The Role of Non-Coding RNAs in the Regulation of Oncogenic Pathways in Breast and Gynaecological Cancers
Abstract
1. Introduction
2. Epidemiology of Breast and Gynaecological Cancer
3. Current Treatment Strategies
4. Introduction to Non-Coding RNAs
4.1. Involvement of ncRNAs in Cancer
4.1.1. Housekeeping ncRNAs
4.1.2. Regulatory ncRNAs
5. Overview of Key Oncogenic Signalling Pathways
5.1. MAPK and ERK Signalling Pathway
5.2. PI3K/Akt/mTOR Signalling Pathway
5.3. p53 Signalling Pathway
5.4. Wnt/β-Catenin Signalling Pathway
6. Role of ncRNAs in Breast Cancer
6.1. ncRNAs in the PI3/Akt/mTOR Pathway in BC
6.2. ncRNAs in the P53 Pathway in BC
6.3. ncRNAs in the Wnt/β-Catenin Pathway in BC
7. Role of ncRNAs in Cervical Cancer
7.1. ncRNAs in the MAPK/ERK Pathway in CC
7.2. ncRNAs in the PI3K/Akt/mTOR Pathway in CC
7.3. ncRNAs in the P53 Pathway in CC
7.4. ncRNAs in the Wnt/β-Catenin Pathway in CC
8. Role of ncRNAs in Ovarian Cancer
8.1. ncRNAs in the MAPK/ERK Pathway in OC
8.2. ncRNAs in the PI3K/Akt/mTOR Pathway in OC
8.3. ncRNAs in the P53 Pathway in OC
8.4. ncRNAs in the Wnt/β-Catenin Pathway in OC
9. Role of ncRNAs in Endometrial Cancer
9.1. ncRNAs in the MAPK/ERK Pathway in EC
9.2. ncRNAs in the PI3K/Akt Pathway in EC
9.3. ncRNAs in the p53 Pathway in EC
9.4. ncRNAs in the Wnt/β-Catenin Pathway in EC
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pecorino, L. Molecular Biology of Cancer, 4th ed.; Oxford University Press: New York, NY, USA, 2016; p. 2. [Google Scholar]
- National Cancer Institute Cancer Statistics. Available online: https://www.cancer.gov/about-cancer/understanding/statistics (accessed on 15 May 2025).
- Breast Cancer UK Facts and Figures. Available online: https://www.breastcanceruk.org.uk/about-breast-cancer/facts-figures-and-qas/facts-and-figures/ (accessed on 15 May 2025).
- National Cancer Institute Breast Cancer Treatment. Available online: https://www.cancer.gov/types/breast/patient/breast-treatment-pdq (accessed on 15 May 2025).
- Orrantia-Borunda, E.; Anchondo-Nuñez, P.; Acuña-Aguilar, L.E.; Gómez-Valles, F.O.; Ramírez-Valdespino, C.A. Subtypes of Breast Cancer. Available online: https://www.ncbi.nlm.nih.gov/books/NBK583808/ (accessed on 15 May 2025).
- World Health Organization Breast Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 16 May 2025).
- National Cancer Institute Cervical Cancer. Available online: https://www.cancer.gov/types/cervical (accessed on 16 May 2025).
- World Health Organization Cervical Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer (accessed on 16 May 2025).
- American Cancer Society. What is Ovarian Cancer. Available online: https://www.cancer.org/cancer/types/ovarian-cancer/about/what-is-ovarian-cancer.html (accessed on 27 May 2025).
- Shi, H.; Zheng, L.; Jiang, X.; Chen, H. CACNA1H Restrains Chemotherapy Resistance in Ovarian Clear Cell Carcinoma Cells by Repressing Autophagy. Mol. Genet. Genom. 2024, 299, 77. [Google Scholar] [CrossRef]
- Arney, K. Ovarian Cancer—Spotting the “Silent Killer”. Available online: https://news.cancerresearchuk.org/2008/11/21/ovarian-cancer-spotting-the-silent-killer/ (accessed on 16 May 2025).
