Particle Image Velocimetry Measurement of Wall Shear Flow Around a Bubble Growing in Carbonated Water
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Visualization of the Flow Field with No Bubble
3.2. Visualization of the Flow Field with the Bubble
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Z.; Zhu, W.; Yu, X.; Zhang, H.; Li, Y.; Sun, X.; Wang, X.; Wang, H.; Wang, J.; Luo, J.; et al. Ultrahigh Hydrogen Evolution Performance of Under-Water “Superaerophobic” MoS2 Nanostructured Electrodes. Adv. Mater. 2014, 26, 2683–2687. [Google Scholar] [CrossRef]
- Martín, M.; Montes, F.J.; Galán, M.A. Oxygen Transfer from Growing Bubbles: Effect of the Physical Properties of the Liquid. Chem. Eng. J. 2007, 128, 21–32. [Google Scholar] [CrossRef]
- Vega-Martínez, P.; Enríquez, O.R.; Rodríguez-Rodríguez, J. Some Topics on the Physics of Bubble Dynamics in Beer. Beverages 2017, 3, 38. [Google Scholar] [CrossRef]
- Yu, J.; Hu, K.; Zhang, Z.; Luo, L.; Liu, Y.; Zhou, D.; Wang, F.; Kuang, Y.; Xu, H.; Li, H. Interfacial Nanobubbles’ Growth at the Initial Stage of Electrocatalytic Hydrogen Evolution. Energy Environ. Sci. 2023, 16, 2068–2079. [Google Scholar] [CrossRef]
- Yamashita, T.; Ando, K. Aeration of Water with Oxygen Microbubbles and Its Purging Effect. J. Fluid Mech. 2017, 825, 16–28. [Google Scholar] [CrossRef]
- Giustini, G. Hydrodynamic Analysis of Liquid Microlayer Formation in Nucleate Boiling of Water. Int. J. Multiph. Flow 2024, 172, 104718. [Google Scholar] [CrossRef]
- Drake, A.; Bluck, M.; Peakman, A. Applicability of Novel Critical Heat Flux Criteria to High Pressure Subcooled Flow CFD Simulations. Int. J. Heat Mass Transf. 2025, 239, 126537. [Google Scholar] [CrossRef]
- Giustini, G.; Issa, R.I. Modelling of Free Bubble Growth with Interface Capturing Computational Fluid Dynamics. Exp. Comput. Multiph. Flow 2023, 5, 357–364. [Google Scholar] [CrossRef]
- Epstein, P.S.; Plesset, M.S. On the Stability of Gas Bubbles in Liquid-Gas Solutions. J. Chem. Phys. 1950, 18, 1505–1509. [Google Scholar] [CrossRef]
- Scriven, L.E. On the Dynamics of Phase Growth. Chem. Eng. Sci. 1995, 50, 3907–3917. [Google Scholar] [CrossRef]
- Qin, J.; Xie, T.; Zhou, D.; Luo, L.; Zhang, Z.; Shang, Z.; Li, J.; Mohapatra, L.; Yu, J.; Xu, H.; et al. Kinetic Study of Electrochemically Produced Hydrogen Bubbles on Pt Electrodes with Tailored Geometries. Nano Res. 2021, 14, 2154–2159. [Google Scholar] [CrossRef]
- Duhar, G.; Colin, C. Dynamics of Bubble Growth and Detachment in a Viscous Shear Flow. Phys. Fluids 2006, 18, 077101. [Google Scholar] [CrossRef]
- Li, Z.; Zuo, Z.; Qian, Z. Diffusion-Driven Periodic Cavitation Bubbling from a Harvey-Type Crevice in Shear Flows. Phys. Fluids 2023, 35, 102112. [Google Scholar] [CrossRef]
- Sarma, S.K.; Singh, A.; Mohan, R.; Shukla, A. Computational Fluid Dynamics Simulation of Bubble Hydrodynamics in Water Splitting: Effect of Electrolyte Inflow Velocity and Electrode Morphology on Cell Performance. Int. J. Hydrog. Energy 2023, 48, 17769–17782. [Google Scholar] [CrossRef]
- Favelukis, M.; Tadmor, Z.; Semiat, R. Bubble Growth in a Viscous Liquid in a Simple Shear Flow. AIChE J. 1999, 45, 691–695. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wang, C.; He, P.; Chen, H. Bubble Growth on Hydrophobic Rough Surfaces in the Shear Flow. Langmuir 2024, 40, 9630–9635. [Google Scholar] [CrossRef]
- Tao, Y.; Xue, R.; Wu, Q.; Wang, B.; Fang, M.; Ruan, Q.; Liu, W.; Ren, Y. Polarization—Selective Dynamic Coupling: Electrorotation—Orbital Motion of Twin Colloids in Rotating Fields. Electrophoresis 2025, in press. [CrossRef]
- Tao, Y.; Gao, Y.; Liu, Z.; Chen, Y.; Liu, W.; Yu, G.; Ren, Y. Many-Body Electrohydrodynamic Contact Dynamics in Alternating-Current Dielectrophoresis: Resolving Hierarchical Assembly of Soft Binary Colloids. Phys. Fluids 2025, 37, 082034. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, S.; Wang, S.; Zhou, X.; Shi, Y.; Zhou, X.; Gong, X.; Tao, Y.; Liu, W. A Numerical Investigation of Enhanced Microfluidic Immunoassay by Multiple-Frequency Alternating-Current Electrothermal Convection. Appl. Sci. 2025, 15, 4748. [Google Scholar] [CrossRef]
