Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,639)

Search Parameters:
Keywords = outcomes of scenarios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6168 KiB  
Article
Valorization of Sugarcane Bagasse in Thailand: An Economic Analysis of Ethanol and Co-Product Recovery via Organosolv Fractionation
by Suphalerk Khaowdang, Nopparat Suriyachai, Saksit Imman, Nathiya Kreetachat, Santi Chuetor, Surachai Wongcharee, Kowit Suwannahong, Methawee Nukunudompanich and Torpong Kreetachat
Sustainability 2025, 17(15), 7145; https://doi.org/10.3390/su17157145 (registering DOI) - 7 Aug 2025
Abstract
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the [...] Read more.
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the derivation of detailed mass and energy balances, which served as the foundational input for downstream cost modeling. Economic performance metrics, including the total annualized cost and minimum ethanol selling price, were systematically quantified for each scenario. Among the evaluated configurations, the formic acid-catalyzed organosolv system exhibited superior techno-economic attributes, achieving the lowest unit production costs of 1.14 USD/L for ethanol and 1.84 USD/kg for lignin, corresponding to an estimated ethanol selling price of approximately 1.14 USD/L. This favorable outcome was attained with only moderate capital intensity, indicating a well-balanced trade-off between operational efficiency and investment burden. Conversely, the sodium methoxide-based process configuration imposed the highest economic burden, with a TAC of 15.27 million USD/year, culminating in a markedly elevated MESP of 5.49 USD/kg (approximately 4.33 USD/L). The sulfuric acid-driven system demonstrated effective delignification performance. Sensitivity analysis revealed that reagent procurement costs exert the greatest impact on TAC variation, highlighting chemical expenditure as the key economic driver. These findings emphasize the critical role of solvent choice, catalytic performance, and process integration in improving the cost-efficiency of lignocellulosic ethanol production. Among the examined options, the formic acid-based organosolv process stands out as the most economically viable for large-scale implementation within Thailand’s bioeconomy. Full article
Show Figures

Figure 1

24 pages, 4902 KiB  
Article
A Classification Method for the Severity of Aloe Anthracnose Based on the Improved YOLOv11-seg
by Wenshan Zhong, Xuantian Li, Xuejun Yue, Wanmei Feng, Qiaoman Yu, Junzhi Chen, Biao Chen, Le Zhang, Xinpeng Cai and Jiajie Wen
Agronomy 2025, 15(8), 1896; https://doi.org/10.3390/agronomy15081896 (registering DOI) - 7 Aug 2025
Abstract
Anthracnose, a significant disease of aloe with characteristics of contact transmission, poses a considerable threat to the economic viability of aloe cultivation. To address the challenges of accurately detecting and classifying crop diseases in complex environments, this study proposes an enhanced algorithm, YOLOv11-seg-DEDB, [...] Read more.
Anthracnose, a significant disease of aloe with characteristics of contact transmission, poses a considerable threat to the economic viability of aloe cultivation. To address the challenges of accurately detecting and classifying crop diseases in complex environments, this study proposes an enhanced algorithm, YOLOv11-seg-DEDB, based on the improved YOLOv11-seg model. This approach integrates multi-scale feature enhancement and a dynamic attention mechanism, aiming to achieve precise segmentation of aloe anthracnose lesions and effective disease level discrimination in complex scenarios. Specifically, a novel Disease Enhance attention mechanism is introduced, combining spatial attention and max pooling to improve the accuracy of lesion segmentation. Additionally, the DCNv2 is incorporated into the network neck to enhance the model’s ability to extract multi-scale features from targets in challenging environments. Furthermore, the Bidirectional Feature Pyramid Network structure, which includes an additional p2 detection head, replaces the original PANet network. A more lightweight detection head structure is designed, utilizing grouped convolutions and structural simplifications to reduce both the parameter count and computational load, thereby enhancing the model’s inference capability, particularly for small lesions. Experiments were conducted using a self-collected dataset of aloe anthracnose infected leaves. The results demonstrate that, compared to the original model, the improved YOLOv11-seg-DEDB model improves segmentation accuracy and mAP@50 for infected lesions by 5.3% and 3.4%, respectively. Moreover, the model size is reduced from 6.0 MB to 4.6 MB, and the number of parameters is decreased by 27.9%. YOLOv11-seg-DEDB outperforms other mainstream segmentation models, providing a more accurate solution for aloe disease segmentation and grading, thereby offering farmers and professionals more reliable disease detection outcomes. Full article
(This article belongs to the Special Issue Smart Pest Control for Building Farm Resilience)
Show Figures

