Mechanisms and Pathways for Enhancing Crop Stress Resistance, Yield, and Quality

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Plant-Crop Biology and Biochemistry".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1177

Special Issue Editors

College of Agronomy, Northwest A&F University, Yangling 712100, China
Interests: crop cultivation techniques; conservation tillage; crop growth and development; crop yield; resource use efficiency
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Hybrid Wheat, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
Interests: molecular physiological basis; mechanisms of the formation of key yield traits; wheat
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

During the growth and development of crops, various stress factors, such as drought, waterlogging, salinity, soil nutrient deficiency, soil pollution, high temperatures, cold damage, frost damage, insufficient light, and lodging, significantly affect crop yield and quality. These stress factors result in substantial global crop yield losses and quality degradation. Consequently, elucidating the mechanisms and pathways that enhance crop stress resistance, yield, and quality has become a focal point in agricultural research.

This Special Issue aims to gather new information regarding the effects of environmental stresses on crop growth, development, yield, and quality. It seeks to explore the mechanisms underlying crop responses to these stresses and to identify effective strategies and measures for improving crop resilience, yield, and quality.

Specifically, this Special Issue calls for original research, reviews, and small-scale reviews of methods and mechanisms for enhancing crop stress resistance, yield, and quality. The topics of interest include, but are not limited to, the following: drought and waterlogging resistance mechanisms and efficient water use; measures for improving salt tolerance under soil salinity stress; nutrient management and efficient utilization; strategies for coping with abnormal climatic stresses; identification and application of stress-resistant genes; comprehensive evaluation and monitoring of crop stress resistance; mechanisms of lodging occurrence and approaches for preventing lodging; and technologies for mitigating stress impacts and reducing crop losses.

Dr. Tie Cai
Dr. Weibing Yang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • crop adversity
  • abiotic stress
  • stress resistance
  • crop yield
  • crop quality
  • crop growth
  • response mechanisms

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 7215 KiB  
Article
Transcriptome Profiling Reveals Mungbean Defense Mechanisms Against Powdery Mildew
by Sukanya Inthaisong, Pakpoom Boonchuen, Akkawat Tharapreuksapong, Panlada Tittabutr, Neung Teaumroong and Piyada Alisha Tantasawat
Agronomy 2025, 15(8), 1871; https://doi.org/10.3390/agronomy15081871 - 1 Aug 2025
Viewed by 278
Abstract
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a [...] Read more.
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a susceptible variety, CN84-1, following pathogen infection. A total of 1755 differentially expressed genes (DEGs) were identified, with SUPER5 exhibiting strong upregulation of genes encoding pathogenesis-related (PR) proteins, disease resistance proteins, and key transcription factors. Notably, genes involved in phenylpropanoid and flavonoid biosynthesis, pathways associated with antimicrobial compound and lignin production, were markedly induced in SUPER5. In contrast, CN84-1 showed limited activation of defense genes and downregulation of essential regulators such as MYB14. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the involvement of plant–pathogen interaction pathways, MAPK signaling, and reactive oxygen species (ROS) detoxification in the resistant response. Quantitative real-time PCR validated 11 candidate genes, including PAL3, PR2, GSO1, MLO12, and P21, which function in pathogen recognition, signaling, the biosynthesis of antimicrobial metabolites, the production of defense proteins, defense regulation, and the reinforcement of the cell wall. Co-expression network analysis revealed three major gene modules linked to flavonoid metabolism, chitinase activity, and responses to both abiotic and biotic stresses. These findings offer valuable molecular insights for breeding PM-resistant mungbean varieties. Full article
Show Figures

