Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,524)

Search Parameters:
Keywords = p38 MAPK

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4939 KiB  
Article
Distinct Effects of PFOS and OBS on Neurotoxicity via PMK-1 Mediated Pathway in Caenorhabditis elegans
by Jiahong Jiang, Qi Liu, Boxiang Zhang, Lei Zhao and Dan Xu
Toxics 2025, 13(8), 662; https://doi.org/10.3390/toxics13080662 - 6 Aug 2025
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) has been proposed as a substitute for perfluorooctanesulfonic acid (PFOS), yet it has garnered increasing attention due to its environmental persistence and potential toxicity. Despite these concerns, the neurotoxic mechanisms of OBS remain unclear. This study investigates and compares [...] Read more.
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) has been proposed as a substitute for perfluorooctanesulfonic acid (PFOS), yet it has garnered increasing attention due to its environmental persistence and potential toxicity. Despite these concerns, the neurotoxic mechanisms of OBS remain unclear. This study investigates and compares the neurotoxic effects and mechanisms of OBS and PFOS in Caenorhabditis elegans. L4-stage worms were exposed to OBS (0.1–100 μM) or PFOS (100 μM) for 24 h. Neurobehavioral analysis showed that OBS exposure induced concentration-dependent neurobehavioral deficits, with 100 μM OBS significantly reducing pharyngeal pumping rate (29.8%), head swing frequency (23.4%), and body bending frequency (46.6%), surpassing the effects of PFOS. Both compounds decreased the fluorescence intensity of dopaminergic, glutamatergic, and γ-aminobutyric acid neurons and downregulated neurotransmitter-associated genes. They also increased ROS generation and inhibited antioxidant gene expression. Molecular docking revealed that OBS had a stronger binding affinity to p38 MAPK key protein (PMK-1) than PFOS. OBS and PFOS upregulated pmk-1 and skn-1, modulating oxidative stress and neuronal function. pmk-1 mutation differentially affected OBS-induced neurobehavioral changes and gene expression alterations. Our findings indicate that OBS exhibits stronger neurotoxicity than PFOS in Caenorhabditis elegans, mediated through the PMK-1 pathway. These results highlight the need for further investigation into the safety of OBS as a PFOS alternative. Full article
(This article belongs to the Special Issue Molecular Mechanisms of PFAS-Induced Toxicity and Carcinogenicity)
Show Figures

Figure 1

19 pages, 1628 KiB  
Review
The Role of Non-Coding RNAs in the Regulation of Oncogenic Pathways in Breast and Gynaecological Cancers
by Ammar Ansari, Aleksandra Szczesnowska, Natalia Haddad, Ahmed Elbediwy and Nadine Wehida
Non-Coding RNA 2025, 11(4), 61; https://doi.org/10.3390/ncrna11040061 - 6 Aug 2025
Abstract
Female cancers such as breast and gynaecological cancers contribute to a significant global health burden and are a leading cause of fatality among women. With current treatment options often limited by resistance to cytotoxic drugs, side effects and lack of specificity to the [...] Read more.
Female cancers such as breast and gynaecological cancers contribute to a significant global health burden and are a leading cause of fatality among women. With current treatment options often limited by resistance to cytotoxic drugs, side effects and lack of specificity to the cancer, there is a pressing need for alternative treatments. Recent research has highlighted the promising role of non-coding RNAs (ncRNA) in regulating these issues and providing more targeted approaches to suppressing key cancer pathways. This review explores the involvement of the various types of non-coding RNAs in regulating key oncogenic pathways, namely, the MAPK, PI3K/Akt/mTOR, Wnt/β-catenin and p53 pathways, in a range of female cancers such as breast, cervical, ovarian and endometrial cancers. Evidence from a multitude of studies suggests that non-coding RNAs function as double-edged swords, serving as both oncogenes and tumour suppressors, depending on their expression and cellular interactions. By mapping and investigating these regulatory interactions, this review demonstrates the complexity and dual functionality of ncRNAs in cancer. Understanding these complex mechanisms is essential for the development of new and effective ncRNA-based diagnostic methods and targeted therapies in female cancer treatment. Full article
Show Figures

