Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (903)

Search Parameters:
Keywords = paddy soils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5228 KB  
Article
Iron–Manganese–Magnesium Co-Modified Biochar Reduces Arsenic Mobility and Accumulation in a Pakchoi–Rice Rotation System
by Jingnan Zhang, Meina Liang, Mushi Qiao, Qing Zhang, Xuehong Zhang and Dunqiu Wang
Toxics 2026, 14(2), 112; https://doi.org/10.3390/toxics14020112 - 24 Jan 2026
Viewed by 52
Abstract
Arsenic (As) contamination in paddy soils poses a serious risk to rice safety and human health. To mitigate this issue, we developed a low-temperature, partially pyrolyzed Fe/Mn/Mg-modified biochar (FMM-BC) and evaluated its performance and mechanisms for remediating As-contaminated soil through a pakchoi–rice rotation [...] Read more.
Arsenic (As) contamination in paddy soils poses a serious risk to rice safety and human health. To mitigate this issue, we developed a low-temperature, partially pyrolyzed Fe/Mn/Mg-modified biochar (FMM-BC) and evaluated its performance and mechanisms for remediating As-contaminated soil through a pakchoi–rice rotation pot experiment, aiming to reduce As accumulation in rice grains and pakchoi. The results indicated that FMM-BC application altered soil physicochemical properties and As speciation, reducing both water-soluble and bioavailable As and promoting its transformation from exchangeable to more stable organic-bound and residual fractions. Compared with the control, FMM-BC application reduced arsenic content in rice stems, leaves, and brown rice to 1.94 mg∙kg−1, 5.24 mg∙kg−1, and 1.21 mg∙kg−1, respectively. In contrast, unmodified biochar (BC) increased As bioavailability and plant uptake, underscoring the importance of Fe/Mn/Mg modification. FMM-BC also enhanced the translocation of Fe, Mn, and Mg within rice plants, thereby modifying internal As transport dynamics and suppressing its accumulation in aboveground tissues. Under FMM-BC treatment, arsenic content in pakchoi stems and leaves decreased to 1.19 mg∙kg−1 (vs. 1.96 mg∙kg−1 in the control), and brown rice declined to 0.27 mg∙kg−1 (vs. 1.49 mg∙kg−1 in the control)—well below the national food safety threshold (0.35 mg∙kg−1). These findings demonstrate that FMM-BC effectively stabilizes As in contaminated soils and reduces its transfer to edible plant parts, with Fe/Mn/Mg playing a key role in enhancing As immobilization and limiting its mobility within the soil–plant system. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

24 pages, 2819 KB  
Article
Long-Term Organic Fertilization Enhances Soil Fertility and Reshapes Microbial Community Structure with Decreasing Effects Across Soil Depth
by Suyao Li, Yulin Li, Xu Yan, Zhengyang Gu, Dong Xue, Kaihua Wang, Yuting Yang, Min Lv, Yujie Han, Jinbiao Li, Yanyan Lv and Anyong Hu
Microorganisms 2026, 14(1), 250; https://doi.org/10.3390/microorganisms14010250 - 21 Jan 2026
Viewed by 107
Abstract
Sustaining agricultural productivity and soil health under intensive cultivation requires a comprehensive understanding of fertilization effects, particularly on deeper soil layers, which has received limited attention compared to surface soils. This study investigated how different fertilization regimes (inorganic, organic, and combined organic–inorganic fertilizers) [...] Read more.
Sustaining agricultural productivity and soil health under intensive cultivation requires a comprehensive understanding of fertilization effects, particularly on deeper soil layers, which has received limited attention compared to surface soils. This study investigated how different fertilization regimes (inorganic, organic, and combined organic–inorganic fertilizers) influence soil physicochemical properties, microbial diversity, community structure, and functional gene abundances at three soil depths (0–20 cm, 20–40 cm, and 40–60 cm) in a 40-year fertilization experiment. Organic fertilization significantly improved topsoil fertility indicators such as soil organic matter (56.6–109.2%), total nitrogen (66.7–122.0%), total phosphorus (198.6–413.2%), and available phosphorus (984.8–1622.1%) and potassium (35.3–438.1%). Compared with the unfertilized control and nitrogen-only treatment, rice yield increased by 97.1–130.5% under NPK and sole organic fertilization, and further increased by 184.1–255.9% under combined organic–inorganic fertilization. However, fertilization effects diminished with soil depth due to limited nutrient mobility. Microbial diversity significantly decreased with depth and was minimally influenced by fertilization treatments. Microbial community structure varied notably among fertilization treatments at the surface layer, mainly driven by soil nutrients, whereas soil depth had a dominant effect on microbial community structure and compositions. Co-occurrence networks showed the highest complexity in surface soil microbial communities, which declined with soil depth, reflecting potential synergistic and mutualistic relationships in topsoil and the adaptation of microbial communities to nutrient-limited conditions in subsoil. Microbial functional gene analyses highlighted clear depth-dependent distributions, with surface layers enriched in decomposition-related genes, while deeper layers favored anaerobic processes. Overall, long-term fertilization exerted strong depth-dependent effects on soil fertility, microbial community structure, and functional potential in paddy soils. Full article
Show Figures

