboratory Wet Disintegration—Part 2: Disintegration of Mechanical Pulps at 20 °C. ISO: Geneva, Switzerland, 2024.
- DIN EN ISO 5264-2; Pulps—Laboratory Beating—Part 2: PFI Mill Method. Beuth Verlag: Berlin, Germany, 2011.
- DIN EN ISO 5269-2; Pulps—Preparation of Laboratory Sheets for Physical Testing—Part 2: Rapid-Köthen Method. Beuth Verlag: Berlin, Germany, 2005.
- ISO 5267-2:2022; Pulps—Determination of Drainability—Part 2: “Canadian Standard” Freeness Method. ISO: Geneva, Switzerland, 2022.
- DIN EN ISO 536; Paper and Board—Determination of Grammage. Beuth Verlag: Berlin, Germany, 2012.
- DIN EN ISO 534; Paper and Board—Determination of Thickness, Density and Specific Volume. Beuth Verlag: Berlin, Germany, 2012.
- DIN EN ISO 1924-2; Paper and Board—Determination of Tensile Properties—Part 2: Constant Rate of Elongation Method (20 mm/min). Beuth Verlag: Berlin, Germany, 2009.
- Scapini, T.; dos Santos, M.S.N.; Bonatto, C.; Wancura, J.H.C.; Mulinari, J.; Camargo, A.F.; Klanovicz, N.; Zabot, G.L.; Tres, M.V.; Fongaro, G.; et al. Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose recovery. Bioresour. Technol. 2021, 342, 126033. [Google Scholar] [CrossRef]
- Świątek, P.; Chwastowski, J.; Różyło, R. Thermochemical hydrolysis of lignocellulosic biomass: Breakdown of polysaccharides into fermentable sugars. Bioresour. Technol. Rep. 2020, 10, 100380. [Google Scholar]
- Pažitný, S. Hydrothermal treatment of lignocellulosic biomass: Organic matter distribution between solid and liquid fractions. Acta Chim. Slovaca 2019, 12, 145–156. [Google Scholar]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef]
- Wang, C.; Lin, M.; Yang, Q.; Fu, C.; Guo, Z. The principle of steam explosion technology and its application in food processing by-products. Foods 2023, 12, 3307. [Google Scholar] [CrossRef]
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB. Thermisch-Chemische Hydrolyse (TPH) zur Selektiven Fraktionierung von Lignin, Cellulose und Hemicellulose; Fraunhofer IGB: Stuttgart, Germany, 2018. [Google Scholar]
- Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Park, S.Y.; Zhu, J. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 2013, 26, 595–605. [Google Scholar] [CrossRef]
- Kumar, D.J.P.; Mishra, R.K.; Chinnam, S.; Binnal, P.; Dwivedi, N. A comprehensive study on anaerobic digestion of organic solid waste: A review on configurations, operating parameters, techno-economic analysis and current trends. Biotechnol. Notes 2024, 5, 33–49. [Google Scholar] [CrossRef]
- Kolečkář, J.; Mrkvicová, E.; Šťastník, O. Effect of silage quality on the health and performance of high-producing dairy cows: A review. Agric. Food Sci. 2025, 27, 266–276. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Gurav, R.; Yang, Y.H. A review on waste activated sludge pretreatment for enhanced anaerobic digestion. Bioresour. Technol. 2025, 365, 127212. [Google Scholar]
- Greses, S.; Hernández, J.; Melero, J. Influence of pH on microbial communities and biogas production in anaerobic digestion processes. Renew. Energy 2021, 164, 1222–1231. [Google Scholar]
- Zhou, Y.; Yuan, H.; Zhang, Q.; Zhang, W. Effects of pH adjustment on anaerobic digestion and microbial community of corn stover hydrolysate. Bioresour. Technol. 2018, 250, 710–718. [Google Scholar]