Figure 1

22 pages, 4065 KiB  
Article
Characteristics of Lodging Resistance of Wheat Cultivars from Different Breeding Decades as Affected by the Application of Paclobutrazol Under Shading Stress
by Dianliang Peng, Haicheng Xu, Zhen Guo, Wenchao Cao, Jingmin Zhang, Mei Liu, Xingcui Wang, Yuhai Tang and Tie Cai
Agronomy 2025, 15(8), 1848; https://doi.org/10.3390/agronomy15081848 - 31 Jul 2025
Viewed by 283
Abstract
Low solar radiation, caused by climate change or dense planting patterns, now limits wheat production. Although wheat breeding has increased lodging resistance and yield potential through the introduction of dwarfing genes, it still reduces wheat yields. Few studies have been conducted to clarify [...] Read more.
Low solar radiation, caused by climate change or dense planting patterns, now limits wheat production. Although wheat breeding has increased lodging resistance and yield potential through the introduction of dwarfing genes, it still reduces wheat yields. Few studies have been conducted to clarify the lodging sensitivity to shading of different-era wheat cultivars in China’s Huang-Huai-Hai region, as well as the characteristics of lodging resistance as affected by paclobutrazol under shading stress. To address this gap, the experiment included two wheat cultivars released in different decades, grown under shade and treated with or without paclobutrazol. The results showed that reductions in filling degree and lignin content, together with increases in length of the basal internode and gravity center height, markedly reduced the section modulus and breaking strength of shaded wheat culms. These changes impaired lodging resistance and raised lodging risk. However, paclobutrazol application effectively reduced lodging incidence and increased wheat yield under shading stress. Furthermore, these responses were more pronounced in the old cultivar (YZM) than in the modern cultivar (S28). This indicates that the culm mechanical parameters of the old cultivar were more shade-sensitive than those of the modern cultivar. Moreover, shading downregulated the relative expression levels of key genes associated with lignin biosynthesis to decrease the activities of key enzymes, thereby inhibiting the biosynthesis and deposition of lignin in culms to increase the risk of wheat lodging. Paclobutrazol application alleviated the inhibitory effects of shading on lignin biosynthesis, thereby strengthening culms and enhancing lodging resistance. These findings may provide a basis for exploring cultivation regulation methods to enhance wheat lodging resistance under overcast and low-sunshine conditions, and to offer guidance for the breeding of wheat cultivars with lodging resistance and shade tolerance. Full article
Show Figures

Figure 1

16 pages, 1105 KiB  
Article
Ozone Stress During Rice Growth Impedes Grain-Filling Capacity of Inferior Spikelets but Not That of Superior Spikelets
by Shaowu Hu, Hairong Mu, Yunxia Wang, Liquan Jing, Yulong Wang, Jianye Huang and Lianxin Yang
Agronomy 2025, 15(8), 1809; https://doi.org/10.3390/agronomy15081809 - 26 Jul 2025
Viewed by 234
Abstract
Ozone pollution decreases rice yield and quality in general, but how ozone stress changes grain-filling capacity is unclear. A chamber experiment was conducted to compare the effects of ozone exposure during the rice growth season on the grain-filling capacity and quality of spikelets [...] Read more.
Ozone pollution decreases rice yield and quality in general, but how ozone stress changes grain-filling capacity is unclear. A chamber experiment was conducted to compare the effects of ozone exposure during the rice growth season on the grain-filling capacity and quality of spikelets located on the upper primary rachis (superior spikelets, SS) and the lower secondary rachis (inferior spikelets, IS). Ozone stress significantly decreased filled grain percentage by 41.4% and grain mass by 10.2% in IS, but had little effect on grain-filling capacity in SS. Consistent with the reduction in grain mass, ozone stress decreased grain volume, mainly due to reduced grain thickness, and IS was reduced more than SS. After removing the hull, brown rice obtained from ozone treatment exhibited higher proportions of immature and abnormal kernels, resulting in a substantially lower proportion of perfect kernels. Under ozone stress, the proportion of perfect kernels was only one-third in IS, compared with two-thirds in SS. Ozone stress affected the pasting properties of brown rice for both SS and IS, as shown by the decreased amylose content, and the increased maximum viscosity, minimum viscosity, final viscosity, setback, and peak time of the rapid visco analyzer profile. Out of fourteen traits related to nutritional quality of brown rice, only five showed significant increases under ozone stress, and they were the concentrations of albumin, prolamin, sulfur, copper, and manganese. The differential ozone responses between SS and IS were rather small for rice pasting properties and chemical compositions as shown by very few significant interactions between ozone and grain position. It is concluded that ozone stress during plant growth imposed more adverse effects on IS than SS in terms of grain-filling capacity and appearance quality, suggesting an enlarged asynchronous grain-filling pattern in rice panicles under ozone pollution. Strategies to improve the grain-filling capacity of IS are needed to mitigate ozone-induced damage to rice production. Full article
Show Figures

Figure 1

Back to TopTop