Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = peach orchards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6123 KiB  
Article
SDA-YOLO: An Object Detection Method for Peach Fruits in Complex Orchard Environments
by Xudong Lin, Dehao Liao, Zhiguo Du, Bin Wen, Zhihui Wu and Xianzhi Tu
Sensors 2025, 25(14), 4457; https://doi.org/10.3390/s25144457 - 17 Jul 2025
Viewed by 440
Abstract
To address the challenges of leaf–branch occlusion, fruit mutual occlusion, complex background interference, and scale variations in peach detection within complex orchard environments, this study proposes an improved YOLOv11n-based peach detection method named SDA-YOLO. First, in the backbone network, the LSKA module is [...] Read more.
To address the challenges of leaf–branch occlusion, fruit mutual occlusion, complex background interference, and scale variations in peach detection within complex orchard environments, this study proposes an improved YOLOv11n-based peach detection method named SDA-YOLO. First, in the backbone network, the LSKA module is embedded into the SPPF module to construct an SPPF-LSKA fusion module, enhancing multi-scale feature representation for peach targets. Second, an MPDIoU-based bounding box regression loss function replaces CIoU to improve localization accuracy for overlapping and occluded peaches. The DyHead Block is integrated into the detection head to form a DMDetect module, strengthening feature discrimination for small and occluded targets in complex backgrounds. To address insufficient feature fusion flexibility caused by scale variations from occlusion and illumination differences in multi-scale peach detection, a novel Adaptive Multi-Scale Fusion Pyramid (AMFP) module is proposed to enhance the neck network, improving flexibility in processing complex features. Experimental results demonstrate that SDA-YOLO achieves precision (P), recall (R), mAP@0.95, and mAP@0.5:0.95 of 90.8%, 85.4%, 90%, and 62.7%, respectively, surpassing YOLOv11n by 2.7%, 4.8%, 2.7%, and 7.2%. This verifies the method’s robustness in complex orchard environments and provides effective technical support for intelligent fruit harvesting and yield estimation. Full article
Show Figures

Figure 1

17 pages, 7155 KiB  
Article
Microbial Community Structure and Metabolic Potential Shape Soil-Mediated Resistance Against Fruit Flesh Spongy Tissue Disorder of Peach
by Weifeng Chen, Dan Tang, Jia Huang, Yu Yang and Liangbo Zhang
Agronomy 2025, 15(7), 1697; https://doi.org/10.3390/agronomy15071697 - 14 Jul 2025
Viewed by 334
Abstract
Peach fruit flesh spongy tissue disorder causes dry, porous, and brown areas in the flesh, severely compromising fruit quality and market value. While soil properties and calcium nutrition have been linked to the disorder, the role of rhizosphere microbial communities in disorder resistance [...] Read more.
Peach fruit flesh spongy tissue disorder causes dry, porous, and brown areas in the flesh, severely compromising fruit quality and market value. While soil properties and calcium nutrition have been linked to the disorder, the role of rhizosphere microbial communities in disorder resistance remains unclear. This study investigated both the physicochemical properties and the root-associated microbiomes of disordered (CK) and healthy (TT) peach orchards to explore microbial mechanisms underlying disorder suppression. TT soils exhibited higher pH, greater organic matter, increased exchangeable calcium, and more balanced trace elements compared to CK. Microbial analysis revealed significantly higher diversity and enrichment of beneficial taxa in TT associated with plant growth and disorder resistance. Functional gene prediction showed TT was enriched in siderophore production, auxin biosynthesis, phosphate solubilization, and acetoin–butanediol synthesis pathways. Co-occurrence network analysis demonstrated that TT harbored a more complex and cooperative microbial community structure, with 274 nodes and 6013 links. Metagenomic binning recovered high-quality MAGs encoding diverse resistance and growth-promoting traits, emphasizing the ecological roles of Gemmatimonadaceae, Reyranella, Nitrospira, Bacillus megaterium, and Bryobacteraceae. These findings highlight the combined importance of soil chemistry and microbiome structure in disorder suppression and provide a foundation for microbiome-informed soil management to enhance fruit quality and promote sustainable orchard practices. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

