Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (370)

Search Parameters:
Keywords = particle Reynolds number

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2300 KB  
Proceeding Paper
On the Aerodynamic Characteristics of the Aurel Persu Car
by Adrian Clenci, Amélie Danlos, Ivan Dobrev and Victor Iorga-Simăn
Eng. Proc. 2026, 121(1), 29; https://doi.org/10.3390/engproc2025121029 - 21 Jan 2026
Viewed by 64
Abstract
This study investigates the aerodynamics of Romanian engineer Aurel Persu’s car through wind tunnel experiments involving force measurements, Particle Image Velocimetry (PIV), and CFD simulations. Tests using scale models revealed significant flow separation behind the cabin. The measured drag coefficient is CD [...] Read more.
This study investigates the aerodynamics of Romanian engineer Aurel Persu’s car through wind tunnel experiments involving force measurements, Particle Image Velocimetry (PIV), and CFD simulations. Tests using scale models revealed significant flow separation behind the cabin. The measured drag coefficient is CD = 0.364 at 33 m/s, showing moderate sensitivity to Reynolds number. CFD simulations using the unsteady STAR CCM+ solver with a k-ω SST turbulence model produced a slightly lower drag coefficient (CD = 0.353) due to delayed separation. The good agreement between experimental and numerical results validates the modeling approach and highlights aerodynamic limitations around the front and roof. Despite these limitations, the model achieved aerodynamic performance that was exceptional for its time and remained competitive with mainstream production vehicles well into the latter half of the 20th century. Full article
Show Figures

Figure 1

10 pages, 3007 KB  
Proceeding Paper
Experimental Study of Flow Around Stepped NACA 0015 Airfoils at Low Reynolds Numbers
by Ivan Dobrev, Michael Pereira, Michael Todorov and Fawaz Massouh
Eng. Proc. 2026, 121(1), 18; https://doi.org/10.3390/engproc2025121018 - 15 Jan 2026
Viewed by 128
Abstract
This study investigates the flow around Kline-Fogleman (KF) airfoils using Particle Image Velocimetry (PIV) in a wind tunnel at Reynolds number Re = 6.8 × 104. Three configurations are tested: a clean NACA 0015 airfoil and two modified versions with a [...] Read more.
This study investigates the flow around Kline-Fogleman (KF) airfoils using Particle Image Velocimetry (PIV) in a wind tunnel at Reynolds number Re = 6.8 × 104. Three configurations are tested: a clean NACA 0015 airfoil and two modified versions with a step on either the pressure or suction side. Velocity fields are used to calculate lift via the Kutta-Joukowski theorem. Results show that the KF airfoil with a step on the pressure side achieves a 14.8% higher maximum lift coefficient and delayed stall. In contrast, placing the step on the suction side reduces maximum lift by 4%. The KF airfoil with pressure-side step shows potential for low Reynolds number applications where higher lift and larger stall angles are required. Full article
Show Figures