Figure 1

21 pages, 1788 KiB  
Article
Investigation, Prospects, and Economic Scenarios for the Use of Biochar in Small-Scale Agriculture in Tropical
by Vinicius John, Ana Rita de Oliveira Braga, Criscian Kellen Amaro de Oliveira Danielli, Heiriane Martins Sousa, Filipe Eduardo Danielli, Newton Paulo de Souza Falcão, João Guerra, Dimas José Lasmar and Cláudia S. C. Marques-dos-Santos
Agriculture 2025, 15(15), 1700; https://doi.org/10.3390/agriculture15151700 - 6 Aug 2025
Abstract
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from [...] Read more.
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from acai (Euterpe oleracea Mart.) agro-industrial residues as feedstock. The biochar produced was characterised in terms of its liming capacity (calcium carbonate equivalence, CaCO3eq), nutrient content via organic fertilisation methods, and ash analysis by ICP-OES. Field trials with cowpea assessed economic outcomes, as well scenarios of fractional biochar application and cost comparison between biochar production in the prototype kiln and a traditional earth-brick kiln. The prototype kiln showed production costs of USD 0.87–2.06 kg−1, whereas traditional kiln significantly reduced costs (USD 0.03–0.08 kg−1). Biochar application alone increased cowpea revenue by 34%, while combining biochar and lime raised cowpea revenues by up to 84.6%. Owing to high input costs and the low value of the crop, the control treatment generated greater net revenue compared to treatments using lime alone. Moreover, biochar produced in traditional kilns provided a 94% increase in net revenue compared to liming. The estimated externalities indicated that carbon credits represented the most significant potential source of income (USD 2217 ha−1). Finally, fractional biochar application in ten years can retain over 97% of soil carbon content, demonstrating potential for sustainable agriculture and carbon sequestration and a potential further motivation for farmers if integrated into carbon markets. Public policies and technological adaptations are essential for facilitating biochar adoption by small-scale tropical farmers. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

21 pages, 1557 KiB  
Review
Neoadjuvant Therapy or Upfront Surgery for Pancreatic Cancer—To Whom, When, and How?
by Daria Kwaśniewska, Marta Fudalej, Anna Maria Badowska-Kozakiewicz, Aleksandra Czerw and Andrzej Deptała
Cancers 2025, 17(15), 2584; https://doi.org/10.3390/cancers17152584 - 6 Aug 2025
Abstract
The management of resectable pancreatic ductal adenocarcinoma (R-PDAC) and borderline resectable pancreatic ductal adenocarcinoma (BR-PDAC) remains a topic of active debate. Although neoadjuvant therapy (NAT) has shown clinical benefits in BR-PDAC, especially in increasing resectability and achieving higher rates of margin-negative (R0) resections, [...] Read more.
The management of resectable pancreatic ductal adenocarcinoma (R-PDAC) and borderline resectable pancreatic ductal adenocarcinoma (BR-PDAC) remains a topic of active debate. Although neoadjuvant therapy (NAT) has shown clinical benefits in BR-PDAC, especially in increasing resectability and achieving higher rates of margin-negative (R0) resections, its role in R-PDAC is less clearly defined. Additionally, the role of immunotherapy in PDAC is still being explored, with ongoing trials investigating new combinations to overcome the tumor’s immune-resistant microenvironment. This article provides a comprehensive narrative review of the current evidence comparing NAT with upfront surgery in pancreatic cancer management, focusing on randomized controlled trials and meta-analyses that assess outcomes in R-PDAC and BR-PDAC. The review aims to determine whether NAT offers a significant survival advantage over traditional post-operative strategies and to clarify which clinical scenarios may benefit most from NAT. The literature was identified through a systematic search of PubMed, Scopus, and Google Scholar databases up to March 2025. Article selection adhered to the PRISMA guidelines. Our review of existing evidence supports NAT as the standard of care for BR-PDAC. Meanwhile, management of R-PDAC should be tailored individually, guided by risk stratification that considers both clinical parameters and molecular features. Immunotherapy and targeted therapies are still in early research phases, and their further integration as NAT remains controversial. Full article
Show Figures