20 pages, 7541 KiB  
Article
Multi-Species Fruit-Load Estimation Using Deep Learning Models
by Tae-Woong Yoo and Il-Seok Oh
AgriEngineering 2025, 7(7), 220; https://doi.org/10.3390/agriengineering7070220 - 7 Jul 2025
Viewed by 346
Abstract
Accurate estimation of fruit quantity is essential for efficient harvest management, storage, transportation, and marketing in the agricultural industry. To address the limited generalizability of single-species models, this study presents a comprehensive deep learning-based framework for multi-species fruit-load estimation, leveraging the MetaFruit dataset, [...] Read more.
Accurate estimation of fruit quantity is essential for efficient harvest management, storage, transportation, and marketing in the agricultural industry. To address the limited generalizability of single-species models, this study presents a comprehensive deep learning-based framework for multi-species fruit-load estimation, leveraging the MetaFruit dataset, which contains images of five fruit species collected under diverse orchard conditions. Four representative object detection and regression models—YOLOv8, RT-DETR, Faster R-CNN, and a U-Net-based heatmap regression model—were trained and compared as part of the proposed multi-species learning strategy. The models were evaluated on both the internal MetaFruit dataset and two external datasets, NIHS-JBNU and Peach, to assess their generalization performance. Among them, YOLOv8 and the RGBH heatmap regression model achieved F1-scores of 0.7124 and 0.7015, respectively, on the NIHS-JBNU dataset. These results indicate that a deep learning-based multi-species training strategy can significantly enhance the generalizability of fruit-load estimation across diverse field conditions. Full article
Show Figures

Figure 1

25 pages, 5001 KiB  
Article
Mixed Compost Application: A Sustainable Tool for Improving Soil Carbon Dynamics in a Peach Orchard Under Mediterranean Conditions
by Maria Roberta Bruno, Mariagrazia Piarulli, Carolina Vitti, Marcello Mastrangelo, Alessandro Azzolini, Alessandro Ciurlia, Gianfranco Rana and Rossana Monica Ferrara
Sustainability 2025, 17(12), 5613; https://doi.org/10.3390/su17125613 - 18 Jun 2025
Viewed by 353
Abstract
This study investigated carbon dynamics in a peach orchard subjected to three treatments with a mixed compost amendment (MCA, 35% organic content): a control with no amendment (A0), a full dose (A1, 10 t ha−1), and a half dose (A2, 5 [...] Read more.
This study investigated carbon dynamics in a peach orchard subjected to three treatments with a mixed compost amendment (MCA, 35% organic content): a control with no amendment (A0), a full dose (A1, 10 t ha−1), and a half dose (A2, 5 t ha−1). The sustainability of MCA was assessed in terms of (i) potential and (ii) actual soil respiration, (iii) soil carbon and physical properties and (iv) fruit quality and yield. Carbon dioxide (CO2) emissions were measured both in the laboratory, by incubating soil samples without root removal, and in the field using static chambers. Observations spanned three growing seasons (2021–2023). A correlation was found between actual and potential soil respiration, with emission peaks occurring near the time of MCA application. Cumulative actual CO2 emissions amounted to 5.6, 12.0 and 9.4 t CO2 ha−1 for A0, A1 and A2, respectively. MCA application (i) increased microbial respiration, (ii) reduced soil physical characteristics, such as bulk density and water-filled pore space, and (iii) slightly improved fruit quality, although the yield was not significantly affected. Furthermore, the MCA enhanced soil organic carbon and total nitrogen content compared to the control. These results suggest that high organic content amendments, such as MCA, could represent a strategy to maintain or increase soil organic matter in a sustainable way, although MCA does not improve carbon emission efficiency. Full article
Show Figures