Figure 1

20 pages, 1485 KB  
Article
SPH Simulation of Multiple Droplets Impact and Solidification on a Cold Surface
by Lujie Yuan, Qichao Wang and Hongbing Xiong
Coatings 2026, 16(1), 117; https://doi.org/10.3390/coatings16010117 - 15 Jan 2026
Viewed by 230
Abstract
The impact and solidification of multiple molten droplets on a cold substrate critically influence the quality and performance of thermally sprayed coatings. We present a Smoothed Particle Hydrodynamics (SPH) model that couples fluid-solid interaction, wetting, heat transfer and phase change to simulate multi-droplet [...] Read more.
The impact and solidification of multiple molten droplets on a cold substrate critically influence the quality and performance of thermally sprayed coatings. We present a Smoothed Particle Hydrodynamics (SPH) model that couples fluid-solid interaction, wetting, heat transfer and phase change to simulate multi-droplet impact and freezing. The model is validated against benchmark cases, including the Young–Laplace relation, wetting dynamics, single-droplet impact and the Stefan solidification problem, showing good agreement. Using the validated model, we investigate two droplets—either centrally or off-centrally—impacting on a cold surface. Simulations reveal two distinct solidification patterns: convex pattern (CVP), which results in a mountain-like splat morphology, and concave pattern (CCP), which leads to a valley-like shape. The criterion for the two patterns is explored with two dimensionless numbers, the Reynolds number Re and the Stefan number Ste. When Re17.8, droplets tend to solidify in CVP; at higher Reynolds numbers Re18.8, they tend to solidify in CCP. The transition between the two patterns is primarily governed by Re, with Ste exerting a secondary influence. For example, when droplets have Re=9.9 and Ste=5.9, they tend to solidify in a convex pattern, whereas at Re=19.8 and Ste=5.9, they tend to solidify in a concave pattern. Also, the solidification state of the first droplet greatly influences the subsequent spreading and solidification of the second droplet. A parametric study on CCP cases with varying vertical and horizontal offsets shows that larger vertical offsets accelerate solidification and reduce the maximum spreading factor. For small vertical distances, the solidification time increases with horizontal offset by more than 29%; for large vertical distances the change is minor. These results clarify how droplet interactions govern coating morphology and thermal evolution during thermal spraying. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

30 pages, 22904 KB  
Article
Experimental and Computational Study of Rotational Lift Production of Insect Flapping Wing
by May Hlaing Win Khin, Samuel Verboomen and Shinnosuke Obi
Appl. Sci. 2026, 16(2), 724; https://doi.org/10.3390/app16020724 - 9 Jan 2026
Viewed by 176
Abstract
This paper investigates the rotational lift production of translating and rotating wings within a small insect’s Reynolds number range. Using the Reynolds number 1200 of a bumblebee, three wing section profiles were studied: a circular cylinder model as a reference for a blunt [...] Read more.
This paper investigates the rotational lift production of translating and rotating wings within a small insect’s Reynolds number range. Using the Reynolds number 1200 of a bumblebee, three wing section profiles were studied: a circular cylinder model as a reference for a blunt body for which the well-known Magnus effect will occur, a flat plate model as a reference for a sharp body for which the Kramer effect will occur, and finally, an elliptical cylinder model as a transition case. Direct force measurement and particle image velocimetry (PIV) experiments were performed to measure the lift produced and the surrounding flow velocity, and the Kutta–Joukowski theorem was applied to analyze the PIV results. The Kutta–Joukowski theorem gives the relationship between lift and circulation on a body moving at constant speed in a real fluid with some constant density. The experimental results were analyzed and verified by comparing them to the computational results. In general, there is reasonable agreement between the experimental and computational results, confirming that the Magnus effect is observed for the circular cylinder model and no Kramer effect is observed for the flat plate model. The elliptical cylinder model does not appear to be blunt enough for the Magnus effect to occur, and it is not sharp enough for the Kramer effect to occur. Full article
Show Figures

Figure 1

26 pages, 15207 KB  
Article
Solid–Liquid Flow Analysis Using Simultaneous Two-Phase PIV in a Stirred Tank Bioreactor
by Mohamad Madani, Angélique Delafosse, Sébastien Calvo and Dominique Toye
Fluids 2026, 11(1), 17; https://doi.org/10.3390/fluids11010017 - 8 Jan 2026
Viewed by 356
Abstract
Solid–liquid stirred tanks are widely used in multiphase processes, including bioreactors for mesenchymal stem cell (MSC) culture, yet simultaneous experimental data for both dispersed and carrier phases remain limited. Here, a refractive index-matched (RIM) suspension of PMMA microparticles ( [...] Read more.
Solid–liquid stirred tanks are widely used in multiphase processes, including bioreactors for mesenchymal stem cell (MSC) culture, yet simultaneous experimental data for both dispersed and carrier phases remain limited. Here, a refractive index-matched (RIM) suspension of PMMA microparticles (dp=168μm, ρp/ρl0.96) in an NH4SCN solution is studied at an intermediate Reynolds number (Re5000), low Stokes number (St=0.078), and particle volume fractions 0.1αp0.5 v%. This system was previously established and studied for the effect of addition of particles on the carrier phase. In this work, a dual-camera PIV set-up provides simultaneous velocity fields of the liquid and particle phases in a stirred tank equipped with a three-blade down-pumping HTPGD impeller. The liquid mean flow and circulation loop remained essentially unchanged with particle loading, whereas particle mean velocities were lower than single-phase and liquid-phase values in the impeller discharge. Turbulence levels diverged between phases: liquid-phase turbulent kinetic energy (TKE) in the impeller region increased modestly with αp, while solid-phase TKE was attenuated. Slip velocity maps showed that particles lagged the fluid in the impeller jet and deviated faster from the wall in the upward flow, with slip magnitudes increasing with αp. An approximate axial force balance indicated that drag dominates over lift in the impeller and wall regions, while the balance is approximately satisfied in the tank bulk, providing an experimental benchmark for refining drag and lift models in this class of stirred tanks. Full article
Show Figures