Figure 1

17 pages, 3091 KB  
Article
Chlorella vulgaris Enhances Soil Aggregate Stability in Rice Paddy Fields and Arable Land Through Alterations in Soil Extracellular Polymeric Substances
by Shaoqiang Huang, Xinyu Jiang, Hao Liu, Hongtao Jiang, Jiong Cheng, Heng Jiang, Shiqin Yu and Sanxiong Chen
Agronomy 2026, 16(2), 239; https://doi.org/10.3390/agronomy16020239 - 20 Jan 2026
Viewed by 87
Abstract
Microalgal amendments can improve soil structure by regulating extracellular polymeric substances (EPSs). However, the mechanisms underlying this process in red soils (characterized by high clay content and susceptibility to acidification) under different farming practices remain unclear. This study examined how Chlorella vulgaris ( [...] Read more.
Microalgal amendments can improve soil structure by regulating extracellular polymeric substances (EPSs). However, the mechanisms underlying this process in red soils (characterized by high clay content and susceptibility to acidification) under different farming practices remain unclear. This study examined how Chlorella vulgaris (C. vulgaris) amendment influences EPS composition to enhance soil aggregate stability under arable land and rice paddy farming. A five-month pot experiment using a completely randomized design was conducted to investigate the effects of Chlorella vulgaris amendment on soils cultivated with Pennisetum × sinese and rice, two economically important crops commonly grown in South China. At the end of the experiment, Chlorella vulgaris amendment substantially increased both the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates under both farming systems. Excitation–emission matrix (EEM) fluorescence spectroscopy revealed distinct changes in soil EPS components between the two farming types. Under arable land farming, humic-like and protein-like EPSs were dominant in Chlorella vulgaris-amended treatments, with fluorescence intensities more than doubling compared to the control. Conversely, under rice paddy farming, soil fulvic acid was the main component and showed a moderate increase. Partial least squares path modeling (PLS-PM) demonstrated that protein-like and humic-like EPSs had the strongest direct effects on aggregate stability in arable land red soil, while fulvic acid was the key factor in rice paddy red soil. The present study demonstrates that Chlorella vulgaris amendment improves aggregate stability in red soils through farming-specific, EPS-mediated pathways, providing a quantitative framework for researchers and land managers seeking to apply microalgal amendments for red soil enhancement and sustainable land management. Full article
Show Figures

Figure 1

21 pages, 7451 KB  
Article
Distinct Pathways of Cadmium Immobilization as Affected by Wheat Straw- and Soybean Meal-Mediated Reductive Soil Disinfestation
by Tengqi Xu, Jingyi Mei, Cui Li, Lijun Hou, Kun Wang, Risheng Xu, Xiaomeng Wei, Jingwei Zhang, Jianxiao Song, Zuoqiang Yuan, Xiaohong Tian and Yanlong Chen
Agriculture 2026, 16(2), 242; https://doi.org/10.3390/agriculture16020242 - 17 Jan 2026
Viewed by 173
Abstract
Both organic matter and iron oxide (FeO) dynamics pose key roles in soil cadmium (Cd) bioavailability. However, the microbially driven transformation of soil organic matter and FeO and their linkages to Cd fractions remain unclear under reductive soil disinfestation (RSD) with different organic [...] Read more.
Both organic matter and iron oxide (FeO) dynamics pose key roles in soil cadmium (Cd) bioavailability. However, the microbially driven transformation of soil organic matter and FeO and their linkages to Cd fractions remain unclear under reductive soil disinfestation (RSD) with different organic sources, which limits our mechanistic understanding of Cd immobilization by RSD. To address this gap, we conducted a 45 day microcosm experiment using a paddy soil contaminated with 22.8 mg/kg Cd. Six treatments were established: untreated control (CK), waterlogged (WF), and RSD-amended soils with 0.7% or 2.1% wheat straw (LWD, HWD) or soybean meal (LSD, HSD). We systematically assessed soil Cd fractionation, organic carbon and FeO concentrations, and bacterial community structure, aiming to clarify differences in Cd immobilization efficiency and the underlying mechanisms between wheat straw and soybean meal. For strongly extractable Cd, wheat straw RSD reduced the soil Cd concentrations from 6.02 mg/kg to 4.32 mg/kg (28.2%), whereas soybean meal RSD achieved a maximum reduction to 2.26 mg/kg (62.5%). Additionally, the soil mobility factor of Cd decreased from 44.6% (CK) to 39.2% (HWD) and 32.5% (HSD), while the distribution index increased from 58.5% (CK) to 62.2% (HWD) and 66.8% (HSD). Notably, the HWD treatment increased soil total organic carbon, humus, and humic acid concentrations by 34.8%, 24.6%, and 28.3%, respectively. Regarding amorphous FeO, their concentrations increased by 19.1% and 33.3% relative to CK. RSD treatments significantly altered soil C/N ratios (5.91–12.5). The higher C/N ratios associated with wheat straw stimulated r-strategist bacteria (e.g., Firmicutes, Bacteroidetes), which promoted carbohydrate degradation and fermentation, thereby enhancing the accumulation of humic substances. In contrast, the lower C/N ratios of soybean meal increased dissolved organic carbon and activated iron-reducing bacteria (FeRB; e.g., Anaeromyxobacter, Clostridium), driving iron reduction and amorphous iron oxide formation. PLS-PM analysis confirmed that wheat straw RSD immobilized Cd primarily through humification, whereas soybean meal RSD relied on FeRB-mediated FeO amorphization. These findings suggest that Cd immobilization in soil under RSD may be regulated by microbially mediated organic matter transformation and iron oxide dynamics, which was affected by organic materials of different C/N ratios. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