- World Ovarian Cancer Coalition Ovarian Cancer Key Stats. Available online: https://worldovariancancercoalition.org/about-ovarian-cancer/key-stats/ (accessed on 16 May 2025).
- American Cancer Society What Is Endometrial Cancer? Available online: https://www.cancer.org/cancer/types/endometrial-cancer/about/what-is-endometrial-cancer.html (accessed on 17 May 2025).
- Wang, Y.; Zheng, Y.-T.; Zhang, L.; Cao, X.-Q.; Lin, Z.; Liu, H.-Y.; Hu, Q.-Y. Undifferentiated Endometrial Carcinoma Diagnosed during Perimenopausal Hormone Therapy: A Case Report and Literature Review. Front. Oncol. 2024, 14, 1440246. [Google Scholar] [CrossRef]
- The International Agency for Research on Cancer (IARC) Cancer Tomorrow. Available online: https://gco.iarc.fr/tomorrow/en/dataviz/isotype (accessed on 16 May 2025).
- Taylan, E.; Oktay, K. Fertility Preservation in Gynecologic Cancers. Gynecol. Oncol. 2019, 155, 522–529. [Google Scholar] [CrossRef]
- Guyers, K.; Henderson, J.; O’halloran, D. Notes on Anatomy and Oncology; Churchill Livingstone: New York, NY, USA, 2004; pp. 205–218. ISBN 9780443073229. [Google Scholar]
- Sobhani, N.; Chahwan, R.; Roudi, R.; Morris, R.; Volinia, S.; Chai, D.; D’Angelo, A.; Generali, D. Predictive and Prognostic Value of Non-Coding RNA in Breast Cancer. Cancers 2022, 14, 2952. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, X.; Wang, J.; Zhao, Z.; Hao, L.; Guo, X.; Liu, Y. MFPred: Prediction of NcRNA Families Based on Multi-Feature Fusion. Brief. Bioinform. 2023, 24, bbad303. [Google Scholar] [CrossRef]
- Dahariya, S.; Paddibhatla, I.; Kumar, S.; Raghuwanshi, S.; Pallepati, A.; Gutti, R.K. Long Non-Coding RNA: Classification, Biogenesis and Functions in Blood Cells. Mol. Immunol. 2019, 112, 82–92. [Google Scholar] [CrossRef]
- Vicentini, C.; Galuppini, F.; Corbo, V.; Fassan, M. Current Role of Non-Coding RNAs in the Clinical Setting. Non-Coding RNA Res. 2019, 4, 82–85. [Google Scholar] [CrossRef]
- Cui, L.; Zheng, J.; Lin, Y.; Lin, P.; Lu, Y.; Zheng, Y.; Guo, B.; Zhao, X. Decoding the Ribosome’s Hidden Language: RRNA Modifications as Key Players in Cancer Dynamics and Targeted Therapies. Clin. Transl. Med. 2024, 14, e1705. [Google Scholar] [CrossRef]
- Salaikumaran, M.R.; Badiger, V.P.; Burra, V.L.S.P. 16S RRNA Methyltransferases as Novel Drug Targets against Tuberculosis. Protein J. 2022, 41, 97–130. [Google Scholar] [CrossRef]
- Sadova, A.A.; Panteleev, D.Y.; Pavlova, G.V. Human RDNA Structure, Expression, and Non-Canonical Functions: The Role of Non-Coding Regions. Mol. Biol. 2023, 57, 411–426. [Google Scholar] [CrossRef]
- Cui, Y.-Y.; Huang, Y.; Wu, X.; Zheng, M.; Xia, Y.; Fu, Z.; Ge, H.; Wang, S.; Xie, H. Hypoxia-Induced TRNA-Derived Fragments, Novel Regulatory Factor for Doxorubicin Resistance in Triple-Negative Breast Cancer. J. Cell. Physiol. 2019, 234, 8740–8751. [Google Scholar] [CrossRef]