Figure 1

24 pages, 3724 KB  
Article
Numerical Investigation of Non-Newtonian Fluid Rheology in a T-Shaped Microfluidics Channel Integrated with Complex Micropillar Structures Under Acoustic, Electric, and Magnetic Fields
by Muhammad Waqas, Arvydas Palevicius, Cengizhan Omer Senol and Giedrius Janusas
Micromachines 2025, 16(12), 1390; https://doi.org/10.3390/mi16121390 - 8 Dec 2025
Viewed by 567
Abstract
Microfluidics is considered a revolutionary interdisciplinary technology with substantial interest in various biomedical applications. Many non-Newtonian fluids often used in microfluidics systems are notably influenced by the external active fields, such as acoustic, electric, and magnetic fields, leading to changes in rheological behavior. [...] Read more.
Microfluidics is considered a revolutionary interdisciplinary technology with substantial interest in various biomedical applications. Many non-Newtonian fluids often used in microfluidics systems are notably influenced by the external active fields, such as acoustic, electric, and magnetic fields, leading to changes in rheological behavior. In this study, a numerical investigation is carried out to explore the rheological behavior of non-Newtonian fluids in a T-shaped microfluidics channel integrated with complex micropillar structures under the influence of acoustic, electric, and magnetic fields. For this purpose, COMSOL Multiphysics with laminar flow, pressure acoustic, electric current, and magnetic field physics is used to examine rheological characteristics of non-Newtonian fluids. Three polymer solutions, such as 2000 ppm xanthan gum (XG), 1000 ppm polyethylene oxide (PEO), and 1500 ppm polyacrylamide (PAM), are used as a non-Newtonian fluids with the Carreau–Yasuda fluid model to characterize the shear-thinning behavior. Moreover, numerical simulations are carried out with different input parameters, such as Reynolds numbers (0.1, 1, 10, and 50), acoustic pressure (5 Mpa, 6.5 Mpa, and 8 Mpa), electric voltage (200 V, 250 V, and 300 V), and magnetic flux (0.5 T, 0.7 T, and 0.9 T). The findings reveal that the incorporation of active fields and micropillar structures noticeably impacts fluid rheology. The acoustic field induces higher shear-thinning behavior, decreasing dynamic viscosity from 0.51 Pa·s to 0.34 Pa·s. Similarly, the electric field induces higher shear rates, reducing dynamic viscosities from 0.63 Pa·s to 0.42 Pa·s, while the magnetic field drops the dynamic viscosity from 0.44 Pa·s to 0.29 Pa·s. Additionally, as the Reynolds number increases, the shear rate also rises in the case of electric and magnetic fields, leading to more chaotic flow, while the acoustic field advances more smooth flow patterns and uniform fluid motion within the microchannel. Moreover, a proposed experimental framework is designed to study non-Newtonian fluid mixing in a T-shaped microfluidics channel under external active fields. Initially, the microchannel was fabricated using a high-resolution SLA printer with clear photopolymer resin material. Post-processing involved analyzing particle distribution, mixing quality, fluid rheology, and particle aggregation. Overall, the findings emphasize the significance of considering the fluid rheology in designing and optimizing microfluidics systems under active fields, especially when dealing with complex fluids with non-Newtonian characteristics. Full article
(This article belongs to the Special Issue Research Progress on Advanced Additive Manufacturing Technologies)
Show Figures