34 pages, 1840 KB  
Article
Contribution of Biological Nitrogen Fixation and Ratoon Rice Growth to Paddy Soil Fertility: Analyses via Field Monitoring and Modeling
by Tamon Fumoto, Satoshi Kumagai, Yu Okashita, Norimasa Tanikawa, Masaya Kuribayashi, Ryotaro Hirose, Hiroyuki Hasukawa, Rie Kusuda, Keisuke Ono, Nobuko Katayanagi and Yusuke Takata
Agriculture 2026, 16(2), 239; https://doi.org/10.3390/agriculture16020239 - 17 Jan 2026
Viewed by 171
Abstract
Biological N2 fixation (BNF) and ratoon rice growth are biological processes that mediate N and C cycling in rice paddy ecosystems, but their contributions to paddy soil fertility have rarely been evaluated in a quantitative and unified manner. In this study, we [...] Read more.
Biological N2 fixation (BNF) and ratoon rice growth are biological processes that mediate N and C cycling in rice paddy ecosystems, but their contributions to paddy soil fertility have rarely been evaluated in a quantitative and unified manner. In this study, we analyzed the contribution of BNF and ratoon rice growth to soil N fertility at six rice paddy sites in four prefectures of Japan, combining 2-year field monitoring and simulation using the DNDC-Rice biogeochemistry model. Across the sites and years, ratoon rice was found to accumulate up to 30 kg N ha−1 without fertilization and irrigation after main rice harvest. BNF was not measured but estimated to be 33–63 kg N ha−1 yr−1 at the six sites, by applying a newly built BNF model after calibration against a literature dataset. Based on the simulations using DNDC-Rice under typical local management strategies, we estimated the following contributions of BNF and ratoon rice to soil N fertility, with variations based on the climate, soil properties, and management, as follows: (a) BNF and ratoon rice contributed 4–33% and 3–23% of the N supply from soil during the main rice season, respectively. (b) While BNF contributed 3–29% of the main rice N uptake, that from ratoon rice was much lower (6% or less), presumably because the decomposition of ratoon rice residue induced N immobilization during the main rice season. (c) Although the major part of N gain by BNF was being lost via denitrification and N leaching, BNF was contributing up to 6.6% of the organic N pool at the 0–30 cm soil layer. Ratoon rice was working to save N loss by reducing N leaching, consequently contributing up to 3.3% of the soil N pool. These findings provide quantitative insights into what roles BNF and ratoon rice play in paddy soil fertility. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