Figure 1

23 pages, 2768 KiB  
Article
Evolution of Non-Destructive and Destructive Peach ‘Redhaven’ Quality Traits During Maturation
by Marko Vuković, Dejan Ljubobratović, Maja Matetić, Marija Brkić Bakarić, Slaven Jurić and Tomislav Jemrić
Agronomy 2025, 15(6), 1476; https://doi.org/10.3390/agronomy15061476 - 17 Jun 2025
Viewed by 660
Abstract
The main goal of this study was to investigate and better understand the evolution of the main non-destructive and destructive quality parameters of peach ‘Redhaven’ during ripening process. This study was conducted from 8 to 21 July 2023, during which peaches ‘Redhaven’ were [...] Read more.
The main goal of this study was to investigate and better understand the evolution of the main non-destructive and destructive quality parameters of peach ‘Redhaven’ during ripening process. This study was conducted from 8 to 21 July 2023, during which peaches ‘Redhaven’ were harvested each second day from a commercial orchard located in Novaki Bistranjski. Maturity categories were defined according to different firmness thresholds: maturity for long-distance chain stores (H1), maturity for medium-distance chain stores (H2), maturity below the defined maximum firmness in order to preserve optimal quality traits (H3), ready to buy (H4), ready to eat (H5), and overripe (H6). The chlorophyll absorbance index was the non-destructive parameter that was mostly distinguished between maturity categories (r = 0.78 with firmness), followed by a* and h° ground colour parameters. During the first three maturity categories (H1–H3), firmness had a notably smaller correlation with titratable acidity and the ratio of total soluble solids and titratable acidity, which is not the case for a* and h° ground colour parameters, chlorophyll absorbance index, and the share of additional colour. During the last three maturity categories (H4–H6), non-destructive parameters are not reliable for maturity prediction. When ground colour parameters are measured near petiole insertion, mostly smaller segregation between maturity categories is obtained compared to when measured at the rest of the fruit. Total polyphenol and flavonoid content in peach juice notably corelated only in the last two maturity categories with L* ground colour parameter. Full article
Show Figures

Figure 1

14 pages, 1284 KiB  
Article
Relationships Between Midday Stem Water Potential and Soil Water Content in Grapevines and Peach and Pear Trees
by José Manuel Mirás-Avalos and Emily Silva Araujo
Agronomy 2025, 15(5), 1257; https://doi.org/10.3390/agronomy15051257 - 21 May 2025
Viewed by 503
Abstract
Monitoring the water status of fruit orchards is required to optimize crop water management and determine irrigation scheduling. For this purpose, capacitance probes are commonly used to measure soil water content (θs). However, when these probes are not calibrated, the estimates [...] Read more.
Monitoring the water status of fruit orchards is required to optimize crop water management and determine irrigation scheduling. For this purpose, capacitance probes are commonly used to measure soil water content (θs). However, when these probes are not calibrated, the estimates of θs are, therefore, unreliable. Our objective was to relate the measurements of capacitance probes, without a site-specific calibration, with a reliable indicator of the water status (stem water potential at solar noon (Ψstem)) of rain-fed grapevines grown under contrasting soil management strategies (tillage and spontaneous vegetation) and of irrigated peach and pear trees. During the 2023 growing season, θs was monitored in a peach and a pear orchard and in a vineyard in northeast Spain using capacitance sensors at three depths: 0.15, 0.30, and 0.45 m. Correlation coefficients ranged from 0.75 to 0.87 in peach trees, from 0.53 to 0.56 in pear trees, and from 0.56 to 0.90 in grapevines, depending on soil depth. These relationships were significant for both peach trees and grapevines but not for pear trees. Under the conditions of this study, uncalibrated capacitance measurements of θs could be useful to assess grapevine and peach tree water status in real time but were limited for pear trees. Full article
Show Figures