Figure 1

20 pages, 4719 KiB  
Systematic Review
Levosimendan vs. Dobutamine in Patients with Septic Shock: A Systematic Review and Meta-Analysis with Trial Sequential Analysis
by Edith Elianna Rodríguez, German Alberto Devia Jaramillo, Lissa María Rivera Cuellar, Santiago Eduardo Pérez Herran, David René Rodríguez Lima and Antoine Herpain
J. Clin. Med. 2025, 14(15), 5496; https://doi.org/10.3390/jcm14155496 - 5 Aug 2025
Viewed by 91
Abstract
Introduction: Septic-induced cardiomyopathy (SICM) is a life-threatening condition in patients with septic shock. Persistent hypoperfusion despite adequate volume status and vasopressor use is associated with poor outcomes and is currently managed with inotropes. However, the superiority of available inotropic agents remains unclear. This [...] Read more.
Introduction: Septic-induced cardiomyopathy (SICM) is a life-threatening condition in patients with septic shock. Persistent hypoperfusion despite adequate volume status and vasopressor use is associated with poor outcomes and is currently managed with inotropes. However, the superiority of available inotropic agents remains unclear. This meta-analysis aims to determine which inotropic agent may be more effective in this clinical scenario. Methods: A systematic review and meta-analysis were conducted, including data from randomized clinical trials (RCTs) comparing levosimendan and dobutamine in patients with septic shock and persistent hypoperfusion. Summary effect estimates, including odds ratios (ORs), standardized mean differences (SMDs), and 95% confidence intervals (CIs), were calculated using a random-effects model. Trial sequential analysis (TSA) was also performed. Results: Of 244 studies screened, 11 RCTs were included. Levosimendan was associated with a reduction in in-hospital mortality (OR 0.64; 95% CI: 0.47; 0.88) and ICU length of stay (SMD 5.87; 95% CI: –8.37; 20.11) compared with dobutamine. Treatment with levosimendan also resulted in significant reductions in BNP (SMD –1.87; 95% CI: –2.45; −1.2) and serum lactate levels (SMD –1.63; 95% CI: –3.13; −0.12). However, TSA indicated that the current evidence is insufficient to definitively confirm or exclude effects on in-hospital and 28-day mortality. Conclusions: Levosimendan may improve hemodynamics, tissue perfusion, and biomarkers, and may reduce in-hospital mortality and ICU length of stay in patients with SICM compared with dobutamine. However, TSA highlights the need for further studies to inform clinical practice and optimize inotrope selection. Full article
(This article belongs to the Special Issue Sepsis: Current Updates and Perspectives)
Show Figures

Figure 1

18 pages, 2365 KiB  
Article
Integrated Environmental–Economic Assessment of CO2 Storage in Chinese Saline Formations
by Wentao Zhao, Zhe Jiang, Tieya Jing, Jian Zhang, Zhan Yang, Xiang Li, Juan Zhou, Jingchao Zhao and Shuhui Zhang
Water 2025, 17(15), 2320; https://doi.org/10.3390/w17152320 - 4 Aug 2025
Viewed by 208
Abstract
This study develops an integrated environmental–economic assessment framework to evaluate the life cycle environmental impacts and economic costs of CO2 geological storage and produced water treatment in saline formations in China. Using a case study of a saline aquifer carbon storage project [...] Read more.
This study develops an integrated environmental–economic assessment framework to evaluate the life cycle environmental impacts and economic costs of CO2 geological storage and produced water treatment in saline formations in China. Using a case study of a saline aquifer carbon storage project in the Ordos Basin, eight full-chain carbon capture, utilization, and storage (CCUS) scenarios were analyzed. The results indicate that environmental and cost performance are primarily influenced by technology choices across carbon capture, transport, and storage stages. The scenario employing potassium carbonate-based capture, pipeline transport, and brine reinjection after a reverse osmosis treatment (S5) achieved the most balanced outcome. Breakeven analyses under three carbon price projection models revealed that carbon price trajectories critically affect project viability, with a steadily rising carbon price enabling earlier profitability. By decoupling CCUS from power systems and focusing on unit CO2 removal, this study provides a transparent and transferable framework to support cross-sectoral deployment. The findings offer valuable insights for policymakers aiming to design effective CCUS support mechanisms under future carbon neutrality targets. Full article
(This article belongs to the Special Issue Mine Water Treatment, Utilization and Storage Technology)
Show Figures