- Wu, D.; Li, X.; Khan, F.A.; Yuan, C.; Pandupuspitasari, N.S.; Huang, C.; Sun, F.; Guan, K. TRNA Modifications and TRNA-Derived Small RNAs: New Insights of TRNA in Human Disease. Cell Biol. Toxicol. 2024, 40, 76. [Google Scholar] [CrossRef]
- Gupta, T.D.; Malkin, M.G.; Huang, S. TRNA Function and Dysregulation in Cancer. Front. Cell Dev. Biol. 2022, 10, 886642. [Google Scholar] [CrossRef]
- Ye, J.; Xu, M.; Tian, X.; Cai, S.; Zeng, S. Research Advances in the Detection of MiRNA. J. Pharm. Anal. 2019, 9, 217–226. [Google Scholar] [CrossRef]
- Tétreault, N.; De Guire, V. MiRNAs: Their Discovery, Biogenesis and Mechanism of Action. Clin. Biochem. 2013, 46, 842–845. [Google Scholar] [CrossRef]
- Lee, H.; Han, S.; Kwon, C.S.; Lee, D. Biogenesis and Regulation of the Let-7 MiRNAs and Their Functional Implications. Protein Cell 2015, 7, 100–113. [Google Scholar] [CrossRef]
- Hazari, V.; Samali, S.A.; Izadpanahi, P.; Mollaei, H.; Sadri, F.; Rezaei, Z. MicroRNA-98: The Multifaceted Regulator in Human Cancer Progression and Therapy. Cancer Cell Int. 2024, 24, 209. [Google Scholar] [CrossRef]
- Billmeier, M.; Green, D.; Hall, A.E.; Turnbull, C.; Singh, A.; Xu, P.; Moxon, S. Tamas Dalmay Mechanistic Insights into Non-Coding Y RNA Processing. RNA Biol. 2022, 19, 468–480. [Google Scholar] [CrossRef]
- Kowalski, M.P.; Krude, T. Functional Roles of Non-Coding Y RNAs. Int. J. Biochem. Cell Biol. 2015, 66, 20–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Bi, Y.; Zhao, J.; Gao, C.; Si, X.; Dai, H.; Asmamaw, M.D.; Zhang, Q.; Chen, W.; et al. The Role of LncRNAs and Exosomal LncRNAs in Cancer Metastasis. Biomed. Pharmacother. 2023, 165, 115207. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Yang, D.; Xie, F.; Wang, Z. The Role of Long Non-Coding RNAs in Angiogenesis and Anti-Angiogenic Therapy Resistance in Cancer. Mol. Ther. Nucleic Acids 2022, 28, 397–407. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; et al. Oncogenic Signaling Pathways in the Cancer Genome Atlas. Cell 2018, 173, 321–337.e10. [Google Scholar] [CrossRef]
- Guo, Y.; Pan, W.; Liu, S.; Shen, Z.; Xu, Y.; Hu, L. ERK/MAPK Signalling Pathway and Tumorigenesis (Review). Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef]
- Bahar, M.E.; Kim, H.J.; Kim, D.R. Targeting the RAS/RAF/MAPK Pathway for Cancer Therapy: From Mechanism to Clinical Studies. Signal Transduct. Target. Ther. 2023, 8, 455. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, Y.; Li, P.; Jian, J.; Zhao, C.; Wen, G. Mitogen-Activated Protein Kinase and Substrate Identification in Plant Growth and Development. Int. J. Mol. Sci. 2022, 23, 2744. [Google Scholar] [CrossRef]
- Molina, J.R.; Adjei, A.A. The Ras/Raf/MAPK Pathway. J. Thorac. Oncol. 2006, 1, 7–9. [Google Scholar] [CrossRef]
- Plotnikov, A.; Zehorai, E.; Procaccia, S.; Seger, R. The MAPK Cascades: Signaling Components, Nuclear Roles and Mechanisms of Nuclear Translocation. Biochim. Et Biophys. Acta (BBA) Mol. Cell Res. 2011, 1813, 1619–1633. [Google Scholar] [CrossRef]
- Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/MTOR and Ras/Raf/MEK/ERK Signaling Pathways Inhibitors as Anticancer Agents: Structural and Pharmacological Perspectives. Eur. J. Med. Chem. 2016, 109, 314–341. [Google Scholar] [CrossRef]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt Signal Transduction for Cancer Therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef]
- Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in Cancer: Mechanisms and Advances in Clinical Trials. Mol. Cancer 2019, 18, 26. [Google Scholar] [CrossRef] [PubMed]
- Hendrikse, C.S.E.; Theelen, P.M.M.; van der Ploeg, P.; Westgeest, H.M.; Boere, I.A.; Thijs, A.M.J.; Ottevanger, P.B.; van de Stolpe, A.; Lambrechts, S.; Bekkers, R.L.M.; et al. The Potential of RAS/RAF/MEK/ERK (MAPK) Signaling Pathway Inhibitors in Ovarian Cancer: A Systematic Review and Meta-Analysis. Gynecol. Oncol. 2023, 171, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Marei, H.E.; Althani, A.; Afifi, N.; Hasan, A.; Caceci, T.; Pozzoli, G.; Morrione, A.; Giordano, A.; Cenciarelli, C. P53 Signaling in Cancer Progression and Therapy. Cancer Cell Int. 2021, 21, 703. [Google Scholar] [CrossRef]
- Joerger, A.C.; Fersht, A.R. The P53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu. Rev. Biochem. 2016, 85, 375–404. [Google Scholar] [CrossRef]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar] [CrossRef]
- Haddad, N.; Gamaethige, S.M.; Wehida, N.; Elbediwy, A. Drug Repurposing: Exploring Potential Anti-Cancer Strategies by Targeting Cancer Signalling Pathways. Biology 2024, 13, 386. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, K.; Zhu, X.; Zhao, G.; Wu, H.; Deng, G.; Qiu, C. MiR-433 Inhibits Breast Cancer Cell Growth via the MAPK Signaling Pathway by Targeting Rap1a. Int. J. Biol. Sci. 2018, 14, 622–632. [Google Scholar] [CrossRef]
- Gao, D.; Qi, X.; Zhang, X.; Fang, K.; Guo, Z.; Li, L. Hsa_circRNA_0006528 as a Competing Endogenous RNA Promotes Human Breast Cancer Progression by Sponging MiR-7-5p and Activating the MAPK/ERK Signaling Pathway. Mol. Carcinog. 2018, 58, 554–564. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, D.; Nie, J.; Zhou, S.; Wang, J.; Tang, Q.; Yang, X. MicroRNA-143 Targets CD44 to Inhibit Breast Cancer Progression and Stem Cell-like Properties. Mol. Med. Rep. 2016, 13, 5193–5199. [Google Scholar] [CrossRef]
- García-Vázquez, R.; Marchat, L.A.; Ruíz-García, E.; Astudillo-de, H.; Meneses-García, A.; Arce-Salinas, C.; Bargallo-Rocha, E.; Carlos-Reyes, Á.; López-González, J.S.; Pérez-Plasencia, C.; et al. MicroRNA-143 Is Associated with Pathological Complete Response and Regulates Multiple Signaling Proteins in Breast Cancer. Technol. Cancer Res. Treat. 2019, 18, 1533033819827309. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, M.; Lang, Z.; Liu, H.; Liu, J.; Ma, L. MiR-135a-5p Suppresses Breast Cancer Cell Proliferation, Migration, and Invasion by Regulating BAG3. Clinics 2022, 77, 100115. [Google Scholar] [CrossRef] [PubMed]