Figure 1

19 pages, 6601 KB  
Article
Particle Tracking Velocimetry Measurements and Simulations of Internal Flow with Induced Swirl
by Ryan Boldt, David R. Hanson, Lulin Jiang and Stephen T. McClain
Fluids 2025, 10(12), 323; https://doi.org/10.3390/fluids10120323 - 4 Dec 2025
Viewed by 574
Abstract
The downstream decay of induced swirling flow within an internal passage has implications for heat transfer enhancement, species mixing, and combustion processes. For this paper, swirling flow in an internal passage was investigated using both experimental and computational techniques. Two staggered rows of [...] Read more.
The downstream decay of induced swirling flow within an internal passage has implications for heat transfer enhancement, species mixing, and combustion processes. For this paper, swirling flow in an internal passage was investigated using both experimental and computational techniques. Two staggered rows of 8 vanes each with an NACA 0015 profile, intended to turn the near-wall flow 45° to the flow direction, were installed on the top and bottom surfaces of the Roughness Internal Flow Tunnel (RIFT) wind tunnel. The vanes induced opposite lateral components in—the flow near the upper and lower surfaces of the rectangular test section of the RIFT and induced a swirling flow pattern within the passage. A 4-camera tomographic particle tracking velocimetry (PTV) system was used to evaluate airflow within a 40 mm × 40 mm × 60 mm measurement volume at the tunnel midline 0.5 m downstream of the induced swirl. Mean flow velocity measurements were collected at hydraulic diameter-based Reynolds numbers of 10,000, 20,000, and 30,000. To validate PTV measurements, particularly the camera-plane normal component of velocity, traces across the measurement volume were taken using a five-hole probe. The results of both measurement methods were compared to a computational simulation of the entire RIFT test section using a shear stress transport (SST) k-ω, Improved Delayed Detached Eddy Simulation (IDDES) turbulence model. The combined particle tracking measurements and five-hole probe measurements provide a method of investigating the turbulent flow model and simulation results, which are needed for future simulations of flows found inside swirl-inducing combustor nozzles. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques, 2nd Edition)
Show Figures

Figure 1

20 pages, 11068 KB  
Article
Seepage Modeling in Filled Tortuous Fractures Coupled with Porous Media Matrix: Influence of Filling Material Properties
by Weitao Liu, Debin Kong, Jiyuan Zhao, Lihong Shi and Zhenguo Mao
Water 2025, 17(23), 3386; https://doi.org/10.3390/w17233386 - 27 Nov 2025
Viewed by 514
Abstract
Nonlinear seepage behavior within rock fractures represents a critical and actively researched challenge in underground engineering, energy exploitation, and environmental sciences. Through the integration of nonlinear seepage theory with coupled numerical simulations of fracture flow and matrix flow, this study systematically investigates the [...] Read more.
Nonlinear seepage behavior within rock fractures represents a critical and actively researched challenge in underground engineering, energy exploitation, and environmental sciences. Through the integration of nonlinear seepage theory with coupled numerical simulations of fracture flow and matrix flow, this study systematically investigates the synergistic mechanisms governing the influence of filling particles, tortuous fractures, and porous matrices on fluid transport within fracture–porous matrix seepage systems. Key findings reveal that: (1) Horizontal fractures continuously receive fluid influx from the surrounding porous matrix, where the flow field maintains remarkable symmetry, with a critical matrix height-to-fracture aperture ratio regulating streamline divergence and convergence at the fracture outlet; (2) The flow field within horizontal fractures undergoes substantial transformation when the Reynolds number exceeds a critical threshold, while maintaining stable flow patterns and -ΔP-Q relationships below this value, demonstrating a distinct inertial-controlled flow regime transition; (3) Tortuous fracture geometries induce localized vortex formation and significant velocity fluctuations, particularly in the front and rear dip-angle zones, substantially enhancing fluid exchange efficiency compared to horizontal configurations; (4) The volumetric flow rate exhibits a non-monotonic relationship with inclination angle, peaking at approximately 36°, while a synergistic effect between fracture inclination and infill particle diameter systematically modulates pressure-drop-flow-rate relationships, with a critical d/h = 0.5 threshold distinguishing fundamentally different flow behaviors. These findings provide quantitative criteria for predicting nonlinear seepage in practical engineering scenarios involving complex fracture networks and filling materials, offering significant implications for risk assessment and drainage design in deep underground projects. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