Figure 1

13 pages, 3032 KiB  
Article
Combined Bioinformatic and Experimental Approaches to Analyze miR-182-3p and miR-24-3p Expression and Their Target Genes in Gestational Diabetes Mellitus and Iron Deficiency Anemia During Pregnancy
by Badr Alzahrani, Bisma Rauff, Aqsa Ikram and Mariya Azam
Curr. Issues Mol. Biol. 2025, 47(8), 610; https://doi.org/10.3390/cimb47080610 - 2 Aug 2025
Viewed by 153
Abstract
Gestational diabetes mellitus (GDM) and iron deficiency anemia (IDA) are the most common pregnancy-related conditions resulting in adverse maternal and fetal complications. MicroRNAs (miRNAs), particularly miR-182-3p and miR-24-3p, are promising biomarkers as they act as regulatory elements in various diseases; however, their roles [...] Read more.
Gestational diabetes mellitus (GDM) and iron deficiency anemia (IDA) are the most common pregnancy-related conditions resulting in adverse maternal and fetal complications. MicroRNAs (miRNAs), particularly miR-182-3p and miR-24-3p, are promising biomarkers as they act as regulatory elements in various diseases; however, their roles in GDM and IDA are unclear. The present study aimed to analyze the expression and functional relevance of miR-182-3p and miR-24-3p in GDM and IDA. Experimental validation via RT-PCR revealed significant upregulation of both miRNAs in GDM and IDA samples. We identified common target genes and signaling pathways associated with these miRNAs, using a combination of data mining, bioinformatic tools (miRDB, TargetScan, miRTarBase, and miRWalk), and differentially expressed gene (DEGs) analysis using the GEO, OMIM, MalaCards, and GeneCards datasets. GO and KEGG pathway analyses revealed that the shared miRNA–mRNA in target genes were enriched in insulin signaling, apoptosis, and inflammatory pathways—key mechanisms implicated in GDM and IDA. Furthermore, hub genes such as IRS1, PIK3CA, CASP3, MAPK7, and PDGFRB were identified, supporting their central role in metabolic dysregulation during pregnancy. These findings demonstrate the potential of miR-182-3p and miR-24-3p as diagnostic biomarkers and therapeutic targets in managing GDM and IDA, offering new insights into the molecular interplay underlying pregnancy complications. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Graphical abstract

13 pages, 1770 KiB  
Article
Inhibitory Effects of 3-Deoxysappanchalcone on Particulate-Matter-Induced Pulmonary Injury
by Chang-Woo Ryu, Jinhee Lee, Gyuri Han, Jin-Young Lee and Jong-Sup Bae
Curr. Issues Mol. Biol. 2025, 47(8), 608; https://doi.org/10.3390/cimb47080608 - 1 Aug 2025
Viewed by 132
Abstract
Fine particulate matter (PM2.5) exposure has been linked to increased lung damage due to compromised vascular barrier function, while 3-deoxysappanchalcone (3-DSC), a chalcone derived from Caesalpinia sappan, is known for its pharmacological benefits such as anti-cancer, anti-inflammatory, and antioxidant effects; [...] Read more.
Fine particulate matter (PM2.5) exposure has been linked to increased lung damage due to compromised vascular barrier function, while 3-deoxysappanchalcone (3-DSC), a chalcone derived from Caesalpinia sappan, is known for its pharmacological benefits such as anti-cancer, anti-inflammatory, and antioxidant effects; however, its potential role in mitigating PM2.5-induced pulmonary damage remains unexplored. To confirm the inhibitory effects of 3-DSC on PM2.5-induced pulmonary injury, this research focused on evaluating how 3-DSC influences PM2.5-induced disruption of the barrier of the endothelial cells (ECs) in the lungs and the resulting pulmonary inflammation. Permeability, leukocyte migration, proinflammatory protein activation, reactive oxygen species (ROS) generation, and histology were assessed in PM2.5-treated ECs and mice. This study demonstrated that 3-DSC effectively neutralized the reactive oxygen species (ROS) generated by PM2.5 exposure in the lung endothelial cells, suppressing ROS-triggered p38 MAPK activation while enhancing Akt signaling pathways critical to preserving vascular barrier function. In animal models, 3-DSC administration markedly decreased vascular permeability, attenuated the influx of immune cells into the lung tissue, and lowered inflammatory mediators like cytokines in the airways of PM2.5-exposed mice. These data suggest that 3-DSC might exert protective effects on PM2.5-induced inflammatory lung injury and vascular hyperpermeability. Full article
Show Figures