Figure 1

26 pages, 20835 KiB  
Article
Reverse Mortgages and Pension Sustainability: An Agent-Based and Actuarial Approach
by Francesco Rania
Risks 2025, 13(8), 147; https://doi.org/10.3390/risks13080147 - 4 Aug 2025
Viewed by 211
Abstract
Population aging poses significant challenges to the sustainability of pension systems. This study presents an integrated methodological approach that uniquely combines actuarial life-cycle modeling with agent-based simulation to assess the potential of Reverse Mortgage Loans (RMLs) as a dual lever for enhancing retiree [...] Read more.
Population aging poses significant challenges to the sustainability of pension systems. This study presents an integrated methodological approach that uniquely combines actuarial life-cycle modeling with agent-based simulation to assess the potential of Reverse Mortgage Loans (RMLs) as a dual lever for enhancing retiree welfare and supporting pension system resilience under demographic and financial uncertainty. We explore Reverse Mortgage Loans (RMLs) as a potential financial instrument to support retirees while alleviating pressure on public pensions. Unlike prior research that treats individual decisions or policy outcomes in isolation, our hybrid model explicitly captures feedback loops between household-level behavior and system-wide financial stability. To test our hypothesis that RMLs can improve individual consumption outcomes and bolster systemic solvency, we develop a hybrid model combining actuarial techniques and agent-based simulations, incorporating stochastic housing prices, longevity risk, regulatory capital requirements, and demographic shifts. This dual-framework enables a structured investigation of how micro-level financial decisions propagate through market dynamics, influencing solvency, pricing, and adoption trends. Our central hypothesis is that reverse mortgages, when actuarially calibrated and macroprudentially regulated, enhance individual financial well-being while preserving long-run solvency at the system level. Simulation results indicate that RMLs can improve consumption smoothing, raise expected utility for retirees, and contribute to long-term fiscal sustainability. Moreover, we introduce a dynamic regulatory mechanism that adjusts capital buffers based on evolving market and demographic conditions, enhancing system resilience. Our simulation design supports multi-scenario testing of financial robustness and policy outcomes, providing a transparent tool for stress-testing RML adoption at scale. These findings suggest that, when well-regulated, RMLs can serve as a viable supplement to traditional retirement financing. Rather than offering prescriptive guidance, this framework provides insights to policymakers, financial institutions, and regulators seeking to integrate RMLs into broader pension strategies. Full article
Show Figures

Figure 1

24 pages, 34850 KiB  
Article
New Belgrade’s Thermal Mosaic: Investigating Climate Performance in Urban Heritage Blocks Beyond Coverage Ratios
by Saja Kosanović, Đurica Marković and Marija Stamenković
Atmosphere 2025, 16(8), 935; https://doi.org/10.3390/atmos16080935 (registering DOI) - 3 Aug 2025
Viewed by 122
Abstract
This study investigated the nuanced influence of urban morphology on the thermal performance of nine mass housing blocks (21–26, 28–30) in New Belgrade’s Central Zone. These blocks, showcasing diverse structures, provided a robust basis for evaluating the design parameters. ENVI-met simulations were used [...] Read more.
This study investigated the nuanced influence of urban morphology on the thermal performance of nine mass housing blocks (21–26, 28–30) in New Belgrade’s Central Zone. These blocks, showcasing diverse structures, provided a robust basis for evaluating the design parameters. ENVI-met simulations were used to assess two scenarios: an “asphalt-only” environment, isolating the urban structure’s impact, and a “real-world” scenario, including green infrastructure (GI). Overall, the findings emphasize that while GI offers mitigation, the inherent urban built structure fundamentally determines thermal outcomes. An urban block’s thermal performance, it turns out, is a complex interplay between morphological factors and local climate. Crucially, simple metrics like Green Area Percentage (GAP) and Building Coverage Ratio (BCR) proved unreliable predictors of thermal performance. This highlights the critical need for urban planning regulations to evolve beyond basic surface indicators and embrace sophisticated, context-sensitive design principles for effective heat mitigation. Optimal performance arises from morphologies that actively manage heat accumulation and facilitate its dissipation, a characteristic exemplified by Block 22’s integrated design. However, even the best-performing Block 22 remains warmer compared to denser central areas, suggesting that urban densification can be a strategy for heat mitigation. Given New Belgrade’s blocks are protected heritage, targeted GI reinforcements remain the only viable approach for improving the outdoor thermal comfort. Full article
Show Figures