- Kögel, D.; Linder, B.; Brunschweiger, A.; Chines, S.; Behl, C. At the Crossroads of Apoptosis and Autophagy: Multiple Roles of the Co-Chaperone BAG3 in Stress and Therapy Resistance of Cancer. Cells 2020, 9, 574. [Google Scholar] [CrossRef] [PubMed]
- Shields, S.; Conroy, E.; O’Grady, T.; McGoldrick, A.; Connor, K.; Ward, M.P.; Useckaite, Z.; Dempsey, E.; Reilly, R.; Fan, Y.; et al. BAG3 Promotes Tumour Cell Proliferation by Regulating EGFR Signal Transduction Pathways in Triple Negative Breast Cancer. Oncotarget 2018, 9, 15673–15690. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Miao, Y.; Shan, Y.; Liu, B.; Li, Y.; Zhao, L.; Jia, L. MiR-106b and MiR-93 Regulate Cell Progression by Suppression of PTEN via PI3K/Akt Pathway in Breast Cancer. Cell Death Dis. 2017, 8, e2796. [Google Scholar] [CrossRef]
- Chalhoub, N.; Baker, S.J. PTEN and the PI3-Kinase Pathway in Cancer. Annu. Rev. Pathol. Mech. Dis. 2009, 4, 127–150. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Jing, H.; Huang, G.; Sun, Z.; Xu, S. Long Noncoding RNA MEG3 Inhibits Breast Cancer Growth via Upregulating Endoplasmic Reticulum Stress and Activating NF-ΚB and P53. J. Cell. Biochem. 2018, 120, 6789–6797. [Google Scholar] [CrossRef]
- Lee, B.; Kwon, Y.-J.; Shin, S.; Kwon, T.-U.; Park, H.; Lee, H.; Kwak, J.-H.; Chun, Y.-J. Upregulation of YPEL3 Expression and Induction of Human Breast Cancer Cell Death by MicroRNAs. Toxicol. Res. 2024, 40, 599–611. [Google Scholar] [CrossRef]
- Pei, D.; Zhang, Y.; Zheng, J. Regulation of P53: A Collaboration between Mdm2 and MdmX. Oncotarget 2012, 3, 228–235. [Google Scholar] [CrossRef]
- Stamos, J.L.; Weis, W.I. The β-Catenin Destruction Complex. Cold Spring Harb. Perspect. Biol. 2013, 5, a007898. [Google Scholar] [CrossRef]
- Luo, J. Glycogen Synthase Kinase 3β (GSK3β) in Tumorigenesis and Cancer Chemotherapy. Cancer Lett. 2009, 273, 194–200. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Q.; Yan, J.; Zhang, X.; Zheng, M. LncRNA MNX1-AS1 Promotes the Progression of Cervical Cancer through Activating MAPK Pathway. J. Cell. Biochem. 2018, 120, 4268–4277. [Google Scholar] [CrossRef]
- Yoshida, T.; Matsuda, M.; Hirashima, T. Incoherent Feedforward Regulation via Sox9 and ERK Underpins Mouse Tracheal Cartilage Development. Front. Cell Dev. Biol. 2020, 8, 585640. [Google Scholar] [CrossRef]
- Zhang, L.; Ge, S.; Cao, B. Long Non-Coding RNA MIAT Promotes Cervical Cancer Proliferation and Migration. J. Biochem. 2020, 168, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Zhu, J.; Fang, C.-L.; Jin, H.; Zhan, D.-P.; Huang, J. Down-Regulation of MIAT Suppresses Osteosarcoma Progression by Acting as a CeRNA for MiR-141-3p to Regulate SIX1-Mediated PI3K/AKT Pathway. Dir. Open Access J. 2020, 24, 2218–2228. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, B.; Li, Y.-L.; Yu, X.-R. SIX1 Reduces the Expression of PTEN via Activating PI3K/AKT Signal to Promote Cell Proliferation and Tumorigenesis in Osteosarcoma. Biomed. Pharmacother. 2018, 105, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, F.; Devreotes, P. Regulation of PTEN Function as a PIP3 Gatekeeper through Membrane Interaction. Cell Cycle 2006, 5, 1523–1527. [Google Scholar] [CrossRef]