Figure 1

21 pages, 7215 KiB  
Article
Transcriptome Profiling Reveals Mungbean Defense Mechanisms Against Powdery Mildew
by Sukanya Inthaisong, Pakpoom Boonchuen, Akkawat Tharapreuksapong, Panlada Tittabutr, Neung Teaumroong and Piyada Alisha Tantasawat
Agronomy 2025, 15(8), 1871; https://doi.org/10.3390/agronomy15081871 - 1 Aug 2025
Viewed by 226
Abstract
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a [...] Read more.
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a susceptible variety, CN84-1, following pathogen infection. A total of 1755 differentially expressed genes (DEGs) were identified, with SUPER5 exhibiting strong upregulation of genes encoding pathogenesis-related (PR) proteins, disease resistance proteins, and key transcription factors. Notably, genes involved in phenylpropanoid and flavonoid biosynthesis, pathways associated with antimicrobial compound and lignin production, were markedly induced in SUPER5. In contrast, CN84-1 showed limited activation of defense genes and downregulation of essential regulators such as MYB14. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the involvement of plant–pathogen interaction pathways, MAPK signaling, and reactive oxygen species (ROS) detoxification in the resistant response. Quantitative real-time PCR validated 11 candidate genes, including PAL3, PR2, GSO1, MLO12, and P21, which function in pathogen recognition, signaling, the biosynthesis of antimicrobial metabolites, the production of defense proteins, defense regulation, and the reinforcement of the cell wall. Co-expression network analysis revealed three major gene modules linked to flavonoid metabolism, chitinase activity, and responses to both abiotic and biotic stresses. These findings offer valuable molecular insights for breeding PM-resistant mungbean varieties. Full article
Show Figures

Figure 1

23 pages, 2113 KiB  
Article
Accumulation Kinetics and Biological Action of Doxorubicin in Rabbit Intervertebral Discs
by Eleni Mavrogonatou, Anastasios Kouroumalis, Lubna Khaldi, Christophoros Christophoridis and Dimitris Kletsas
Int. J. Mol. Sci. 2025, 26(15), 7386; https://doi.org/10.3390/ijms26157386 - 30 Jul 2025
Viewed by 178
Abstract
Doxorubicin (DOX) is widely used for the treatment of several tumors, but considerable dose-dependent side effects on many normal tissues, including bones, have been reported. The aim of the present study was to follow for the first time the kinetics of DOX accumulation/clearance [...] Read more.
Doxorubicin (DOX) is widely used for the treatment of several tumors, but considerable dose-dependent side effects on many normal tissues, including bones, have been reported. The aim of the present study was to follow for the first time the kinetics of DOX accumulation/clearance in the non-vascularized intervertebral disc (IVD), as well as to assess the drug’s biological action in the annulus fibrosus (AF) and nucleus pulposus (NP) IVD cells and tissues. DOX was administered intravenously to rabbits before the isolation of IVDs, in which DOX quantification was performed using a highly sensitive LC-HRMS/MS analytical method. The effect of the drug on IVD cells’ physiology was assessed in vitro, while IVD tissue quality post-DOX administration was studied in vivo through histological analysis. DOX delivery was found significantly lower in the IVD compared to the highly vascularized skin, declining from the outer AF to the inner NP. The low DOX concentrations reaching the IVDs had marginal effects on cells’ viability, intracellular redox status, and p38 MAPK activation, while they did not evoke cellular senescence. Most importantly, the drug did not negatively affect ECM integrity, as collagen and proteoglycan content remained stable in vitro and in vivo. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 2701 KiB  
Article
The Lysine at Position 177 Is Essential to Limit the Inhibitory Capacities of Sprouty4 Protein in Normal and Cancer-Derived Cells
by Maximilian Schiwek, Kathrin Ruhdorfer, Christoph Pfurner and Hedwig Sutterlüty
Int. J. Mol. Sci. 2025, 26(15), 7353; https://doi.org/10.3390/ijms26157353 - 30 Jul 2025
Viewed by 246
Abstract
The Sprouty (Spry) proteins modulate signalling and regulate processes like cellular migration and proliferation. Here, we investigated a Spry4 alteration substituting a lysine at position 177 to an arginine, based on a mutation found in Kallmann syndrome, a genetically heterogeneous disease connected to [...] Read more.
The Sprouty (Spry) proteins modulate signalling and regulate processes like cellular migration and proliferation. Here, we investigated a Spry4 alteration substituting a lysine at position 177 to an arginine, based on a mutation found in Kallmann syndrome, a genetically heterogeneous disease connected to reduced fibroblast growth factor receptor1 (FGFR) signalling. Using growth curves to evaluate proliferative and scratch assays to determine migrative capacities of the cells, in normal fibroblasts as well as in osteosarcoma-derived cells, we demonstrate that the modified Spry4K177R version hinders both processes, which the unaltered protein cannot do under the same conditions. The inhibition of these processes was accompanied by lower relative phospho-extracellular-signal-regulated kinases (pERK) levels in response to serum induction, indicating that activation of MAPK was less efficient. In contrast to the situation in these cells of mesenchymal origin, in lung cancer-derived cell lines both variants of Spry4 were able to interfere with proliferation of tested cells, and in the cells with elevated FGFR1 expression the Spry4 proteins with an alteration at codon 177 were even more effective. In summary, these data indicate that the lysine at position 177 restricts the ability of Spry4 to inhibit signal transduction at least in cells with high FGFR1 levels. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Sprouty Proteins in Cancer)
Show Figures