Figure 1

33 pages, 4098 KiB  
Systematic Review
Pharmacological Inhibition of the PI3K/AKT/mTOR Pathway in Rheumatoid Arthritis Synoviocytes: A Systematic Review and Meta-Analysis (Preclinical)
by Tatiana Bobkova, Artem Bobkov and Yang Li
Pharmaceuticals 2025, 18(8), 1152; https://doi.org/10.3390/ph18081152 - 2 Aug 2025
Viewed by 366
Abstract
Background/Objectives: Constitutive activation of the PI3K/AKT/mTOR signaling cascade underlies the aggressive phenotype of fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA); however, a quantitative synthesis of in vitro data on pathway inhibition remains lacking. This systematic review and meta-analysis aimed to (i) aggregate [...] Read more.
Background/Objectives: Constitutive activation of the PI3K/AKT/mTOR signaling cascade underlies the aggressive phenotype of fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA); however, a quantitative synthesis of in vitro data on pathway inhibition remains lacking. This systematic review and meta-analysis aimed to (i) aggregate standardized effects of pathway inhibitors on proliferation, apoptosis, migration/invasion, IL-6/IL-8 secretion, p-AKT, and LC3; (ii) assess heterogeneity and identify key moderators of variability, including stimulus type, cell source, and inhibitor class. Methods: PubMed, Europe PMC, and the Cochrane Library were searched up to 18 May 2025 (PROSPERO CRD420251058185). Twenty of 2684 screened records met eligibility. Two reviewers independently extracted data and assessed study quality with SciRAP. Standardized mean differences (Hedges g) were pooled using a Sidik–Jonkman random-effects model with Hartung–Knapp confidence intervals. Heterogeneity (τ2, I2), 95% prediction intervals, and meta-regression by cell type were calculated; robustness was tested with REML-HK, leave-one-out, and Baujat diagnostics. Results: PI3K/AKT/mTOR inhibition markedly reduced proliferation (to –5.1 SD), IL-6 (–11.1 SD), and IL-8 (–6.5 SD) while increasing apoptosis (+2.7 SD). Fourteen of seventeen outcome clusters showed large effects (|g| ≥ 0.8), with low–moderate heterogeneity (I2 ≤ 35% in 11 clusters). Prediction intervals crossed zero only in small k-groups; sensitivity analyses shifted pooled estimates by ≤0.05 SD. p-AKT and p-mTOR consistently reflected functional changes and emerged as reliable pharmacodynamic markers. Conclusions: Targeted blockade of PI3K/AKT/mTOR robustly suppresses the proliferative and inflammatory phenotype of RA-FLSs, reaffirming this axis as a therapeutic target. The stability of estimates across multiple analytic scenarios enhances confidence in these findings and highlights p-AKT and p-mTOR as translational response markers. The present synthesis provides a quantitative basis for personalized dual-PI3K/mTOR strategies and supports the adoption of standardized long-term preclinical protocols. Full article
Show Figures

Graphical abstract

20 pages, 5875 KiB  
Article
Optimizing Rock Bolt Support for Large Underground Structures Using 3D DFN-DEM Method
by Nooshin Senemarian Isfahani, Amin Azhari, Hem B. Motra, Hamid Hashemalhoseini, Mohammadreza Hajian Hosseinabadi, Alireza Baghbanan and Mohsen Bazargan
Geosciences 2025, 15(8), 293; https://doi.org/10.3390/geosciences15080293 - 2 Aug 2025
Viewed by 228
Abstract
A systematic sensitivity analysis using three-dimensional discrete element models with discrete fracture networks (DEM-DFN) was conducted to evaluate underground excavation support in jointed rock masses at the CLAB2 site in Southeastern Sweden. The site features a joint network comprising six distinct joint sets, [...] Read more.
A systematic sensitivity analysis using three-dimensional discrete element models with discrete fracture networks (DEM-DFN) was conducted to evaluate underground excavation support in jointed rock masses at the CLAB2 site in Southeastern Sweden. The site features a joint network comprising six distinct joint sets, each with unique geometrical properties. The study examined 10 DFNs and 19 rock bolt patterns, both conventional and unconventional. It covered 200 scenarios, including 10 unsupported and 190 supported cases. Technical and economic criteria for stability were assessed for each support system. The results indicated that increasing rock bolt length enhances stability up to a certain point. However, multi-length rock bolt patterns with similar consumption can yield significantly different stability outcomes. Notably, the arrangement and properties of rock bolts are crucial for stability, particularly in blocks between bolting sections. These blocks remain interlocked in unsupported areas due to the induced pressure from supported sections. Although equal-length rock bolt patterns are commonly used, the analysis revealed that triple-length rock bolts (3, 6, and 9 m) provided the most effective support across all ten DFN scenarios. Full article
(This article belongs to the Special Issue Computational Geodynamic, Geotechnics and Geomechanics)
Show Figures