9 pages, 1113 KB  
Article
Dynamics and Mutual Influence of Droplets in a Rotating Liquid Under Centrifugal Forces
by Alexey Alexandrovich Salin, Sergey Ivanovich Ponikarov and Artem Sergeevich Ponikarov
Processes 2025, 13(12), 3833; https://doi.org/10.3390/pr13123833 - 27 Nov 2025
Viewed by 307
Abstract
The article presents the results of experimental studies of the velocity of liquid droplets in a chain under the action of centrifugal forces in a uniformly rotating liquid continuous phase. The aim of the work is to study the mutual influence of droplets [...] Read more.
The article presents the results of experimental studies of the velocity of liquid droplets in a chain under the action of centrifugal forces in a uniformly rotating liquid continuous phase. The aim of the work is to study the mutual influence of droplets on each other through the analysis of entrainment, simplified to plane motion. An experimental setup was developed based on a cylindrical vessel with adjustable angular velocity, a droplet-forming device, and stroboscopic photography to record trajectories. The methodology includes phase saturation, adjustment of the dispersed phase flow rate, and two shooting modes to minimize errors. The dependencies of the satellite trail velocity (Vsp) on the radial distance (R) and the drop frequency (f) were obtained for three liquid systems; based on regression analysis, a generalized formula Vsp=k·Ra·fb was proposed, providing satisfactory agreement between the calculated and experimental data (deviation < 10%). The results confirm the increase in Vsp with increasing R and f, which allows optimizing the extraction and mass transfer processes in centrifugal devices. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

8 pages, 1175 KB  
Communication
Particle Image Velocimetry Measurement of Wall Shear Flow Around a Bubble Growing in Carbonated Water
by Zhengyi Zhang and Keita Ando
Appl. Sci. 2025, 15(22), 12124; https://doi.org/10.3390/app152212124 - 14 Nov 2025
Viewed by 532
Abstract
An experimental technique was developed for two-dimensional Particle Image Velocimetry (PIV) measurement of wall shear flow around a bubble growing under dissolved gas supersaturation. Carbonated water was used as dissolved-gas-supersaturated liquid, and its flow was created in a small container with a tube [...] Read more.
An experimental technique was developed for two-dimensional Particle Image Velocimetry (PIV) measurement of wall shear flow around a bubble growing under dissolved gas supersaturation. Carbonated water was used as dissolved-gas-supersaturated liquid, and its flow was created in a small container with a tube pump. An isolated CO2 bubble nucleated from an intentionally created scratch on the glass surface was placed in the flow. The mass-diffusion-driven growth of the bubble (from nucleation to detachment from the surface) was recorded using a video camera with backlighting; the radius of the detached bubble was below 1 mm in the present experimental conditions. The velocity field without and with the wall-attached bubble was obtained through PIV with the water (seeded with fluorescent particles) and with a planar laser sheet, which enables one to obtain local shear flow. With the measured liquid velocity at the bubble center, the particle Reynolds number was found to be below 1. The proposed PIV measurement technique allows for careful examination of bubble detachment dynamics and convective mass transfer around attached bubbles. Full article
Show Figures