Figure 1

23 pages, 2002 KiB  
Article
Precision Oncology Through Dialogue: AI-HOPE-RTK-RAS Integrates Clinical and Genomic Insights into RTK-RAS Alterations in Colorectal Cancer
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Biomedicines 2025, 13(8), 1835; https://doi.org/10.3390/biomedicines13081835 - 28 Jul 2025
Viewed by 471
Abstract
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of [...] Read more.
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of these genomic events with clinical and demographic data remains hindered by fragmented resources and a lack of accessible analytical frameworks. To address this challenge, we developed AI-HOPE-RTK-RAS, a domain-specialized conversational artificial intelligence (AI) system designed to enable natural language-based, integrative analysis of RTK-RAS pathway alterations in CRC. Methods: AI-HOPE-RTK-RAS employs a modular architecture combining large language models (LLMs), a natural language-to-code translation engine, and a backend analytics pipeline operating on harmonized multi-dimensional datasets from cBioPortal. Unlike general-purpose AI platforms, this system is purpose-built for real-time exploration of RTK-RAS biology within CRC cohorts. The platform supports mutation frequency profiling, odds ratio testing, survival modeling, and stratified analyses across clinical, genomic, and demographic parameters. Validation included reproduction of known mutation trends and exploratory evaluation of co-alterations, therapy response, and ancestry-specific mutation patterns. Results: AI-HOPE-RTK-RAS enabled rapid, dialogue-driven interrogation of CRC datasets, confirming established patterns and revealing novel associations with translational relevance. Among early-onset CRC (EOCRC) patients, the prevalence of RTK-RAS alterations was significantly lower compared to late-onset disease (67.97% vs. 79.9%; OR = 0.534, p = 0.014), suggesting the involvement of alternative oncogenic drivers. In KRAS-mutant patients receiving Bevacizumab, early-stage disease (Stages I–III) was associated with superior overall survival relative to Stage IV (p = 0.0004). In contrast, BRAF-mutant tumors with microsatellite-stable (MSS) status displayed poorer prognosis despite higher chemotherapy exposure (OR = 7.226, p < 0.001; p = 0.0000). Among EOCRC patients treated with FOLFOX, RTK-RAS alterations were linked to worse outcomes (p = 0.0262). The system also identified ancestry-enriched noncanonical mutations—including CBL, MAPK3, and NF1—with NF1 mutations significantly associated with improved prognosis (p = 1 × 10−5). Conclusions: AI-HOPE-RTK-RAS exemplifies a new class of conversational AI platforms tailored to precision oncology, enabling integrative, real-time analysis of clinically and biologically complex questions. Its ability to uncover both canonical and ancestry-specific patterns in RTK-RAS dysregulation—especially in EOCRC and populations with disproportionate health burdens—underscores its utility in advancing equitable, personalized cancer care. This work demonstrates the translational potential of domain-optimized AI tools to accelerate biomarker discovery, support therapeutic stratification, and democratize access to multi-omic analysis. Full article
Show Figures