- Pinheiro, N.A.; Villa, L.L. Low frequency of p53 mutations in cervical carcinomas among Brazilian women. Braz. J. Med. Biol. Res. 2001, 34, 727–733. [Google Scholar] [CrossRef]
- Odujoko, O.; Omoniyi-Esan, G.; Komolafe, A.; Adegoke, A.; Olasode, B. P53 and Ki67 Expression by Cervical Cancers in Ile-Ife, Nigeria. Br. J. Med. Med. Res. 2016, 17, 1–9. [Google Scholar] [CrossRef]
- Wei, W.; Liu, C. Prognostic and Predictive Roles of MicroRNA-411 and Its Target STK17A in Evaluating Radiotherapy Efficacy and Their Effects on Cell Migration and Invasion via the P53 Signaling Pathway in Cervical Cancer. Mol. Med. Rep. 2019, 21, 267–281. [Google Scholar] [CrossRef]
- Naik, D.; Kalle, A.M. MicroRNA-Mediated Epigenetic Regulation of HDAC8 and HDAC6: Functional Significance in Cervical Cancer. Non-Coding RNA Res. 2024, 9, 732–743. [Google Scholar] [CrossRef]
- Tian, W.; Lei, N.; Guo, R.; Zhang, Y.; Chang, L. Long Non-Coding RNA DANCR Promotes Cervical Cancer Growth via Activation of the Wnt/β-Catenin Signaling Pathway. Cancer Cell Int. 2020, 20, 61. [Google Scholar] [CrossRef]
- Hagen, T.; Cross, D.A.E.; Culbert, A.A.; West, A.; Frame, S.; Morrice, N.; Reith, A.D. FRAT1, a Substrate-Specific Regulator of Glycogen Synthase Kinase-3 Activity, Is a Cellular Substrate of Protein Kinase A. J. Biol. Chem. 2006, 281, 35021–35029. [Google Scholar] [CrossRef]
- Fernández, M.L.; DiMattia, G.E.; Dawson, A.; Bamford, S.; Anderson, S.; Hennessy, B.T.; Anglesio, M.S.; Shepherd, T.G.; Salamanca, C.; Hoenisch, J.; et al. Differences in MEK Inhibitor Efficacy in Molecularly Characterized Low-Grade Serous Ovarian Cancer Cell Lines. Am. J. Cancer Res. 2016, 6, 2235. [Google Scholar]
- Chen, H.; Song, X.; Li, H. Silencing of Long Non-Coding RNA CCHE1 Inhibits the Ovarian Cancer SKOV3 Cell Invasion and Migration and Inactivates the P38-MAPK Signaling Pathway. Biocell 2020, 44, 345–351. [Google Scholar] [CrossRef]
- Zou, A.; Liu, R.; Wu, X. Long Non-Coding RNA MALAT1 Is Up-Regulated in Ovarian Cancer Tissue and Promotes SK-OV-3 Cell Proliferation and Invasion. Neoplasma 2016, 63, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Song, K.; Hu, H.; Tian, Q.; Wang, W.; Dong, Q.; Yin, X.; Di, W. Long Non-Coding RNA GAS5 Inhibits DDP-Resistance and Tumor Progression of Epithelial Ovarian Cancer via GAS5-E2F4-PARP1-MAPK Axis. J. Exp. Clin. Cancer Res. 2019, 38, 345. [Google Scholar] [CrossRef] [PubMed]
- Parashar, D.; Geethadevi, A.; Mittal, S.; McAlarnen, L.; George, J.; Kadamberi, I.; Gupta, P.; Uyar, D.; Hopp, E.; Drendel, H.; et al. Patient-Derived Ovarian Cancer Spheroids Rely on PI3K-AKT Signaling Addiction for Cancer Stemness and Chemoresistance. Cancers 2022, 14, 958. [Google Scholar] [CrossRef]