19 pages, 3754 KB  
Article
Raised Seedbed Cultivation with Annual Rice–Spring Crop Utilization Enhances Crop Yields and Reshapes Methane Functional Microbiome Assembly and Interaction Networks
by Xuewei Yin, Xinyu Chen, Lelin You, Xiaochun Zhang, Ling Wei, Zifang Wang, Wencai Dai and Ming Gao
Agronomy 2026, 16(2), 223; https://doi.org/10.3390/agronomy16020223 - 16 Jan 2026
Viewed by 335
Abstract
Tillage and crop rotation alter soil environments, thereby influencing both crop yields and methane-cycling microbiomes, yet their combined effects on microbial diversity, assembly, and interaction networks remain unclear. Using a two-factor field experiment, we assessed the impacts of raised seedbed vs. flat cultivation [...] Read more.
Tillage and crop rotation alter soil environments, thereby influencing both crop yields and methane-cycling microbiomes, yet their combined effects on microbial diversity, assembly, and interaction networks remain unclear. Using a two-factor field experiment, we assessed the impacts of raised seedbed vs. flat cultivation and rice–oilseed rape vs. rice–faba bean rotations on crop productivity and the ecology of methanogen (mcrA) and methanotroph (pmoA) communities. Raised seedbed cultivation significantly increased yields: rice yields were 7.6–9.6% higher in 2020 and 4.7–5.8% higher in 2021 than under flat cultivation (p < 0.05). Faba bean and oilseed rape yields were also improved. Flat rice–bean plots developed more reduced conditions and higher organic matter, with a higher NCM goodness-of-fit for methanogens (R2 = 0.466), indicating patterns more consistent with neutral (stochastic) assembly, whereas the lower fit for methanotrophs (R2 = 0.269) suggests weaker neutrality and stronger environmental filtering, accompanied by reduced richness and network complexity. In contrast, raised seedbed rice–oilseed rape plots improved redox potential and nutrient availability, sustaining both mcrA and pmoA diversity and fostering synergistic interactions, thereby enhancing community stability and indicating a potential for methane-cycle regulation. Overall, raised seedbed cultivation combined with legume rotation offers yield benefits and ecological advantages, providing a sustainable pathway for paddy management with potentially lower greenhouse gas risks. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 2038 KB  
Article
Path Tracking Control of Rice Transplanter Based on Fuzzy Sliding Mode and Extended Line-of-Sight Guidance Method
by Qi Song, Jiahai Shi, Xubo Li, Dongdong Du, Anzhe Wang, Xinyu Cui and Xinhua Wei
Agronomy 2026, 16(2), 215; https://doi.org/10.3390/agronomy16020215 - 15 Jan 2026
Viewed by 179
Abstract
With the rapid development of unmanned agricultural machinery technology, the accuracy and stability of agricultural machinery path tracking have become key challenges in achieving precision agriculture. To address the issues of insufficient accuracy and stability in path tracking for rice transplanters in paddy [...] Read more.
With the rapid development of unmanned agricultural machinery technology, the accuracy and stability of agricultural machinery path tracking have become key challenges in achieving precision agriculture. To address the issues of insufficient accuracy and stability in path tracking for rice transplanters in paddy fields, this study proposes a composite control strategy that integrates the extended line-of-sight (LOS) guidance law with an adaptive fuzzy sliding mode control law. By establishing a two degree of freedom dynamic model of the rice transplanter, two extended state observers are designed to estimate the longitudinal and lateral velocities of the rice transplanter in real time. A dynamic compensation mechanism for the sideslip angle is introduced, significantly enhancing the adaptability of the traditional look-ahead guidance law to soil slippage. Furthermore, by combining the approximation capability of fuzzy systems with the adaptive adjustment method of sliding mode control gains, a front wheel steering control law is designed to suppress complex environmental disturbances. The global stability of the closed-loop system is rigorously verified using the Lyapunov theory. Simulation results show that compared to the traditional Stanley algorithm, the proposed method reduces the maximum lateral error by 38.3%, shortens the online time by 23.9%, and decreases the steady-state error by 15.5% in straight-line path tracking. In curved path tracking, the lateral and heading steady-state errors are reduced by 19.2% and 14.6%, respectively. Field experiments validate the effectiveness of this method in paddy fields, with the absolute lateral error stably controlled within 0.1 m, an average error of 0.04 m, and a variance of 0.0027 m2. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

17 pages, 2735 KB  
Article
Modeling Soil Salinity Dynamics in Paddy Fields Under Long-Term Return Flow Irrigation in the Yinbei Irrigation District
by Hangyu Guo, Chao Shi, Alimu Abulaiti, Hongde Wang and Xiaoqin Sun
Agriculture 2026, 16(2), 222; https://doi.org/10.3390/agriculture16020222 - 15 Jan 2026
Viewed by 152
Abstract
The imbalance between water supply and demand in the arid and semi-arid regions of northwest China has become increasingly severe, highlighting the urgent need to develop and utilize unconventional water resources. Return flow, originating from canal leakage and field drainage, is widely distributed [...] Read more.
The imbalance between water supply and demand in the arid and semi-arid regions of northwest China has become increasingly severe, highlighting the urgent need to develop and utilize unconventional water resources. Return flow, originating from canal leakage and field drainage, is widely distributed in these regions. However, as it contains a certain amount of salts, long-term use of return flow can lead to soil salinization and degradation of soil structure. Therefore, the scientific utilization of return flow has become a key issue for achieving sustainable agricultural development and efficient water use in arid areas. This study was conducted in the Yinbei Irrigation District, Ningxia, northwest China. Water samples were collected from the main and branch drainage ditches and analyzed to evaluate the feasibility of using return flow irrigation in the area. In addition, based on two years of continuous field monitoring and HYDRUS model simulations, the long-term dynamics of soil salinity under moderate return flow irrigation over the next 20 years were predicted. The results show that the total salinity of the main return ditches consistently remained below the agricultural irrigation water quality standard of 2000 mg/L, with Na+ and SO42− as the predominant ions. Seasonal variations in return flow salinity were notable, with higher levels observed in spring compared to summer. Simulation results based on field trial data indicated that soil salinity displayed regular seasonal fluctuations. During the rice-growing season, strong leaching kept the salinity in the plough layer (0–40 cm) low. However, after irrigation ceased, evaporation in autumn and winter led to an increase in surface soil salinity, creating annual peaks. Long-term simulations showed that soil salinity throughout the entire profile (0–100 cm) followed a pattern of “slight increase—gradual decrease—dynamic stability.” Specifically, winter salinity peaks slightly increased during the first two years but then gradually declined, stabilizing after approximately 15 years. This indicates that long-term return-flow irrigation does not result in the accumulation of soil salinity in the plough layer. Full article
Show Figures