Figure 1

10 pages, 1423 KiB  
Article
Viral and Viroid Communities in Peach Cultivars Grown in Bulgaria
by Mariyana Gozmanova, Vesselin Baev, Rumyana Valkova, Elena Apostolova-Kuzova, Stoyanka Jurac, Galina Yahubyan, Lilyana Nacheva and Snezhana Milusheva
Horticulturae 2025, 11(5), 503; https://doi.org/10.3390/horticulturae11050503 - 7 May 2025
Viewed by 463
Abstract
Peaches (Prunus persica L. Batsch) and nectarines (Prunus persica L. Batsch var. nectarina [Ait.] Maxim) are economically important stone fruits consumed worldwide, both fresh and processed. Viruses and viroids significantly constrain the cultivation and productivity of peach orchards. Climate change may [...] Read more.
Peaches (Prunus persica L. Batsch) and nectarines (Prunus persica L. Batsch var. nectarina [Ait.] Maxim) are economically important stone fruits consumed worldwide, both fresh and processed. Viruses and viroids significantly constrain the cultivation and productivity of peach orchards. Climate change may alter vector populations and lead to shifts in agricultural practices, influencing the spread of these viruses and viroids. Additionally, market globalization further intensifies the pressure on peach crops by facilitating the movement of pathogens, increasing the incidence of virus-induced diseases. In this study, we identified the viral and viroid communities in five peach cultivars from Bulgaria and assessed their impact on symptom development. RNA sequencing of symptomatic leaf samples revealed the presence of common peach viruses, such as plum pox virus and prunus necrotic ringspot virus. Notably, we identified peach latent mosaic viroid and cherry green ring mottle virus in Bulgarian peach orchards for the first time. Furthermore, bioassays of indicator plants, ELISA, and Sanger sequencing were performed for each peach tree to complement the RNA sequencing data. These findings provide valuable insights into the composition of viral and viroid pathogens affecting peaches in Bulgaria and will support the development of targeted strategies for monitoring and managing these pathogens, contributing to the sustainable production of peaches in the region. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

20 pages, 8188 KiB  
Article
Operational and Cost Assessment of Mechanizing Soil Removal Between Peach Trees Planted on Raised Berms
by Coleman Scroggs, Ali Bulent Koc, Guido Schnabel and Michael Vassalos
AgriEngineering 2025, 7(5), 144; https://doi.org/10.3390/agriengineering7050144 - 6 May 2025
Viewed by 593
Abstract
Armillaria root rot (ARR) is a fungal disease caused by Desarmillaria caespitosa and the leading cause of peach tree decline in the Southeastern U.S. It affects the roots and lower stems of trees, leading to the decay of the tree’s root system. Planting [...] Read more.
Armillaria root rot (ARR) is a fungal disease caused by Desarmillaria caespitosa and the leading cause of peach tree decline in the Southeastern U.S. It affects the roots and lower stems of trees, leading to the decay of the tree’s root system. Planting peach trees shallow on berms and excavating soil around the root collar after two years can extend the economic life of infected trees. However, berms pose operational challenges, including elevation changes, soil erosion from water flow, and herbicide and fertilizer runoff, thereby reducing orchard management efficiency. This study aimed to develop a tractor-mounted rotary tillage method to flatten the area between peach trees planted on berms, improving safety and reducing runoff. A custom paddle wheel attachment (20.3 cm height, 30.5 cm length) was retrofitted to an existing mechanical orchard weed management implement equipped with a hydraulic rotary head. A hydraulic flow meter, two pressure transducers, and an RTK-GPS receiver were integrated with a wireless data acquisition system to monitor the paddle wheel rotational speed and tractor ground speed during field trials. The effects of three paddle wheel speeds (132, 177, and 204 RPM) and three tractor ground speeds (1.65, 2.255, and 3.08 km/h) were evaluated in two orchards with Cecil sandy loam soil (bulk density: 1.93 g/cm3; slope: 2–6%). The paddle wheel speed had a greater influence on the torque and power requirements than the tractor ground speed. The combination of a 177 RPM paddle speed and 3 km/h tractor speed resulted in the smoothest soil surface with minimum torque demand, indicating this setting as optimal for flattening berms in similar soil conditions. Future research will include optimizing the paddle wheel structure and equipping the berm leveling machine with tree detection sensors to control the rotary head position. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