- Varga, A.; Márton, É.; Markovics, A.; Penyige, A.; Balogh, I.; Nagy, B.; Szilágyi, M. Suppressing the PI3K/AKT Pathway by MiR-30d-5p Mimic Sensitizes Ovarian Cancer Cells to Cell Death Induced by High-Dose Estrogen. Biomedicines 2022, 10, 2060. [Google Scholar] [CrossRef]
- Moreno, C.S. SOX4: The Unappreciated Oncogene. Semin. Cancer Biol. 2020, 67, 57–64. [Google Scholar] [CrossRef]
- Pal, S.; Garg, M.; Pandey, A.K. Deciphering the Mounting Complexity of the P53 Regulatory Network in Correlation to Long Non-Coding RNAs (LncRNAs) in Ovarian Cancer. Cells 2020, 9, 527. [Google Scholar] [CrossRef]
- Blagih, J.; Buck, M.D.; Vousden, K.H. P53, Cancer and the Immune Response. J. Cell Sci. 2020, 133, jcs237453. [Google Scholar] [CrossRef] [PubMed]
- Alvarado-Ortiz, E.; de la Cruz-López, K.G.; Becerril-Rico, J.; Sarabia-Sánchez, M.A.; Ortiz-Sánchez, E.; García-Carrancá, A. Mutant P53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches. Front. Cell Dev. Biol. 2021, 8, 607670. [Google Scholar] [CrossRef] [PubMed]
- Kuang, D.; Zhang, X.; Hua, S.; Dong, W.; Li, Z. Long Non-Coding RNA TUG1 Regulates Ovarian Cancer Proliferation and Metastasis via Affecting Epithelial-Mesenchymal Transition. Exp. Mol. Pathol. 2016, 101, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, X.; Lv, H.; Wen, Q.; Li, J.; Tan, L.; Li, J.; Sheng, X. The Long Noncoding RNA MALAT-1 Is Highly Expressed in Ovarian Cancer and Induces Cell Growth and Migration. PLoS ONE 2016, 11, e0155250. [Google Scholar] [CrossRef]
- Nadin, S.B.; Cuello-Carrión, F.D.; Cayado-Gutiérrez, N.; Fanelli, M.A. Overview of Wnt/β-Catenin Pathway and DNA Damage/Repair in Cancer. Biology 2025, 14, 185. [Google Scholar] [CrossRef]
- Arend, R.C.; Londoño-Joshi, A.I.; Straughn, J.M.; Buchsbaum, D.J. The Wnt/β-Catenin Pathway in Ovarian Cancer: A Review. Gynecol. Oncol. 2013, 131, 772–779. [Google Scholar] [CrossRef]
- Wang, W.; Cho, U.; Yoo, A.; Jung, C.-L.; Kim, B.; Kim, H.; Lee, J.; Jo, H.; Han, Y.; Song, M.-H.; et al. Wnt/β-Catenin Inhibition by CWP232291 as a Novel Therapeutic Strategy in Ovarian Cancer. Front. Oncol. 2022, 12, 852260. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, H.; Long, M.; Song, L.; Meng, Z.; Lin, S.; Zhang, Y.; Qin, J. Icariin Attenuates the Tumor Growth by Targeting MiR-1-3p/TNKS2/Wnt/β-Catenin Signaling Axis in Ovarian Cancer. Front. Oncol. 2022, 12, 940926. [Google Scholar] [CrossRef]
- Wang, D.; Wang, D.; Wang, N.; Long, Z.; Ren, X. Long Non-Coding RNA BANCR Promotes Endometrial Cancer Cell Proliferation and Invasion by Regulating MMP2 and MMP1 via ERK/MAPK Signaling Pathway. Cell. Physiol. Biochem. 2016, 40, 644–656. [Google Scholar] [CrossRef]
- Ma, S.; Yang, D.; Liu, Y.; Wang, Y.; Lin, T.; Li, Y.; Yang, S.; Zhang, W.; Zhang, R. LncRNA BANCR Promotes Tumorigenesis and Enhances Adriamycin Resistance in Colorectal Cancer. Aging 2018, 10, 2062–2078. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, D.; Shi, H.; Bian, Y.; Guo, R. MiR-143 inhibits endometrial cancer cell proliferation and metastasis by targeting MAPK1. Oncotarget 2017, 8, 84384–84395. [Google Scholar] [CrossRef]