Figure 1

22 pages, 1873 KB  
Review
Electron Transfer-Mediated Heavy Metal(loid) Bioavailability, Rice Accumulation, and Mitigation in Paddy Ecosystems: A Critical Review
by Zheng-Xian Cao, Zhuo-Qi Tian, Hui Guan, Yu-Wei Lv, Sheng-Nan Zhang, Tao Song, Guang-Yu Wu, Fu-Yuan Zhu and Hui Huang
Agriculture 2026, 16(2), 202; https://doi.org/10.3390/agriculture16020202 - 13 Jan 2026
Viewed by 209
Abstract
Electron transfer (ET) is a foundational biogeochemical process in paddy soils, distinctively molded by alternating anaerobic-aerobic conditions from flooding-drainage cycles. Despite extensive research on heavy metal(loid) (denoted as “HM”, e.g., As, Cd, Cr, Hg) dynamics in paddies, ET has not been systematically synthesized [...] Read more.
Electron transfer (ET) is a foundational biogeochemical process in paddy soils, distinctively molded by alternating anaerobic-aerobic conditions from flooding-drainage cycles. Despite extensive research on heavy metal(loid) (denoted as “HM”, e.g., As, Cd, Cr, Hg) dynamics in paddies, ET has not been systematically synthesized as a unifying regulatory mechanism, and the trade-offs of ET-based mitigation strategies remain unclear. These critical gaps have drastically controlled HMs’ mobility, which further modulates bioavailability and subsequent accumulation in rice (Oryza sativa L., a staple sustaining half the global population), posing substantial food safety risks. Alongside progress in electroactive microorganism (EAM) research, extracellular electron transfer (EET) mechanism delineation, and soil electrochemical monitoring, ET’s role in orchestrating paddy soil HM dynamics has garnered unparalleled attention. This review explicitly focuses on the linkage between ET processes and HM biogeochemistry in paddy ecosystems: (1) elucidates core ET mechanisms in paddy soils (microbial EET, Fe/Mn/S redox cycling, organic matter-mediated electron shuttling, rice root-associated electron exchange) and their acclimation to flooded conditions; (2) systematically unravels how ET drives HM valence transformation (e.g., As(V) to As(III), Cr(VI) to Cr(III)), speciation shifts (e.g., exchangeable Cd to oxide-bound Cd), and mobility changes; (3) expounds on ET-regulated HM bioavailability by modulating soil retention capacity and iron plaque formation; (4) synopsizes ET-modulated HM accumulation pathways in rice (root uptake, xylem/phloem translocation, grain sequestration); (5) evaluates key factors (water management, fertilization, straw return) impacting ET efficiency and associated HM risks. Ultimately, we put forward future avenues for ET-based mitigation strategies to uphold rice safety and paddy soil sustainability. Full article
Show Figures