Figure 1

16 pages, 3978 KiB  
Article
Cepharanthine Promotes Ca2+-Independent Premature Red Blood Cell Death Through Metabolic Insufficiency and p38 MAPK/CK1α/COX/MLKL/PKC/iNOS Signaling
by Shaymah H. Alruwaili, Jawaher Alsughayyir and Mohammad A. Alfhili
Int. J. Mol. Sci. 2025, 26(15), 7250; https://doi.org/10.3390/ijms26157250 - 27 Jul 2025
Viewed by 291
Abstract
Nonspecific toxicity to normal and malignant cells restricts the clinical utility of many anticancer drugs. In particular, anemia in cancer patients develops due to drug-induced toxicity to red blood cells (RBCs). The anticancer alkaloid, cepharanthine (CEP), elicits distinct forms of cell death including [...] Read more.
Nonspecific toxicity to normal and malignant cells restricts the clinical utility of many anticancer drugs. In particular, anemia in cancer patients develops due to drug-induced toxicity to red blood cells (RBCs). The anticancer alkaloid, cepharanthine (CEP), elicits distinct forms of cell death including apoptosis and autophagy, but its cytotoxicity to RBCs has not been investigated. Colorimetric and fluorometric techniques were used to assess eryptosis and hemolysis in control and CEP-treated RBCs. Cells were labeled with Fluo4/AM and annexin-V-FITC to measure Ca2+ and phosphatidylserine (PS) exposure, respectively. Forward scatter (FSC) was detected to estimate cell size, and extracellular hemoglobin along with lactate dehydrogenase and aspartate transaminase activities were assayed to quantify hemolysis. Physiological manipulation of the extracellular milieu and various signaling inhibitors were tested to dissect the underlying mechanisms of CEP-induced RBC death. CEP increased PS exposure and hemolysis indices and decreased FSC in a concentration-dependent manner with prominent membrane blebbing. Although no Ca2+ elevation was detected, chelation of intracellular Ca2+ by BAPTA-AM reduced hemolysis. Whereas SB203580, D4476, acetylsalicylic acid, necrosulfonamide, and melatonin inhibited both PS exposure and hemolysis, staurosporin, L-NAME, ascorbate, caffeine, adenine, and guanosine only prevented hemolysis. Interestingly, sucrose had a unique dual effect by exacerbating PS exposure and reversing hemolysis. Of note, blocking KCl efflux augmented PS exposure while aggravating hemolysis only under Ca2+-depleted conditions. CEP activates Ca2+-independent pathways to promote eryptosis and hemolysis. The complex cytotoxic profile of CEP can be mitigated by targeting the identified modulatory pathways to potentiate its anticancer efficacy. Full article
(This article belongs to the Special Issue Blood Cells in Human Health and Disease)
Show Figures

Figure 1

18 pages, 4381 KiB  
Article
Glucocorticoid-Induced Muscle Satellite Cell-Derived Extracellular Vesicles Mediate Skeletal Muscle Atrophy via the miR-335-5p/MAPK11/iNOS Pathway
by Pei Ma, Jiarui Wu, Ruiyuan Zhou, Linli Xue, Xiaomao Luo, Yi Yan, Jiayin Lu, Yanjun Dong, Jianjun Geng and Haidong Wang
Biomolecules 2025, 15(8), 1072; https://doi.org/10.3390/biom15081072 - 24 Jul 2025
Viewed by 369
Abstract
Prolonged high-dose administration of synthetic glucocorticoids (GCs) leads to limb muscle atrophy and weakness, yet its underlying mechanisms remain incompletely understood. Muscle fibers and muscle satellite cells (MSCs) are essential for skeletal muscle development and associated pathologies. This study demonstrates that dexamethasone (Dex) [...] Read more.
Prolonged high-dose administration of synthetic glucocorticoids (GCs) leads to limb muscle atrophy and weakness, yet its underlying mechanisms remain incompletely understood. Muscle fibers and muscle satellite cells (MSCs) are essential for skeletal muscle development and associated pathologies. This study demonstrates that dexamethasone (Dex) induced MSC-derived extracellular vesicles (EVs) impair myogenesis in muscle fiber-like cells (MFLCs) via inducible nitric oxide synthase (iNOS) suppression. High-throughput sequencing revealed a marked upregulation of miR-335-5p in MSC-derived EVs following Dex treatment. Mechanistically, EV miR-335-5p targeted MAPK11, leading to iNOS downregulation and subsequent UPS activation in MFLCs, which directly promoted muscle protein degradation. Collectively, our findings identify the EV miR-335-5p/MAPK11/iNOS axis as a critical mediator of GC-induced muscle atrophy, offering novel insights into therapeutic strategies targeting EV-mediated signaling in muscle wasting disorders. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