15 pages, 3016 KiB  
Article
Feasibility of Little Cherry/X-Disease Detection in Prunus avium Using Field Asymmetric Ion Mobility Spectrometry
by Gajanan S. Kothawade, Lav R. Khot, Abhilash K. Chandel, Cody Molnar, Scott J. Harper and Alice A. Wright
Sensors 2025, 25(7), 2034; https://doi.org/10.3390/s25072034 - 25 Mar 2025
Viewed by 583
Abstract
Little cherry disease (LCD) and X-disease have critically impacted the Pacific Northwest sweet cherry (Prunus avium) industry. Current detection methods rely on laborious visual scouting or molecular analyses. This study evaluates the suitability of field asymmetric ion mobility spectrometry (FAIMS) for rapid [...] Read more.
Little cherry disease (LCD) and X-disease have critically impacted the Pacific Northwest sweet cherry (Prunus avium) industry. Current detection methods rely on laborious visual scouting or molecular analyses. This study evaluates the suitability of field asymmetric ion mobility spectrometry (FAIMS) for rapid detection of LCD and X-disease infection in three sweet cherry cultivars (‘Benton’, ‘Cristalina’, and ‘Tieton’) at the post-harvest stage. Stem cuttings with leaves were collected from commercial orchards and greenhouse trees. FAIMS operated at 1.5 L/min and 50 kPa, was used for headspace analysis. Molecular analyses confirmed symptomatic and asymptomatic samples. FAIMS data were processed for ion current sum (Isum), maximum ion current (Imax), and area under the curve (IAUC). Symptomatic samples showed higher ion currents in specific FAIMS regions (p < 0.05), with clear differences between symptomatic and asymptomatic samples across compensation voltage and dispersion field ranges. Cultivar-specific variation was also observed in the data. FAIMS spectra for LCD/X-disease symptomatic samples differed from those for asymptomatic samples in other Prunus species, such as peach and nectarines. These findings support FAIMS as a potential diagnostic tool for LCD/X disease. Further studies with controlled variables and key growth stages are recommended to realize early-stage detection. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2025)
Show Figures

Graphical abstract

19 pages, 3532 KiB  
Review
Bridging the Gap: Genetic Insights into Graft Compatibility for Enhanced Kiwifruit Production
by Iqra Ashraf, Guido Cipriani and Gloria De Mori
Int. J. Mol. Sci. 2025, 26(7), 2925; https://doi.org/10.3390/ijms26072925 - 24 Mar 2025
Cited by 2 | Viewed by 648
Abstract
Kiwifruit, with its unique flavor, nutritional value, and economic benefits, has gained significant attention in agriculture production. Kiwifruit plants have traditionally been propagated without grafting, but recently, grafting has become a more common practice. A new and complex disease called Kiwifruit Vine Decline [...] Read more.
Kiwifruit, with its unique flavor, nutritional value, and economic benefits, has gained significant attention in agriculture production. Kiwifruit plants have traditionally been propagated without grafting, but recently, grafting has become a more common practice. A new and complex disease called Kiwifruit Vine Decline Syndrome (KVDS) has emerged in different kiwifruit-growing areas. The syndrome was first recognized in Italy, although similar symptoms had been observed in New Zealand during the 1990s before subsequently spreading worldwide. While kiwifruit was not initially grafted in commercial orchards, the expansion of cultivation into regions with heavy soils or other challenging environmental conditions may make grafting selected kiwifruit cultivars onto KVDS-resistant or -tolerant rootstocks essential for the future of this crop. Grafting is a common horticultural practice, widely used to propagate several commercially important fruit crops, including kiwifruits, apples, grapes, citrus, peaches, apricots, and vegetables. Grafting methods and genetic compatibility have a crucial impact on fruit quality, yield, environmental adaptability, and disease resistance. Achieving successful compatibility involves a series of steps. During grafting, some scion/rootstock combinations exhibit poor graft compatibility, preventing the formation of a successful graft union. Identifying symptoms of graft incompatibility can be challenging, as they are not always evident in the first year after grafting. The causes of graft incompatibility are still largely unknown, especially in the case of kiwifruit. This review aims to examine the mechanisms of graft compatibility and incompatibility across different fruit crops. This review’s goal is to identify potential markers and techniques that could enhance grafting success and boost the commercial production of kiwifruit. Full article
(This article belongs to the Special Issue Advances in Fruit Tree Physiology, Breeding and Genetic Research)
Show Figures