- Wang, Q.; Chen, H.; Wang, Y.; Chen, Y. Effects of hydrothermal pretreatment on lignocellulosic biomass for bioethanol production. Renew. Sustain. Energy Rev. 2015, 47, 266–274. [Google Scholar]
- Ewanick, S.; Bura, R. Hydrothermal Pretreatment of Lignocellulosic Biomass. In Bioalcohol Production; Woodhead Publishing: Sawston, UK, 2010; pp. 3–23. [Google Scholar] [CrossRef]
- Zhang, B.; Biswal, B.K.; Zhang, J.; Balasubramanian, R. Hydrothermal Treatment of Biomass Feedstocks for Sustainable Production of Chemicals, Fuels, and Materials: Progress and Perspectives. Chem. Rev. 2023, 123, 7193–7294. [Google Scholar] [CrossRef]
- Baumgart, M.; Hülsemann, B.; Orth, F.; Oechsner, H. Effects of harvest date and ensiling additives on the optimized ensiling of Silphium perfoliatum to prevent faulty fermentation. Agriculture 2024, 14, 1363. [Google Scholar] [CrossRef]
- Kakar, F.I.; Koupaie, E.H.; Hafez, H.; Elbeshbishy, E. Effect of hydrothermal pretreatment on volatile fatty acids production from source-separated organics. Processes 2019, 7, 576. [Google Scholar] [CrossRef]
- Kruse, A.; Dinjus, E. Hot compressed water as reaction medium and reactant. J. Supercrit. Fluids 2007, 39, 362–380. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, M.; Zhou, D.; Pan, S. Methane yield predictive model based on the composition of biomass: Focus on the anaerobic digestion mode and regression method. BioResources 2020, 15, 3850–3858. [Google Scholar] [CrossRef]
- KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft). Methane Yields of Maize and Barley Silage: Practical Field Data; KTBL Report; KTBL: Darmstadt, Germany, 2010. [Google Scholar]
- Barakat, A.; Monlau, F.; Steyer, J.P.; Carrère, H. Effect of furan derivatives and lignin phenols on biomethane production from lignocellulosic biomass. Bioresour. Technol. 2012, 104, 90–99. [Google Scholar] [CrossRef]
- Reza, M.T.; Wirth, B.; Lüder, U.; Werner, M. Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization: HMF, furfural, phenol and derivatives. J. Ind. Crops Prod. 2014, 58, 264–271. [Google Scholar]
- Campos, J.L.; Hernández, S.; de la Rubia, M.A. Phenol toxicity and biotransformation: Mechanisms and biotechnological applications. J. Hazard. Mater. 2009, 170, 423–436. [Google Scholar]
- Murínová, S.; Dercová, K. Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. BioMed Res. Int. 2014, 2014, 873081. [Google Scholar] [CrossRef]
- Poirier, S.; Chapleur, O. Inhibition of anaerobic digestion by phenol and ammonia: Effect on degradation performances and microbial dynamics. Data Brief 2016, 6, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Maeda, R.; Shinshima, F.; Urasaki, K.; Kubota, K.; Nobu, M.K.; Noguchi, T.Q.P.; Satoh, H.; Yamauchi, M.; Narihiro, T.; et al. Microbiological insights into anaerobic phenol degradation in UASB reactors. Sci. Total Environ. 2024, 872, 158703. [Google Scholar]
- Khan, M.A.; Ahmad, A.; Wang, X. Impact of phenol on biogas production: A comprehensive review. Renew. Sustain. Energy Rev. 2022, 160, 112343. [Google Scholar]
- Fang, H.H.P.; Liang, D.W.; Zhang, T.; Liu, Y. Anaerobic treatment of phenol in wastewater under mesophilic condition. Water Res. 2006, 40, 827–834. [Google Scholar] [CrossRef]