- Lai, T.; Qiu, H.; Si, L.; Zhen, Y.; Chu, D.; Guo, R. Long Noncoding RNA BMPR1B-AS1 Facilitates Endometrial Cancer Cell Proliferation and Metastasis by Sponging MiR-7-2-3p to Modulate the DCLK1/Akt/NF-ΚB Pathway. Cell Cycle 2022, 21, 1599–1618. [Google Scholar] [CrossRef] [PubMed]
- Qu, D.; Weygant, N.; Yao, J.; Chandrakesan, P.; Berry, W.L.; May, R.; Pitts, K.; Husain, S.; Lightfoot, S.; Li, M.; et al. Overexpression of DCLK1-al Increases Tumor Cell Invasion, Drug Resistance, and KRAS Activation and Can Be Targeted to Inhibit Tumorigenesis in Pancreatic Cancer. J. Oncol. 2019, 2019, 6402925. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS Mutation: From Undruggable to Druggable in Cancer. Signal Transduct. Target. Ther. 2021, 6, 386. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, H.; Zhang, L.; Hu, M.; Li, F.; Deng, J.; An, M.; Wu, S.; Ma, R.; Lu, J.; et al. Long Non-Coding RNA LINC00672 Contributes to P53 Protein-Mediated Gene Suppression and Promotes Endometrial Cancer Chemosensitivity. J. Biol. Chem. 2017, 292, 5801–5813. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Y.; Li, J.; Zhang, X.; Niu, G.; Chen, S.; Yao, S. Long Noncoding RNA LSINCT5 Promotes Endometrial Carcinoma Cell Proliferation, Cycle, and Invasion by Promoting the Wnt/β-Catenin Signaling Pathway Via HMGA2. Ther. Adv. Med. Oncol. 2019, 11, 175883591987464. [Google Scholar] [CrossRef]
- Li, D.; Cao, Y.; Wang, J.; Yang, H.; Liu, W.; Cui, J.; Wu, W. Regulatory Effect between HMGA2 and the Wnt/β-Catenin Signaling Pathway in the Carcinogenesis of Sporadic Colorectal Tubular Adenoma. Oncol. Lett. 2021, 22, 849. [Google Scholar] [CrossRef]
- Eastman, Q.; Grosschedl, R. Regulation of LEF-1/TCF Transcription Factors by Wnt and Other Signals. Curr. Opin. Cell Biol. 1999, 11, 233–240. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, A.; Szczesnowska, A.; Haddad, N.; Elbediwy, A.; Wehida, N. The Role of Non-Coding RNAs in the Regulation of Oncogenic Pathways in Breast and Gynaecological Cancers. Non-Coding RNA 2025, 11, 61. https://doi.org/10.3390/ncrna11040061
Ansari A, Szczesnowska A, Haddad N, Elbediwy A, Wehida N. The Role of Non-Coding RNAs in the Regulation of Oncogenic Pathways in Breast and Gynaecological Cancers. Non-Coding RNA. 2025; 11(4):61. https://doi.org/10.3390/ncrna11040061
Chicago/Turabian StyleAnsari, Ammar, Aleksandra Szczesnowska, Natalia Haddad, Ahmed Elbediwy, and Nadine Wehida. 2025. "The Role of Non-Coding RNAs in the Regulation of Oncogenic Pathways in Breast and Gynaecological Cancers" Non-Coding RNA 11, no. 4: 61. https://doi.org/10.3390/ncrna11040061
APA StyleAnsari, A., Szczesnowska, A., Haddad, N., Elbediwy, A., & Wehida, N. (2025). The Role of Non-Coding RNAs in the Regulation of Oncogenic Pathways in Breast and Gynaecological Cancers. Non-Coding RNA, 11(4), 61. https://doi.org/10.3390/ncrna11040061