Figure 1

21 pages, 29248 KB  
Article
Role of Lee Wave Turbulence in the Dispersion of Sediment Plumes
by Alban Souche, Ebbe H. Hartz, Lars H. Rüpke and Daniel W. Schmid
Oceans 2025, 6(4), 77; https://doi.org/10.3390/oceans6040077 - 12 Nov 2025
Viewed by 682
Abstract
Sediment plumes threatening benthic ecosystems are one of the environmental hazards associated with seafloor interventions such as bottom trawling, cabling, dredging, and marine mining operations. This study focuses on sediment plume release from hypothetical future deep-sea mining activities, emphasizing its interaction with turbulent [...] Read more.
Sediment plumes threatening benthic ecosystems are one of the environmental hazards associated with seafloor interventions such as bottom trawling, cabling, dredging, and marine mining operations. This study focuses on sediment plume release from hypothetical future deep-sea mining activities, emphasizing its interaction with turbulent ocean currents in regions characterized by complex seafloor topography. In such environments, turbulent lee waves may significantly enhance the scattering of released sediments, pointing to the clear need for appropriate impact assessment frameworks. Global-scale models are limited in their ability to resolve sufficiently high Reynolds numbers to accurately represent turbulence generated by seafloor topography. To overcome these limitations and effectively assess lee wave dynamics, models must incorporate the full physics of turbulence without simplifying the Navier–Stokes equations and must operate with significantly finer spatial discretization while maintaining a domain large enough to capture the full topographic signal. Considering a seamount in the Lofoten Basin of the Norwegian Sea as an example, we present a novel numerical analysis that explores the interplay between lee wave turbulence and sediment plume dispersion using a high-resolution Large Eddy Simulation (LES) framework. We show that the turbulence occurs within semi-horizontal channels that emerge beyond the topographic highs and extend into sheet-like tails close to the seafloor. In scenarios simulating sediment release from various sites on the seamount, our model predicts distinct behavior patterns for different particle sizes. Particles with larger settling velocities tend to deposit onto the seafloor within 50–200 m of release sites. Conversely, particles with lower settling velocities are more susceptible to turbulent transport, potentially traveling greater distances while experiencing faster dilution. Based on our scenarios, we estimate that the plume concentration may dilute below 1 ppm at about 2 km distance from the release site. Although our analysis shows that mixing with ambient seawater results in rapid dilution to low concentrations, it appears crucial to account for the effects of topographic lee wave turbulence in impact assessments related to man-made sediment plumes. Our high-resolution numerical simulations enable the identification of sediment particle size groups that are most likely affected by turbulence, providing valuable insights for developing targeted mitigation strategies. Full article
Show Figures

Figure 1

29 pages, 6643 KB  
Article
Experimental and Machine Learning-Based Investigation on Forced Convection Heat Transfer Characteristics of Al2O3–Water Nanofluid in a Rotating Hypergravity Condition
by Zufen Luo, Gen Li, Jianxun Xie, Xiaojie Zhang, Yunbo Wang and Xiande Fang
Aerospace 2025, 12(10), 931; https://doi.org/10.3390/aerospace12100931 - 15 Oct 2025
Cited by 1 | Viewed by 641
Abstract
This study experimentally investigates single-phase forced convection heat transfer and flow characteristics of Al2O3-water nanofluids under rotating hypergravity conditions ranging from 1 g to 5.1 g. While nanofluids offer enhanced thermal properties for advanced cooling applications in aerospace and [...] Read more.
This study experimentally investigates single-phase forced convection heat transfer and flow characteristics of Al2O3-water nanofluids under rotating hypergravity conditions ranging from 1 g to 5.1 g. While nanofluids offer enhanced thermal properties for advanced cooling applications in aerospace and rotating machinery, their performance under hypergravity remains poorly understood. Experiments employed a custom centrifugal test rig with a horizontal test section (D = 2 mm, L = 200 mm) operating at constant heat flux. Alumina nanoparticles (20–30 nm) were dispersed in deionized water at mass fractions of 0.02–0.5 wt%, with stability validated through transmittance measurements over 72 h. Heat transfer coefficients (HTC), Nusselt numbers (Nu), friction factors (f), and pressure drops were measured across Reynolds numbers from 500 to 30,000. Results demonstrate that hypergravity significantly enhances heat transfer, with HTC increasing by up to 40% at 5.1 g compared to 1 g, most pronounced at the transition from 1 g to 1.41 g. This enhancement is attributed to intensified buoyancy-driven secondary flows quantified by increased Grashof numbers and modified particle distribution. Friction factors increased moderately (15–25%) due to Coriolis effects and enhanced viscous dissipation. Optimal performance occurred at 0.5 wt% concentration, effectively balancing thermal enhancement against pumping penalties. Random forest (RF) and eXtreme gradient boosting (XGBoost) achieved R2 = 0.9486 and 0.9625 in predicting HTC, respectively, outperforming traditional correlations (Gnielinski: R2 = 0.9124). These findings provide crucial design guidelines for thermal management systems in hypergravity environments, particularly for aerospace propulsion and centrifugal heat exchangers, where gravitational variations significantly impact cooling performance. Full article
(This article belongs to the Special Issue Advanced Thermal Management in Aerospace Systems)
Show Figures