31 pages, 1902 KiB  
Review
Effects of Epigallocatechin-3-O-Gallate on Bone Health
by Patrycja Wróbel, Beata Czarczynska-Goslinska, Kyrylo Chornovolenko, Julia Liwarska, Jakub Kubiak, Tomasz Koczorowski, Agnieszka Malinska, Tomasz Goslinski and Magdalena Waszyk-Nowaczyk
Appl. Sci. 2025, 15(15), 8182; https://doi.org/10.3390/app15158182 - 23 Jul 2025
Viewed by 219
Abstract
Tea is one of the most consumed beverages in the world, belonging to the category of compounds known as tannins and flavonoids. One of the polyphenols found in large amounts in green tea leaves (Camellia sinensis) is epigallocatechin-3-O-gallate (EGCG). [...] Read more.
Tea is one of the most consumed beverages in the world, belonging to the category of compounds known as tannins and flavonoids. One of the polyphenols found in large amounts in green tea leaves (Camellia sinensis) is epigallocatechin-3-O-gallate (EGCG). Though EGCG has shown some pharmacological effects, to date, it has not been utilised as a therapeutic agent. This is attributed to the fact that EGCG lacks adequate stability, and it is known to degrade through epimerization or auto-oxidation processes, especially when it is exposed to light, temperature fluctuations, some pH values, or the presence of oxygen. Consuming green tea with EGCG can alleviate the effects of bone diseases, such as osteoporosis, and support faster bone regeneration in the case of fractures. Therefore, this review focuses on the current state of research, highlighting the effects of EGCG on bone biology, such as enhancing osteoblast differentiation, promoting bone mineralisation, improving bone microarchitecture, and inhibiting osteoclastogenesis through the modulation of the RANK/RANKL/OPG pathway. Additionally, EGCG exerts antioxidant, anti-inflammatory, and dose-dependent effects on bone cells. It also downregulates inflammatory markers (TNF-α, IL-1β, and COX-2) and reduces oxidative stress via the inhibition of reactive oxygen species generation and the activation of protective signalling pathways (e.g., MAPK and NF-κB). Studies in animal models confirm that EGCG supplementation leads to increased bone mass and strength. These findings collectively support the further exploration of EGCG as an adjunct in the treatment and prevention of metabolic bone diseases. The authors aim to present the relationship between EGCG and bone health, highlighting issues for future research and clinical applications. Full article
Show Figures