Figure 1

17 pages, 3074 KiB  
Article
Isolation, Characterization and Growth-Promoting Properties of Phosphate-Solubilizing Bacteria (PSBs) Derived from Peach Tree Rhizosphere
by Zixuan Li, Junyan Li, Guangyuan Liu, Yanyan Li, Xuelian Wu, Jiahui Liang, Zhe Wang, Qiuju Chen and Futian Peng
Microorganisms 2025, 13(4), 718; https://doi.org/10.3390/microorganisms13040718 - 23 Mar 2025
Cited by 2 | Viewed by 913
Abstract
Microbial fertilizers have a significant role in promoting plant growth, resistance to environmental stresses, and soil remediation. Microbial fertilizers are mainly composed of beneficial microorganisms that contain specific functions. Focusing on the peach tree rhizosphere region, this study aimed to isolate and screen [...] Read more.
Microbial fertilizers have a significant role in promoting plant growth, resistance to environmental stresses, and soil remediation. Microbial fertilizers are mainly composed of beneficial microorganisms that contain specific functions. Focusing on the peach tree rhizosphere region, this study aimed to isolate and screen bacteria with efficient phosphate-solubilizing capacity for application in microbial fertilizers, as well as to dig deeper into the other properties of the strains to further explore the roles of these phosphate-solubilizing bacteria (PSBs) in terms of plant growth in order to provide valuable microbial resources for microbial fertilizer development. By collecting soil samples from peach tree rhizospheres, we initially screened 86 PSB strains using the plate method and determined the phosphate-solubilizing capacity (ranged from 0 to 14 μg/mL). Afterwards, 51 strains with strong phosphate-solubilizing capacity were selected for molecular identification; the strains belonged to 12 genera, with Bacillus and Burkholderia accounting for the majority. Concurrent evaluation of iron carriers and indoleacetic-3-acid (IAA) production capabilities identified strain WPD85 as exhibiting dual functionality with strong performance in both parameters. Subsequently, we combined the analysis of phosphate-solubilizing capacity and growth-promoting properties to select eight strains of PSBs; characterized them physiologically, biochemically, and molecularly; determined the biofilm-forming capacity; and conducted potting experiments. Notably, strain WPD103 exhibited exceptional biofilm-forming capacity (OD595 = 1.09). Of particular interest, strain WPD16 demonstrated both an elevated inorganic phosphate solubilization index (D/d = 2.99) and remarkable iron carriers production capacity, while peach seedlings treated with WPD16 exhibited 119% enhancement in plant height increment compared to the control. This study enhances our understanding of PSB traits and identifies Burkholderia sp. WPD16 as a strategic candidate for developing targeted microbial fertilizers, offering a sustainable solution to reduce reliance on chemical inputs in orchard management. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 3029 KiB  
Article
Effects of Climatic, Chemical, and Cultural Control Strategies on Community Composition of Auchenorrhyncha and Population Dynamics of Two Major Green Leafhopper Pests in Peach Orchards
by Patrícia Monteiro Nascimento, Ana Carina Neto, Vera Guerreiro, Anabela Barateiro, Hugo Anjos, José Pereira Coutinho, Marília Antunes and Maria Teresa Rebelo
Agronomy 2025, 15(1), 163; https://doi.org/10.3390/agronomy15010163 - 10 Jan 2025
Viewed by 1195
Abstract
A three-year study in two Mediterranean peach orchards monitored Auchenorrhyncha species, including the main vectors of plant pathogens causing significant economic losses. The research focused on the management of two polyphagous leafhoppers, Asymmetrasca decedens and Hebata (Signatasca) solani. Yellow sticky [...] Read more.
A three-year study in two Mediterranean peach orchards monitored Auchenorrhyncha species, including the main vectors of plant pathogens causing significant economic losses. The research focused on the management of two polyphagous leafhoppers, Asymmetrasca decedens and Hebata (Signatasca) solani. Yellow sticky traps were used to track species dynamics and assess population trends in relation to meteorological factors such as temperature, rainfall, and humidity. Chemical treatments and early green pruning were evaluated for pest control effectiveness. Fifty-five Auchenorrhyncha species were identified, including vectors of Xylella fastidiosa. H. solani appeared from spring to early summer, and was gradually replaced by A. decedens, which peaked in late summer. Higher temperatures favoured A. decedens, while rainy days significantly reduced its presence. H. solani responded less consistently to meteorological factors, but increased with higher minimum relative humidity, and decreased with higher total humidity. These results highlight the need for targeted chemical control strategies to manage A. decedens during its peak season and the benefits of early green pruning to protect susceptible trees in spring. The results emphasise the role of climate in pest dynamics and provide important insights for IPM programmes to reduce economic losses in Mediterranean peach orchards worldwide. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