Figure 1

24 pages, 1515 KB  
Article
Prediction Models for Non-Destructive Identification of Compacted Soil Layers Based on Electrical Conductivity and Moisture Content
by Hasan Mirzakhaninafchi, Ahmet Celik, Roaf Parray and Abir Mohammad Hadi
Agriculture 2026, 16(2), 197; https://doi.org/10.3390/agriculture16020197 - 13 Jan 2026
Viewed by 321
Abstract
Crop root development, and in turn crop growth, is strongly influenced by soil strength and the mechanical impedance of compacted layers, which restrict root elongation and exploration. Because the depth and thickness of compacted layers vary across a field, their identification is essential [...] Read more.
Crop root development, and in turn crop growth, is strongly influenced by soil strength and the mechanical impedance of compacted layers, which restrict root elongation and exploration. Because the depth and thickness of compacted layers vary across a field, their identification is essential for site-specific tillage and sustainable root-zone management. A sensing approach that can support future real-time identification of compacted layers after soil-specific calibration, which would enable variable-depth tillage, reducing mechanical impedance and improving energy-use efficiency while maintaining crop yields. This study aimed to develop and evaluate prediction models that can support future real-time identification of compacted soil layers using soil electrical conductivity (EC) and moisture content as non-destructive indicators. A sandy clay soil (48.6% sand, 29.3% clay, 22.1% silt) was tested in a soil-bin laboratory under controlled conditions at three moisture levels (13, 18, and 22% db.) and six depth layers (C1–C6, 0–30 cm) identified from the penetration-resistance profile to measure penetration resistance, shear resistance, and EC. Penetration and shear resistance increased toward the most resistant depth layer and decreased with increasing moisture content, whereas EC generally increased with both depth layer and moisture content. Linear regression models relating penetration resistance (R2=0.893) and shear resistance (R2=0.782) to EC and moisture content were developed and evaluated. Field validation in a paddy field of similar texture showed that predicted penetration resistance differed from measured values by 3–6% across the three compaction treatments evaluated. Root length density and root volume decreased with increasing machine-induced compaction, confirming the agronomic relevance of the modeled patterns and supporting the suitability of the proposed indicators. Together, these results demonstrate that EC and moisture content can potentially be used as non-destructive proxies for compacted-layer identification and provide a calibration basis for future on-the-go sensing systems to support site-specific, variable-depth tillage in agricultural fields. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 2260 KB  
Article
From Waste to Wealth: Integrating Fecal Sludge-Based Co-Compost with Chemical Fertilizer to Enhance Nutrient Status and Carbon Storage in Paddy Soils
by Sabina Yeasmin, Md. Sabbir Hosen, Zaren Subah Betto, Md. Kutub Uddin, Md. Parvez Anwar, Md. Masud Rana, A. K. M. Mominul Islam, Tahsina Sharmin Hoque and Sirinapa Chungopast
Nitrogen 2026, 7(1), 10; https://doi.org/10.3390/nitrogen7010010 - 7 Jan 2026
Viewed by 306
Abstract
This study evaluated the effects of applying fecal sludge-based co-compost (CC) integrated with chemical fertilizers on soil nutrient status, organic carbon (OC) storage, and economic returns in paddy soils. Ten integrated nutrient management (INM) treatments were tested, i.e., BRRI recommended dose of fertilizer [...] Read more.
This study evaluated the effects of applying fecal sludge-based co-compost (CC) integrated with chemical fertilizers on soil nutrient status, organic carbon (OC) storage, and economic returns in paddy soils. Ten integrated nutrient management (INM) treatments were tested, i.e., BRRI recommended dose of fertilizer (RDF), CC 5.0 t ha−1, RDF + CC 2.0 t ha−1, RDF + CC 1.5 t ha−1, RDF + CC 1.0 t ha−1, RDF + CC 0.5 t ha−1, 75% RDF + CC 2.0 t ha−1, 75% RDF + CC 1.5 t ha−1, 75% RDF + CC 1.0 t ha−1, and 75% RDF + CC 0.5 t ha−1. Two rice varieties were cultivated over two consecutive seasons—winter rice (boro) and monsoon rice (aman)—in the experimental field. Soil samples (0–15 cm) were collected before and after the seasons and fractionated into labile particulate organic matter (>53 µm) and stable mineral-associated organic matter (<53 µm). Bulk soils and CC were analyzed for OC, nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and heavy metals, while the fractions were analyzed for OC and N. Across both seasons, 75% RDF combined with 2.0 t ha−1 or 1.5 t ha−1 of CC consistently showed the highest OC, total N, and soil C stock, with moderate P, K, and S levels. Sole RDF produced the lowest OC and N. Among fractions, stable OC was the highest in the 75% RDF + 2.0 t ha−1 CC treatment, statistically similar to 75% RDF + 1.5 t ha−1 CC, and the lowest under RDF alone. Economically, sole RDF yielded the highest profit, while full RDF + CC achieved competitive returns. Reduced RDF + CC treatments (75% RDF + 1.5 or 2.0 t ha−1 CC) offered slightly lower returns but improved soil sustainability indicators. Overall, applying 75% RDF + 1.5 t ha−1 CC provided the most cost-effective balance of nutrient enrichment, soil C stock, and profitability. This CC-based INM approach reduces chemical fertilizer dependency, enhances soil health, and promotes sustainable waste management, supporting environmentally resilient rice production. Full article
(This article belongs to the Special Issue Nitrogen Uptake and Loss in Agroecosystems)
Show Figures