- Chapleur, O.; Madigou, C.; Civade, R.; Rodolphe, Y.; Mazéas, L.; Bouchez, T. Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities. Biodegradation 2016, 27, 15–27. [Google Scholar] [CrossRef]
- Almeida, J.R.M.; Modig, T.; Petersson, A.; Hähn-Hägerdal, B.; Lidén, G.; Gorwa-Grauslund, M.F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2009, 84, 34–44. [Google Scholar] [CrossRef]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Badshah, M. Effects of furfural and hydroxymethylfurfural on anaerobic digestion: Inhibition thresholds and process adaptation. J. Environ. Manag. 2012, 101, 105–110. [Google Scholar]
- Liu, Z.H.; Cao, N.; Gao, C. Thermal degradation pathways of hexose sugars and implications for biofuel production. Energy Fuels 2013, 27, 3863–3870. [Google Scholar]
- Park, C.; Yoo, S.M.; Lee, J.S.; Kim, T.H. Effect of furfural on anaerobic digestion performance and microbial community dynamics. Bioresour. Technol. 2011, 102, 437–444. [Google Scholar]
- Jahic, M.; Meyer, A.S.; Sørensen, H.R. Influence of substrate composition on methane yield during anaerobic digestion of organic waste. Renew. Energy 2021, 169, 1249–1257. [Google Scholar]
- Braun, R.; Huth, S.; Linke, B. Biogas production: Fundamentals and perspectives. Adv. Biochem. Eng. Biotechnol. 2009, 113, 53–72. [Google Scholar]
- Lindorfer, H.; Jungmeier, G.; Brunner, P.H. Thermal hydrolysis of biomass: Effects on substrate characteristics and methane yields. Waste Manag. 2010, 30, 1032–1039. [Google Scholar]
- Møller, H.B.; Sommer, S.G.; Ahring, B.K. Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 2009, 33, 123–130. [Google Scholar] [CrossRef]
- Heeren, N.; Schmidt, J.; Horn, H. Thermal conductivity and heat transfer in heterogeneous biowaste. Waste Manag. 2018, 75, 1–9. [Google Scholar]
- Zhang, L.; Li, X.; Chen, Y. Influence of particle shape and density on heat transfer in biomass. Renew. Energy 2020, 147, 1760–1767. [Google Scholar]
- Barlaz, M.A.; Ham, R.K.; Schaefer, D.M.; Christensen, T.H. Heat transfer in solid waste landfills: Implications for waste degradation. Waste Manag. 2010, 30, 1839–1848. [Google Scholar]
- Kratky, L.; Jirout, T. Heat transfer in solid-rich biomass substrates. Bioresour. Technol. 2011, 102, 6060–6065. [Google Scholar]
- Hubbe, M.A.; Sjöstrand, B.; Nilsson, L.; Koponen, A.; McDonald, J.D. Rate-limiting mechanisms of water removal during the formation, vacuum dewatering, and wet pressing of paper webs: A review. Bioresources 2020, 15, 9672–9755. [Google Scholar] [CrossRef]
- Bajpai, P. Biermann’s Handbook of Pulp and Paper: Raw Material and Pulp Making, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- DIN EN ISO 5267-1:2000; Pulps—Determination of Drainability—Part 1: Schopper-Riegler Method (SR). ISO: Geneva, Switzerland, 2000.
- Smook, G.A. Handbook for Pulp and Paper Technologists, 4th ed.; TAPPI Press: Atlanta, GA, USA, 2016. [Google Scholar]
- ISO 16065-2:2014; Pulps—Determination of Fibre Length by Automated Optical Analysis—Part 2: Unpolarized Light Method. ISO: Geneva, Switzerland, 2014. Available online: https://www.iso.org/standard/60375.html (accessed on 1 September 2025).























| Biowaste | 15 Min | 30 Min | 60 Min | Cup-Plant | 15 Min | 30 Min | 60 Min | 
|---|---|---|---|---|---|---|---|