12 pages, 3681 KiB  
Article
Influence of Wind Speed on the Motion Characteristics of Peach Leaves (Prunus persica)
by Guanqun Wang, Xiang Dong, Weidong Jia, Mingxiong Ou, Pengpeng Yu, Minmin Wu, Zhi Zhang, Xinkang Hu, Yourui Huang and Fengxiang Lu
Agriculture 2024, 14(12), 2307; https://doi.org/10.3390/agriculture14122307 - 16 Dec 2024
Cited by 1 | Viewed by 894
Abstract
Air-assisted sprayers are widely used in orchards due to their efficiency in enhancing droplet penetration and deposition. These sprayers disperse droplets through a high-velocity airflow, which agitates the leaves and aids in canopy penetration. This study involved controlled experiments to simulate leaf movement [...] Read more.
Air-assisted sprayers are widely used in orchards due to their efficiency in enhancing droplet penetration and deposition. These sprayers disperse droplets through a high-velocity airflow, which agitates the leaves and aids in canopy penetration. This study involved controlled experiments to simulate leaf movement during field spraying, with a focus on the dynamics of peach tree leaves (Prunus persica) in varying wind fields. An experimental setup consisting of a wind-conveying system, a measurement system, and a fixed system was designed. The moving speeds of the wind field (0.75 m/s, 0.5 m/s, and 1.0 m/s) and wind velocities (ranging from 2 m/s to 8 m/s) were varied. Key parameters, including leaf tip displacement, angular velocity, and twisting amplitude, were measured using high-speed cameras and motion analysis software. The results indicate that, at a constant wind velocity, increasing the wind field’s moving speed resulted in a reduced range of motion, decelerated angular velocity, and decreased twisting amplitude of the leaves. Notably, at a wind field speed of 8 m/s and a moving speed of 1.0 m/s, the twisting duration of the leaves was only 67% of that observed at a moving speed of 0.5 m/s. These findings suggest that wind speed and field motion characteristics play a crucial role in leaf dynamics, informing the design of air-assisted spraying systems. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