Figure 1

23 pages, 6268 KB  
Article
Investigation of Sediment Erosion of the Top Cover in the Francis Turbine Guide Vanes at the Genda Power Station
by Xudong Lu, Kang Xu, Tianlin Li, Yu Xiao, Kailiang Hu, Yaogang Xu and Xiaobing Liu
J. Mar. Sci. Eng. 2025, 13(10), 1923; https://doi.org/10.3390/jmse13101923 - 7 Oct 2025
Cited by 1 | Viewed by 635
Abstract
This study utilizes the Standard k-ε turbulence model and ANSYS CFX software to tackle silt erosion in the top cover clearances of guide vane of the Francis turbine at Genda Power Station (Minjiang River Basin section, 103°17′ E and 31°06′ N) [...] Read more.
This study utilizes the Standard k-ε turbulence model and ANSYS CFX software to tackle silt erosion in the top cover clearances of guide vane of the Francis turbine at Genda Power Station (Minjiang River Basin section, 103°17′ E and 31°06′ N) under sediment-laden flow conditions. A numerical simulation of a solid–liquid two-phase flow along the whole flow route was performed under rated operating circumstances to examine the impact of varying guide vane end clearance heights (0.3 mm, 0.5 mm, and 1.0 mm) on internal flow patterns and sediment erosion characteristics. The simulation parameters employed an average sediment concentration of 2.9 kg/m3 and a median particle size of 0.058 mm, indicative of the flood season. The findings demonstrate that augmenting the clearance height intensifies leaky flow and secondary flow, resulting in a 0.49% reduction in efficiency. As the gap expanded from 0.3 mm to 1.0 mm, the leakage flow velocity notably increased to 40 m/s, exacerbating flow separation, enlarging the vortex structures in the vaneless space, and augmenting the sediment velocity gradient and concentration, consequently heightening the risk of erosion. An experimental setup was devised based on the numerical results, and the dynamic resemblance between the constructed test section and the prototype turbine was confirmed for flow velocity, concentration, and Reynolds number. Tests on sediment erosion revealed that the erosion resistance of the anti-sediment erosion material 04Cr13Ni5Mo markedly exceeded that of the base cast steel, especially in high-velocity areas. This study delivers a systematic, quantitative analysis of clearance effects on flow and erosion, along with an experimental wear model specifically for the Gengda Power Station, thereby providing direct theoretical support and engineering guidance for its wear protection strategy and maintenance planning. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 6742 KB  
Article
Parametric Study on the Near-Wall Wake Flow of a Circular Cylinder: Influence of Gap Ratio and Reynolds Number
by Changjing Fu, Shunxin Yang and Tianlong Zhao
J. Mar. Sci. Eng. 2025, 13(10), 1851; https://doi.org/10.3390/jmse13101851 - 24 Sep 2025
Cited by 1 | Viewed by 1382
Abstract
Near-wall flow around circular cylinders is commonly encountered in various engineering applications, such as submarine pipelines and river-crossing conduits. The wake structure significantly influences local flow stability and has become a critical focus in fluid dynamics research. Specifically, when the gap ratio ( [...] Read more.
Near-wall flow around circular cylinders is commonly encountered in various engineering applications, such as submarine pipelines and river-crossing conduits. The wake structure significantly influences local flow stability and has become a critical focus in fluid dynamics research. Specifically, when the gap ratio (G/D) ranges from 0.1 to 1.0, the interaction mechanism between the wall and the wake structure remains poorly understood. Moreover, the combined effects of the Reynolds number (Re) and gap ratio on the flow field require further investigation. In this study, a series of experimental measurements were conducted using two-dimensional, two-component particle image velocimetry (2D–2C PIV) to examine the influence of G/D and Re on the near-wall wake characteristics. The results indicate that, at a gap ratio of G/D = 0.1, the gap flow exhibits pronounced curling into the recirculation region, where the lower vortex is entrained and actively participates in wake evolution. When G/D ≥ 0.3, an increase in Re leads to a reduction in the lengths of both the upper and lower shear layers, a delayed attenuation of the wall-side shear layer, and a gradual symmetrization and contraction of the recirculation region behind the cylinder. Further analysis reveals that the evolution of the secondary vortex is strongly influenced by the combined effects of Re and G/D. Specifically, at Re = 3300 and G/D ≤ 0.3, the secondary vortex migrates away from the wall toward the upper shear layer, where it merges with the upper vortex. For 0.5 ≤ G/D ≤ 0.7, it interacts with the lower vortex, while at G/D = 1.0, it evolves independently downstream along the wall. At G/D = 0.5, the secondary vortex merges with the upper vortex at Re = 1100, whereas at Re = 5500, it interacts with the lower vortex instead. These findings contribute to a deeper understanding of the complex flow structures associated with near-wall cylinder wakes and offer valuable theoretical insights for engineering applications involving submarine pipelines in bottom-mounted or partially suspended configurations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