- Lavoie, P.; Avallone, G.; De Gregorio, F.; Romano, G.P.; Antonia, R.A. Spatial Resolution of PIV for the Measurement of Turbulence. Exp. Fluids 2007, 43, 39–51. [Google Scholar] [CrossRef]
- Scarano, F. Overview of PIV in Supersonic Flows. In Particle Image Velocimetry: New Developments and Recent Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 445–463. ISBN 978-3-540-73528-1. [Google Scholar]
- Yamamoto, F.; Ishikawa, M. A Review of the Recent PIV Studies—From the Basics to the Hybridization with CFD. J. Flow Control Meas. Vis. 2022, 10, 117–147. [Google Scholar] [CrossRef]
- Shingote, C.; Barghi Golezani, F.; Kharangate, C.R. Investigation of Fluid Flow during Flow Boiling inside a Horizontal Rectangular Channel with Single-Sided Heating Using Particle Image Velocimetry. Exp. Therm. Fluid Sci. 2024, 156, 111221. [Google Scholar] [CrossRef]
- Dias, I.; Reithmuller, M.L. PIV in Two-Phase Flows: Simultaneous Bubble Sizing and Liquid Velocity Measurements; Springer: Berlin/Heidelberg, Germany, 2000; pp. 71–85. [Google Scholar]
- Pakleza, J.; Duluc, M.-C.; Kowalewski, T. Experimental Investigation of Vapor Bubble Growth. In Proceedings of the International Heat Transfer Conference 12, Grenoble, France, 18–23 August 2002. [Google Scholar]
- White, F.M.; Majdalani, J. Viscous Fluid Flow; McGraw-Hill: New York, NY, USA, 2006; Volume 3. [Google Scholar]
- Frohn, A.; Roth, N. Dynamics of Droplets; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000; ISBN 3-540-65887-4. [Google Scholar]
- Subramaniam, S.; Balachandar, S. Modeling Approaches and Computational Methods for Particle-Laden Turbulent Flows; Academic Press: Cambridge, MA, USA, 2022; ISBN 978-0-323-90134-5. [Google Scholar]
- Enríquez, O.R.; Hummelink, C.; Bruggert, G.-W.; Lohse, D.; Prosperetti, A.; Van Der Meer, D.; Sun, C. Growing Bubbles in a Slightly Supersaturated Liquid Solution. Rev. Sci. Instrum. 2013, 84, 065111. [Google Scholar] [CrossRef]
- Peñas-López, P.; Soto, Á.M.; Parrales, M.A.; Van Der Meer, D.; Lohse, D.; Rodríguez-Rodríguez, J. The History Effect on Bubble Growth and Dissolution. Part 2. Experiments and Simulations of a Spherical Bubble Attached to a Horizontal Flat Plate. J. Fluid Mech. 2017, 820, 479–510. [Google Scholar] [CrossRef]
- Bird, R.B. Transport Phenomena. Appl. Mech. Rev. 2002, 55, R1–R4. [Google Scholar] [CrossRef]




| Time (s) | Bubble Radius (μm) | Bubble-Center Velocity (mm/s) | Particle Reynolds Number Re | Weber Number We | Bond Number Bo |
|---|---|---|---|---|---|
| 18.0 | 300 | 0.21 | 0.13 | 3.7 × 10−7 | 0.0123 |
| 28.4 | 390 | 0.27 | 0.21 | 7.9× 10−7 | 0.0207 |
| 38.4 | 465 | 0.34 | 0.32 | 1.5× 10−6 | 0.0295 |
| 77.3 | 640 | 0.46 | 0.59 | 3.8× 10−6 | 0.0558 |
| 91.2 | 770 | 0.49 | 0.76 | 5.1× 10−6 | 0.0808 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Ando, K. Particle Image Velocimetry Measurement of Wall Shear Flow Around a Bubble Growing in Carbonated Water. Appl. Sci. 2025, 15, 12124. https://doi.org/10.3390/app152212124
Zhang Z, Ando K. Particle Image Velocimetry Measurement of Wall Shear Flow Around a Bubble Growing in Carbonated Water. Applied Sciences. 2025; 15(22):12124. https://doi.org/10.3390/app152212124
Chicago/Turabian StyleZhang, Zhengyi, and Keita Ando. 2025. "Particle Image Velocimetry Measurement of Wall Shear Flow Around a Bubble Growing in Carbonated Water" Applied Sciences 15, no. 22: 12124. https://doi.org/10.3390/app152212124
APA StyleZhang, Z., & Ando, K. (2025). Particle Image Velocimetry Measurement of Wall Shear Flow Around a Bubble Growing in Carbonated Water. Applied Sciences, 15(22), 12124. https://doi.org/10.3390/app152212124