Figure 1

32 pages, 8817 KB  
Article
Geospatial Assessment and Modeling of Water–Energy–Food Nexus Optimization for Sustainable Paddy Cultivation in the Dry Zone of Sri Lanka: A Case Study in the North Central Province
by Awanthi Udeshika Iddawela, Jeong-Woo Son, Yeon-Kyu Sonn and Seung-Oh Hur
Water 2026, 18(2), 152; https://doi.org/10.3390/w18020152 - 6 Jan 2026
Viewed by 456
Abstract
This study presents a geospatial assessment and modeling of the water–energy–food (WEF) nexus to enrich the sustainable paddy cultivation of the North Central Province (NCP) of Sri Lanka in the Dry Zone. Increasing climatic variability and limited resources have raised concerns about the [...] Read more.
This study presents a geospatial assessment and modeling of the water–energy–food (WEF) nexus to enrich the sustainable paddy cultivation of the North Central Province (NCP) of Sri Lanka in the Dry Zone. Increasing climatic variability and limited resources have raised concerns about the need for efficient resource management to restore food security globally. The study analyzed the three components of the WEF nexus for their synergies and trade-offs using GIS and remote sensing applications. The food productivity potential was derived using the Normalized Difference Vegetation Index (NDVI), Soil Organic Carbon (SOC), soil type, and land use, whereas water availability was assessed using the Normalized Difference Water Index (NDWI), Soil Moisture Index (SMI), and rainfall data. Energy potential was mapped using WorldClim 2.1 datasets on solar radiation and wind speed and the proximity to the national grid. Scenario modeling was conducted through raster overlay analysis to identify zones of WEF constraints and synergies such as low food–low water areas and high energy–low productivity areas. To ensure the accuracy of the created model, Pearson correlation analysis was used to internally validate between hotspot layers (representing extracted data) and scenario layers (representing modeled outputs). The results revealed a strong positive correlation (r = 0.737), a moderate positive correlation for energy (r = 0.582), and a positive correlation for food (r = 0.273). Those values were statistically significant at p > 0.001. These results confirm the internal validity and accuracy of the model. This study further calculated the total greenhouse gas (GHG) emissions from paddy cultivation in NCP as 1,070,800 tCO2eq yr−1, which results in an emission intensity of 5.35 tCO2eq ha−1 yr−1, with CH4 contributing around 89% and N2O 11%. This highlights the importance of sustainable cultivation in mitigating agricultural emissions that contribute to climate change. Overall, this study demonstrates a robust framework for identifying areas of resource stress or potential synergy under the WEF nexus for policy implementation, to promote climate resilience and sustainable paddy cultivation, to enhance the food security of the country. This model can be adapted to implement similar research work in the future as well. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

16 pages, 2620 KB  
Article
Estimation of Effective Cation Exchange Capacity and Exchangeable Iron in Paddy Fields After Soil Flooding
by Ledemar Carlos Vahl, Roberto Carlos Doring Wolter, Antônio Costa de Oliveira, Filipe Selau Carlos, Robson Bosa dos Reis and Rogério Oliveira de Sousa
Soil Syst. 2026, 10(1), 7; https://doi.org/10.3390/soilsystems10010007 - 31 Dec 2025
Viewed by 219
Abstract
In flooded soils, the concentrations of exchangeable Mn2+ and, especially, Fe2+ can be high and must be considered when determining the cation exchange capacity (CEC) of the soil under flooded conditions. However, these reduced forms of Mn and Fe are oxidized [...] Read more.
In flooded soils, the concentrations of exchangeable Mn2+ and, especially, Fe2+ can be high and must be considered when determining the cation exchange capacity (CEC) of the soil under flooded conditions. However, these reduced forms of Mn and Fe are oxidized and precipitated during the extraction process used in traditional CEC methods. This procedure underestimates the exchangeable portion of these cations and, consequently, the CEC value of the flooded soil. We introduce a pH-gradient-based model to predict ECEC and exchangeable Fe2+ in flooded soils, circumventing oxidation artifacts inherent in conventional methods. The objective of this study is to propose an alternative to estimate the exchangeable Fe2+ and the effective CEC (ECEC) of flooded soils. To achieve this goal, 21 surface samples (0–20 cm) of soil from rice fields were collected and distributed in the cultivation regions of southern Brazil. The soils were flooded for 50 days. The soil solution was collected on the first day and after 50 days of flooding and pH, Na, K, Ca, Mg, Fe and Mn were determined. In these samples, exchangeable cations (K, Na, Ca, Mg, Mn, Al and H + Al) were determined to calculate ECEC and CEC at pH 7 of unflooded soil and after 50 days of flooding. There was a wide range of variation in the exchangeable cation contents among the soil samples. The K contents ranged from 0.12 to 0.54 cmolc kg−1, the Na contents from 0.00 to 1.18 cmolc kg−1, the Ca contents from 0.48 to 37.31 cmolc kg−1, the Mg contents from 0.10 to 15.53 cmolc kg−1, the Mn contents from 0.01 to 0.36 cmolc kg−1, the Al contents from 0.10 to 1.74 cmolc kg−1 and the H + Al contents from 2.01 to 8.42 cmolc kg−1. The results were used to develop models to predict ECEC and exchangeable Fe content after 50 days of flooding. Estimating the ECEC after flooding using the pH gradient before and after flooding yielded values closer to CEC pH 7.0, correcting for the possible underestimation of the ECEC during flooding. The amount of exchangeable Fe estimated was higher than the exchangeable Fe determined, correcting the possible underestimation of these quantities determined during flooding. It is concluded that the estimations of ECEC after flooding through the equation ECECafter=ECEC+pHsol.after pHsol.before × (CECpH7 ECEC)(7 pHsol.before), where pHsol.before is pre-flooding soil pH, pHsol.after is after flooding pH, ECECafter is effective CEC after flooding and the exchangeable Fe2+ after flooding through the equation Feexc.after.estimated=ECECafter Ca+Mg+K+Na+Mn where Feexc.after.estimated is estimated exchangeable Fe2+ after flooding corrected the problem of underestimating the values of these variables by analytical methods, demonstrating its viability for use in flood-prone soils. Full article
Show Figures