11 pages, 1653 KB  
Article
Influence of Superhydrophobic Coatings on Turbulence and Vortical Structures in a Submerged Impinging Jet
by Delfino Cornejo-Monroy, Betania Sánchez-Santamaria, David Luviano-Cruz, Manuel Alejandro Lira-Martínez, J. C. García and José Omar Dávalos
Nanomaterials 2025, 15(18), 1407; https://doi.org/10.3390/nano15181407 - 12 Sep 2025
Viewed by 633
Abstract
The impact of liquid jets on solid surfaces is a critical hydrodynamic mechanism in applications like cooling and cleaning. Surface properties, particularly superhydrophobicity, can significantly alter flow development throughout the impingement process. This work uses particle image velocimetry (PIV) to investigate a submerged [...] Read more.
The impact of liquid jets on solid surfaces is a critical hydrodynamic mechanism in applications like cooling and cleaning. Surface properties, particularly superhydrophobicity, can significantly alter flow development throughout the impingement process. This work uses particle image velocimetry (PIV) to investigate a submerged water jet impinging on smooth and superhydrophobic surfaces. The jet, with a 4 mm diameter (D), was operated at a Reynolds number of 4500 and a nozzle-to-surface distance of 10D. Results demonstrate that the superhydrophobic surface (SHS) modifies the flow behavior significantly. Compared to the smooth surface, the peak jet velocity on the SHS increased by 26% in the axial direction and 19% in the radial direction. Furthermore, turbulent kinetic energy (TKE) at the impingement point was substantially higher on the coated surface. These findings are attributed to reduced wall friction on the superhydrophobic surface, which enhances momentum retention and alters turbulent production. Full article
(This article belongs to the Special Issue Functionalized Nanostructures on Surfaces and at Interfaces)
Show Figures

Figure 1

Back to TopTop