Figure 1

20 pages, 3764 KiB  
Article
Neural Progenitor Cell- and Developing Neuron-Derived Extracellular Vesicles Differentially Modulate Microglial Activation
by Tsung-Lang Chiu, Hsin-Yi Huang, Hock-Kean Liew, Hui-Fen Chang, Hsin-Rong Wu and Mei-Jen Wang
Int. J. Mol. Sci. 2025, 26(15), 7099; https://doi.org/10.3390/ijms26157099 - 23 Jul 2025
Viewed by 186
Abstract
The developmental processes of microglia follow a general pattern, from immature amoeboid (activated) cells to fully ramified (inactivated) surveilling microglia. However, little is known about the mechanisms controlling the transition of microglia from an activated to an inactivated state during brain development. Due [...] Read more.
The developmental processes of microglia follow a general pattern, from immature amoeboid (activated) cells to fully ramified (inactivated) surveilling microglia. However, little is known about the mechanisms controlling the transition of microglia from an activated to an inactivated state during brain development. Due to the complexity of microenvironmentally dynamic changes during neuronal differentiation, interactions between developing nerve cells and microglia might be involved in this process. Extracellular vesicles (EVs) are cell-released particles that serve as mediators of cellular crosstalk and regulation. Using neural progenitor cells (NPCs) and a long-term neuron culture system, we found that EVs derived from NPCs or developing neurons possessed differential capacity on the induction of microglial activation. The exposure of microglia to NPC- or immature neuron (DIV7)-derived EVs resulted in the higher expression of protein and mRNA of multiple inflammatory cytokines (e.g., TNF-α, IL-1β, and IL-6), when compared with mature neuron-derived EVs. Exploration of the intracellular signaling pathways revealed that MAPK signaling, IκBα phosphorylation/degradation, and NF-κB p65 nuclear translocation were strongly induced in microglia treated with NPC- or immature neuron-derived EVs. Using a pharmacological approach, we further demonstrate that Toll-like receptor (TLR) 7-mediated activation of NF-κB and MAPK signaling cascades contribute to EV-elicited microglial activation. Additionally, the application of conditioned media derived from microglia treated with NPC- or immature neuron-derived EVs is found to promote the survival of late-developing dopaminergic neurons. Thus, our results highlight a novel mechanism used by NPCs and developing neurons to modulate the developmental phases and functions of microglia through EV secretion. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 1895 KiB  
Article
MicroRNA Signatures in Dental Pulp Stem Cells Following Nicotine Exposure
by David Vang, Leyla Tahrani Hardin, Nabil Abid, Der Thor and Nan Xiao
Dent. J. 2025, 13(8), 338; https://doi.org/10.3390/dj13080338 - 23 Jul 2025
Viewed by 274
Abstract
Background and Objectives: Nicotine is the most well-studied toxic substance in cigarette smoke and e-cigarette vape. However, smoke and vape are composed of other components that have a negative impact on health. The objective of this study is to investigate whether nicotine has [...] Read more.
Background and Objectives: Nicotine is the most well-studied toxic substance in cigarette smoke and e-cigarette vape. However, smoke and vape are composed of other components that have a negative impact on health. The objective of this study is to investigate whether nicotine has a distinctive impact on molecular mechanisms in stem cells. Methods: The cellular impact of nicotine on the regenerative capacity of human dental pulp stem cells (DPSCs) and the microRNA (miRNA) profile was examined. Bioinformatic analysis was performed to identify miRNA-regulated cellular pathways associated with nicotine exposure. These pathways were then compared to those induced by cigarette smoke condensate (CSC). Results: Prolonged exposure to nicotine significantly impaired the regeneration of DPSCs and changed the expression of miRNAs. Nicotine upregulated the expression of hsa-miR-7977, hsa-miR-3178, and hsa-miR-10400-5p compared to vehicle control. Interestingly, nicotine did not change the expression of hsa-miR-29b-3p, hsa-miR-199b-5p, hsa-miR-26b-5p, or hsa-miR-26a-5p compared to the control. However, the expressions of these miRNAs were significantly altered when compared to CSC treatment. Further analysis revealed that nicotine was distinctively associated with certain miRNA-targeted pathways including apoptosis, ErbB, MAPK signaling, PI3K-Akt, TGF-b signaling, and Wnt signaling. Conclusions: Our work provides evidence on the distinctive miRNA signature induced by nicotine. The information will be important for identifying the unique molecular pathways downstream of nicotine from smoking and vaping in different individuals, providing a new direction for personalized disease prevention, prognosis, and treatment. Full article
(This article belongs to the Special Issue Recreational Drugs, Smoking, and Their Impact on Oral Health)
Show Figures