| 150 °C | 150_15 | 150_30 | 150_60 | 150 °C | 150_15 | 150_30 | 150_60 | 
| 160 °C | 160_15 | 160_30 | 160_60 | 160 °C | 160_30 | ||
| 170 °C | 170_15 | 170_30 | 170_60 | 170 °C | 170_15 | 170_60 | 
| Utilization | Description | Model | Manufacturer | Specification | Standard | 
|---|---|---|---|---|---|
| Analysis | Fiber Image Analyzer | Valmet FS5 | Valmet Oyj, Espoo, Finland | - | - | 
| Analysis | Climate data logger | BL30 | Trotec GmbH & Co. KG, Heinsberg, Germany | - | - | 
| Analysis | Grinding degree tester | Schopper-Riegler | Karl Schröder KG, Weinheim, Germany | - | DIN EN ISO 5267-1:2000 | 
| Analysis | Thickness gauge | - | Karl Frank, Waldbüttelbrunn, Germany | - | DIN EN ISO 534:2012 | 
| Analysis | Tensile tester | BZ2.5/TN1S | Zwick Material Testing Ulm, Germany. | red. Length: 90 mm | DIN EN ISO 1924-2:2009 | 
| Analysis | Thermo balance | PCE-MA 100 | PCE Instruments, Meschede, Germany | - | - | 
| Analysis | Fine balance | PCE-ABT220L | PCE Instruments, Meschede, Germany | - | DIN EN ISO 534:2012 | 
| Analysis/ Preparation | Laboratory sieve shaker | KTL 300 N | GKM Siebtechnik, Waibstadt, Germany | - | - | 
| Preparation | Laboratory impact tester | 6-2 | AB Lorentzen & Wettre, Kista, Sweden | - | DIN EN ISO 5263-1:2004 | 
| Preparation | Laboratory mill | PFI-Mill | Frank-PTI GmbH, Birkenau, Germany | Grinding pressure: 3.33 N/mm | DIN EN ISO 5264-2:2011 | 
| Preparation | Nutsche | - | - | - | DIN EN ISO 5264-2:2011 | 
| Preparation | Distribution unit | - | - | - | - | 
| Preparation | Laboratory sheet former | Rapid-Köthen design | Ernst Haage Mülheim Germany | Sheet: ⌀ 200 mm | DIN EN ISO 5269-2:2005 | 
| Preparation | Suction sifter | - | Self-build | - | - | 
| Input Biowaste (N = 72) % DM | Input Cup-Plant (N = 36) % DM | Fiber Biowaste (N = 72) % DM | Fiber Cup-Plant (N = 36) % DM | Pulp Biowaste (N = 72) % DM | Pulp Cup-Plant (N = 36) % DM | |
|---|---|---|---|---|---|---|
| DM | 33.90 ± 3.43 a | 26.16 ± 0.41 b | 36.95 ± 3.81 a | 35.16 ± 4.16 a | 3.34 ± 0.76 a | 3.12 ± 0.72 a | 
| ODM | 86.59 ± 3.05 a | 87.61 ± 0.05 a | 88.30 ± 3.06 b | 94.24 ± 0.21 a | 83.61 ± 2.69 a | 77.16 ± 0.61 b | 
| CF | 32.07 ± 1.18 b | 36.99 ± 1.97 a | 49.33 ± 3.08 b | 55.36 ± 2.02 a | 18.83 ± 4.09 a | 16.07 ± 2.51 a | 
| NDF | 54.56 ± 2.29 b | 60.86 ± 2.18 a | 70.43 ± 2.53 b | 76.84 ± 1.78 a | 29.86 ± 5.14 a | 27.84 ± 2.73 a | 
| ADF | 45.51 ± 2.19 b | 50.03 ± 1.19 a | 63.39 ± 3.07 b | 67.24 ± 1.66 a | 28.79 ± 5.53 a | 25.08 ± 1.69 a | 
| CA | 13.35 ± 2.97 a | 11.66 ± 0.37 a | 10.75 ± 2.29 a | 5.29 ± 0.48 b | 16.45 ± 2.75 b | 22.29 ± 1.39 a | 
| CP | 9.31 ± 0.70 a | 7.01 ± 0.27 b | 7.33 ± 0.89 a | 4.55 ± 0.54 b | 12.23 ± 0.94 a | 10.59 ± 0.42 b | 
| CF | 10.43 ± 1.15 a | 5.50 ± 0.30 b | 9.42 ± 1.52 a | 3.97 ± 0.53 b | 11.47 ± 2.62 a | 6.96 ± 0.70 b | 
| Starch | 4.70 ± 0.68 a | 2.61 ± 0.08 b | 1.64 ± 0.70 b | 2.42 ± 0.29 a | 9.60 ± 2.86 a | 3.01 ± 0.29 b | 
| Sugar | 1.12 ± 0.69 a | 0.02 ± 0.03 b | 0.06 ± 0.09 a | 0.03 ± 0.04 b | 2.74 ± 0.99 a | 1.28 ± 0.41 b | 
| Dry Matter Content | Fiber Biowaste % DM | Fiber Cup-Plant % DM | Pulp Biowaste % DM | Pulp Cup-Plant % DM | 
|---|---|---|---|---|
| 150_15 | 32.53 ± 3.17 d | 33.57 ± 2.82 b | 2.31 ± 0.42 e | 2.00 ± 0.05 f | 
| 150_30 | 35.42 ± 2.78 cd | 32.59 ± 1.15 b | 3.08 ± 0.57 cd | 2.78 ± 0.02 d | 