Figure 1

20 pages, 8059 KB  
Article
Shifts in Fertilization Regime Alter Carbon Cycling in Paddy Soils: Linking the Roles of Microbial Community, Functional Genes, and Physicochemical Properties
by Yuxin Wang, Qinghong Gao, Tao Wang, Geng Sun and San’an Nie
Agronomy 2026, 16(1), 104; https://doi.org/10.3390/agronomy16010104 - 31 Dec 2025
Viewed by 368
Abstract
Fertilization regimes impact the carbon cycle processes in paddy soils. However, the effects of shifting fertilization regimes on the structure of microbial communities and functional genes involved in soil carbon (C)-cycling remain unclear. A long-term field experiment was established with three paired fertilization [...] Read more.
Fertilization regimes impact the carbon cycle processes in paddy soils. However, the effects of shifting fertilization regimes on the structure of microbial communities and functional genes involved in soil carbon (C)-cycling remain unclear. A long-term field experiment was established with three paired fertilization shift treatments: chemical fertilizer (CF) and CF to normal-rate organic fertilizer (CF-NOM); normal-rate organic fertilizer (NOM) and NOM to CF (NOM-CF); high-rate organic fertilizer (HOM) and HOM to CF (HOM-CF). Metagenomic sequencing and bioinformatics analysis were employed to investigate the effects of fertilization shifts on soil C-cycling microbial community structure, functional genes, and environmental factors. The results showed that compared to CF treatment, CF-NOM significantly increased soil organic carbon (SOC), mineral-associated organic carbon (MAOC), particulate organic carbon (POC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and the emissions of CO2 and CH4 (p < 0.05). The NOM-CF led to significant reductions in MAOC, MBC, DOC, and CO2 and CH4 emissions. The HOM-CF shift caused significant decreases in SOC, MAOC, POC, MBC, DOC, and CO2 and CH4 emissions. Fertilization shifts had no significant effect on the α-diversity of C-cycling microbial communities (p > 0.05), but β-diversity showed a significant restructuring of community composition. Network analysis indicated that fertilization shifts increased positive microbial correlations while reducing network modularity. C-cycling functional genes responded sensitively to fertilization disturbances, especially key genes in the carbon fixation pathway (cdhDE, cooS). Redundancy analysis indicated that soil bulk density (BD) and POC are key environmental factors regulating functional differences in carbon metabolism, which collectively influenced microbial community structure and functional gene abundance along with other factors. We concluded that the C-cycling process in paddy soil was greatly altered by shifts in fertilization regimes, influenced by microbial diversity, functional genes, and network structure linked to soil characteristics. Full article
(This article belongs to the Special Issue Soil Microbial Functions Affecting Soil Carbon Cycling)
Show Figures

Figure 1

18 pages, 6719 KB  
Article
Effect of Zinc Application on Maize Dry Matter, Zinc Uptake, and Soil Microbial Community Grown Under Different Paddy Soil pH
by Phanuphong Khongchiu, Jun Murase, Arunee Wongkaew, Kannika Sajjaphan, Orawan Kumdee, Apidet Rakpenthai and Sutkhet Nakasathien
Agronomy 2026, 16(1), 78; https://doi.org/10.3390/agronomy16010078 - 26 Dec 2025
Viewed by 349
Abstract
Zinc (Zn) is often of deficient in paddy soils, and optimizing its application is crucial for improving maize productivity in intensive rice–maize cropping systems. This study aimed to develop practical Zn fertilizer strategies suitable for paddy soils with varying pH levels, thereby improving [...] Read more.
Zinc (Zn) is often of deficient in paddy soils, and optimizing its application is crucial for improving maize productivity in intensive rice–maize cropping systems. This study aimed to develop practical Zn fertilizer strategies suitable for paddy soils with varying pH levels, thereby improving nutrient management and understanding of soil microbial responses. Field experiments were conducted during the 2020–2021 dry seasons at three sites: Chon Daen (pH 5.8), Noen Maprang (pH 6.7), and Lom Sak (pH 7.8). A two-factorial randomized complete block design with four replications was used, including four ZnSO4·H2O rates (0, 1.5, 3, and 6 times the DTPA-extractable Zn in soil) and two hybrid maize varieties, Suwan 5731 and Suwan 5819. Results showed that at Chon Daen, Zn application significantly enhanced shoot Zn uptake and soil Zn concentration, with SW5819 exhibiting greater Zn efficiency and biomass production. At Noen Maprang, Zn application did not significantly affect dry matter, while, at Lom Sak, Zn responses were moderate, though SW5819 maintained better growth and Zn uptake. Across sites, maize Zn efficiency was highest under acidic conditions and in SW5819. Soil microbial communities remained largely unaffected by Zn fertilization and were primarily influenced by soil pH, with Proteobacteria, Crenarchaeota, and Ascomycota dominating bacterial, archaeal, and fungal groups, respectively. These findings support the feasibility of Zn fertilization strategies to enhance both crop productivity and nutritional quality without altering the microbial community composition. Full article
Show Figures

Figure 1

Back to TopTop