Figure 1

21 pages, 2670 KiB  
Article
Regulatory Effect of PGE2-EP2/EP4 Receptor Pathway on Staphylococcus aureus-Induced Inflammatory Factors in Dairy Cow Neutrophils
by Yi Zhao, Chao Wang, Bo Liu, Shuangyi Zhang, Yongfei Wang, Yinghong Qian, Zhiguo Gong, Jiamin Zhao, Xiaolin Yang, Yuting Bai and Wei Mao
Biomolecules 2025, 15(8), 1062; https://doi.org/10.3390/biom15081062 - 22 Jul 2025
Viewed by 271
Abstract
Naturally occurring prostaglandin E2 (PGE2) influences cytokine production regulation in bovine neutrophils exposed to Staphylococcus aureus Rosenbach. Here, we employed bovine neutrophils as the primary experimental system, and administered specific inhibitors targeting various receptors, which were subsequently exposed to S. [...] Read more.
Naturally occurring prostaglandin E2 (PGE2) influences cytokine production regulation in bovine neutrophils exposed to Staphylococcus aureus Rosenbach. Here, we employed bovine neutrophils as the primary experimental system, and administered specific inhibitors targeting various receptors, which were subsequently exposed to S. aureus. Cytokine expression levels in dairy cow neutrophils induced by S. aureus via the endogenous PGE2-EP2/4 receptor pathway were investigated, and its effects on P38, extracellular signal-regulated kinase (ERK), P65 activation, and phagocytic function in Staphylococcus aureus Rosenbach-induced dairy cow neutrophils, were examined. Blocking cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) enzymes substantially decreased PGE2 production and release in S. aureus-exposed bovine neutrophils. Cytokine output showed significant reduction compared to that in SA113-infected controls. Phosphorylation of P38, ERK, and P65 signaling molecules was depressed in the infected group. Pharmacological interference with EP2/EP4 receptors similarly diminished cytokine secretion and phosphorylation patterns of P38, ERK, and P65, with preserved cellular phagocytic function. During S. aureus infection of bovine neutrophils, COX-2 and mPGES-1 participated in controlling PGE2 biosynthesis, and internally produced PGE2 molecules triggered NF-κB and MAPK inflammatory pathways via EP2/EP4 receptor activation, later adjusting the equilibrium between cytokine types that promote or suppress inflammation. This signaling mechanism coordinated inflammatory phases through receptor-mediated processes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

11 pages, 231 KiB  
Article
Tempol Induces Oxidative Stress, ER Stress and Apoptosis via MAPK/Akt/mTOR Pathway Suppression in HT29 (Colon) and CRL-1739 (Gastric) Cancer Cell Lines
by Gorkem Ozdemir and Halil Mahir Kaplan
Curr. Issues Mol. Biol. 2025, 47(7), 574; https://doi.org/10.3390/cimb47070574 - 21 Jul 2025
Viewed by 270
Abstract
Tempol is a synthetic antioxidant that shows promise in preclinical cancer studies by inhibiting growth and inducing apoptosis. Given that the Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B/Mammalian Target of Rapamycin (Akt/mTOR) signaling pathways are frequently dysregulated in gastric and colon cancers [...] Read more.
Tempol is a synthetic antioxidant that shows promise in preclinical cancer studies by inhibiting growth and inducing apoptosis. Given that the Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B/Mammalian Target of Rapamycin (Akt/mTOR) signaling pathways are frequently dysregulated in gastric and colon cancers and contribute to their progression, we investigated Tempol’s anti-cancer potential in HT29 (colon) and CRL-1739 (gastric) cancer cells. Cells were treated with 2 mM Tempol for 48 h, with untreated cells as controls. We evaluated apoptosis (Bax, cleaved caspase-3, and Bcl-2), key signaling pathway activity (p-ERK, p-JNK, p-AKT, and p-mTOR), and levels of stress- and apoptosis-related proteins (WEE1, GADD153, GRP78, and AIF). Tempol significantly increased pro-apoptotic Bax and cleaved caspase-3 (p < 0.0001) and decreased anti-apoptotic Bcl-2 (p < 0.0001) in both cell lines. Furthermore, Tempol markedly reduced the activity of p-ERK, p-JNK, p-AKT, and p-mTOR (p < 0.0001) and significantly increased the protein levels of WEE1, GADD153, GRP78, and AIF (p < 0.0001). Tempol treatment also led to a significant increase in total oxidant status and a decrease in total antioxidant status. In conclusion, our findings suggest that Tempol exhibits its anti-cancer activity through multiple interconnected mechanisms, primarily inducing apoptosis and oxidative stress, while concurrently suppressing pro-survival signaling pathways. These results highlight Tempol’s potential as a therapeutic agent for gastric and colon cancers. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Back to TopTop