| 150_60 | 35.84 ± 1.06 cd | 34.43 ± 3.42 b | 3.54 ± 0.72 bcd | 2.78 ± 0.02 d | 
| 160_15 | 34.75 ± 2.24 cd | - | 2.87 ± 0.15 de | - | 
| 160_30 | 39.18 ± 1.90 abc | 32.19 ± 0.97 b | 3.73 ± 0.35 abc | 3.40 ± 0.04 c | 
| 160_60 | 38.77 ± 1.26 abc | - | 3.68 ± 0.06 abc | - | 
| 170_15 | 36.84 ± 3.14 bc | 34.43 ± 1.24 b | 3.90 ± 0.05 abc | 4.03 ± 0.01 a | 
| 170_30 | 40.51 ± 1.42 ab | - | 4.46 ± 0.20 a | - | 
| 170_60 | 41.89 ± 1.61 a | 43.04 ± 1.79 a | 3.84 ± 0.09 ab | 3.89 ± 0.01 b | 
| Crude Fiber | Fiber Biowaste % DM | Fiber Cup-Plant % DM | Pulp Biowaste % DM | Pulp Cup-Plant % DM | 
|---|---|---|---|---|
| 150_15 | 43.78 ± 2.58 d | 53.09 ± 0.15 de | 14.79 ± 3.04 b | 12.33 ± 0.03 d | 
| 150_30 | 46.23 ± 0.62 cd | 51.77 ± 0.72 e | 17.84 ± 1.14 c | 14.34 ± 0.31 c | 
| 150_60 | 50.96 ± 2.21 ab | 54.21 ± 0.51 cd | 19.79 ± 0.63 bc | 18.70 ± 0.73 a | 
| 160_15 | 51.05 ± 1.62 ab | - | 20.01 ± 1.15 bc | - | 
| 160_30 | 48.37 ± 2.90 bc | 55.36 ± 0.27 bc | 20.91 ± 1.19 abc | 17.73 ± 0.33 ab | 
| 160_60 | 48.76 ± 0.75 bc | - | 24.15 ± 1.41 a | - | 
| 170_15 | 49.81 ± 0.81 abc | 56.87 ± 0.43 ab | 20.32 ± 0.26 abc | 16.58 ± 0.25 b | 
| 170_30 | 52.99 ± 1.52 a | - | 22.00 ± 1.10 ab | - | 
| 170_60 | 51.71 ± 2.53 ab | 57.31 ± 0.53 a | 24.60 ± 1.33 a | 17.26 ± 0.03 ab | 
| Hemicellulose | Fiber Biowaste % DM | Fiber Cup-Plant % DM | Pulp Biowaste % DM | Pulp Cup-Plant % DM | 
|---|---|---|---|---|
| 150_15 | 8.86 ± 0.12 e | 12.73 ± 1.40 d | 0.89 ± 0.87 b | 1.96 ± 0.21 a | 
| 150_30 | 9.24 ± 0.82 e | 10.21 ± 0.29 c | 3.08 ± 1.02 c | 3.11 ± 0.67 b | 
| 150_60 | 7.87 ± 0.91 d | 12.24 ± 0.13 d | 1.16 ± 0.59 b | 3.05 ± 0.10 b | 
| 160_15 | - | - | - | - | 
| 160_30 | 6.83 ± 1.08 c | 11.05 ± 0.26 c | 0.44 ± 0.28 a | 4.86 ± 1.16 c | 
| 160_60 | - | - | - | - | 
| 170_15 | 5.81 ± 0.93 b | 7.25 ± 0.81 b | 3.91 ± 0.95 c | 4.71 ± 0.32 c | 
| 170_30 | - | - | - | - | 
| 170_60 | 2.63 ± 0.61 a | 4.11 ± 0.06 a | 0.06 ± 0.45 a | 2.26 ± 0.37 a | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumgart, M.; Müller, F.; Hülsemann, B.; Müller, J.; Oechsner, H. Pilot-Scale Thermo-Pressure Hydrolysis of Biowaste and Silphium perfoliatum for Efficient Natural Fiber and Pulp Utilization in Paper and Biogas Applications. Sustainability 2025, 17, 9667. https://doi.org/10.3390/su17219667
Baumgart M, Müller F, Hülsemann B, Müller J, Oechsner H. Pilot-Scale Thermo-Pressure Hydrolysis of Biowaste and Silphium perfoliatum for Efficient Natural Fiber and Pulp Utilization in Paper and Biogas Applications. Sustainability. 2025; 17(21):9667. https://doi.org/10.3390/su17219667
Chicago/Turabian StyleBaumgart, Marian, Franziska Müller, Benedikt Hülsemann, Joachim Müller, and Hans Oechsner. 2025. "Pilot-Scale Thermo-Pressure Hydrolysis of Biowaste and Silphium perfoliatum for Efficient Natural Fiber and Pulp Utilization in Paper and Biogas Applications" Sustainability 17, no. 21: 9667. https://doi.org/10.3390/su17219667
APA StyleBaumgart, M., Müller, F., Hülsemann, B., Müller, J., & Oechsner, H. (2025). Pilot-Scale Thermo-Pressure Hydrolysis of Biowaste and Silphium perfoliatum for Efficient Natural Fiber and Pulp Utilization in Paper and Biogas Applications. Sustainability, 17(21), 9667. https://doi.org/10.3390/su17219667
 
        





 
       