7 pages, 1276 KiB  
Communication
First Report of the Peach Leaf Spot Caused by Nigrospora sphaerica in China
by Huan Li, Han Wang, Shumila Ishfaq and Wei Guo
Horticulturae 2024, 10(12), 1260; https://doi.org/10.3390/horticulturae10121260 - 28 Nov 2024
Viewed by 1185
Abstract
Peach (Prunus persica L.) is a globally significant fruit valued for its high edible and ornamental qualities. Peach leaf spot disease has become increasingly prevalent in recent years, negatively affecting fruit quality and esthetic appeal. During the summer of 2024, symptoms of [...] Read more.
Peach (Prunus persica L.) is a globally significant fruit valued for its high edible and ornamental qualities. Peach leaf spot disease has become increasingly prevalent in recent years, negatively affecting fruit quality and esthetic appeal. During the summer of 2024, symptoms of leaf spots were observed on peach trees in an orchard in Bazhong City, Sichuan Province, China. Leaf samples displaying typical spot symptoms were collected from peach orchards, and the pathogenic agents were isolated. Based on their morphological characteristics and multi-locus phylogenetic analysis, the isolated and purified fungus SCBZPP6 was identified as Nigrospora sphaerica. Furthermore, the pathogenicity of the isolated fungus was verified via Koch’s postulates. To our knowledge, this is the first report of N. sphaerica causing leaf spot on peach in China. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

19 pages, 2897 KiB  
Article
Viral Diversity in Mixed Tree Fruit Production Systems Determined through Bee-Mediated Pollen Collection
by Raj Vansia, Malek Smadi, James Phelan, Aiming Wang, Guillaume J. Bilodeau, Stephen F. Pernal, M. Marta Guarna, Michael Rott and Jonathan S. Griffiths
Viruses 2024, 16(10), 1614; https://doi.org/10.3390/v16101614 - 15 Oct 2024
Viewed by 2237
Abstract
Commercially cultivated Prunus species are commonly grown in adjacent or mixed orchards and can be infected with unique or commonly shared viruses. Apple (Malus domestica), another member of the Rosacea and distantly related to Prunus, can share the same growing [...] Read more.
Commercially cultivated Prunus species are commonly grown in adjacent or mixed orchards and can be infected with unique or commonly shared viruses. Apple (Malus domestica), another member of the Rosacea and distantly related to Prunus, can share the same growing regions and common pathogens. Pollen can be a major route for virus transmission, and analysis of the pollen virome in tree fruit orchards can provide insights into these virus pathogen complexes from mixed production sites. Commercial honey bee (Apis mellifera) pollination is essential for improved fruit sets and yields in tree fruit production systems. To better understand the pollen-associated virome in tree fruits, metagenomics-based detection of plant viruses was employed on bee and pollen samples collected at four time points during the peak bloom period of apricot, cherry, peach, and apple trees at one orchard site. Twenty-one unique viruses were detected in samples collected during tree fruit blooms, including prune dwarf virus (PDV) and prunus necrotic ringspot virus (PNRSV) (Genus Ilarvirus, family Bromoviridae), Secoviridae family members tomato ringspot virus (genus Nepovirus), tobacco ringspot virus (genus Nepovirus), prunus virus F (genus Fabavirus), and Betaflexiviridae family member cherry virus A (CVA; genus Capillovirus). Viruses were also identified in composite leaf and flower samples to compare the pollen virome with the virome associated with vegetative tissues. At all four time points, a greater diversity of viruses was detected in the bee and pollen samples. Finally, the nucleotide sequence diversity of the coat protein regions of CVA, PDV, and PNRSV was profiled from this site, demonstrating a wide range of sequence diversity in pollen samples from this site. These results demonstrate the benefits of area-wide monitoring through bee pollination activities and provide new insights into the diversity of viruses in tree fruit pollination ecosystems. Full article
(This article belongs to the Special Issue Plant Virus Spillovers)
Show Figures

Figure 1

Back to TopTop