Figure 1

20 pages, 5219 KiB  
Article
Utilizing a Transient Electromagnetic Inversion Method with Lateral Constraints in the Goaf of Xiaolong Coal Mine, Xinjiang
by Yingying Zhang, Bin Xie and Xinyu Wu
Appl. Sci. 2025, 15(15), 8571; https://doi.org/10.3390/app15158571 (registering DOI) - 1 Aug 2025
Viewed by 186
Abstract
The abandoned goaf resulting from coal resource integration in China poses a significant threat to coal mine safety. The transient electromagnetic method (TEM) has emerged as a crucial technology for detecting goafs in coal mines due to its adaptable equipment and efficient implementation. [...] Read more.
The abandoned goaf resulting from coal resource integration in China poses a significant threat to coal mine safety. The transient electromagnetic method (TEM) has emerged as a crucial technology for detecting goafs in coal mines due to its adaptable equipment and efficient implementation. In recent years, small-loop TEM has demonstrated high resolution and adaptability in challenging terrains with vegetation, such as coal mine ponding areas, karst regions, and reservoir seepage scenarios. By considering the sedimentary characteristics of coal seams and addressing the resistivity changes encountered in single-point inversion, a joint optimization inversion process incorporating lateral weighting factors and vertical roughness constraints has been developed to enhance the connectivity between adjacent survey points and improve the continuity of inversion outcomes. Through an OCCAM inversion approach, the regularization factor is dynamically determined by evaluating the norms of the data objective function and model objective function in each iteration, thereby reducing the reliance of inversion results on the initial model. Using the Xiaolong Coal Mine as a geological context, the impact of lateral and vertical weighting factors on the inversion outcomes of high- and low-resistivity structural models is examined through a control variable method. The analysis reveals that optimal inversion results are achieved with a combination of a lateral weighting factor of 0.5 and a vertical weighting factor of 0.1, ensuring both result continuity and accurate depiction of vertical and lateral electrical interfaces. The practical application of this approach validates its effectiveness, offering theoretical support and technical assurance for old goaf detection in coal mines, thereby holding significant engineering value. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 2724 KiB  
Article
Uncertainty-Aware Earthquake Forecasting Using a Bayesian Neural Network with Elastic Weight Consolidation
by Changchun Liu, Yuting Li, Huijuan Gao, Lin Feng and Xinqian Wu
Buildings 2025, 15(15), 2718; https://doi.org/10.3390/buildings15152718 - 1 Aug 2025
Viewed by 99
Abstract
Effective earthquake early warning (EEW) is essential for disaster prevention in the built environment, enabling a rapid structural response, system shutdown, and occupant evacuation to mitigate damage and casualties. However, most current EEW systems lack rigorous reliability analyses of their predictive outcomes, limiting [...] Read more.
Effective earthquake early warning (EEW) is essential for disaster prevention in the built environment, enabling a rapid structural response, system shutdown, and occupant evacuation to mitigate damage and casualties. However, most current EEW systems lack rigorous reliability analyses of their predictive outcomes, limiting their effectiveness in real-world scenarios—especially for on-site warnings, where data are limited and time is critical. To address these challenges, we propose a Bayesian neural network (BNN) framework based on Stein variational gradient descent (SVGD). By performing Bayesian inference, we estimate the posterior distribution of the parameters, thus outputting a reliability analysis of the prediction results. In addition, we incorporate a continual learning mechanism based on elastic weight consolidation, allowing the system to adapt quickly without full retraining. Our experiments demonstrate that our SVGD-BNN model significantly outperforms traditional peak displacement (Pd)-based approaches. In a 3 s time window, the Pearson correlation coefficient R increases by 9.2% and the residual standard deviation SD decreases by 24.4% compared to a variational inference (VI)-based BNN. Furthermore, the prediction variance generated by the model can effectively reflect the uncertainty of the prediction results. The continual learning strategy reduces the training time by 133–194 s, enhancing the system’s responsiveness. These features make the proposed framework a promising tool for real-time, reliable, and adaptive EEW—supporting disaster-resilient building design and operation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 1505 KiB  
Review
Biological Macromolecule-Based Dressings for Combat Wounds: From Collagen to Growth Factors—A Review
by Wojciech Kamysz and Patrycja Kleczkowska
Med. Sci. 2025, 13(3), 106; https://doi.org/10.3390/medsci13030106 - 1 Aug 2025
Viewed by 391
Abstract
Wound care in military and combat environments poses distinct challenges that set it apart from conventional medical practice in civilian settings. The nature of injuries sustained on the battlefield—often complex, contaminated, and involving extensive tissue damage—combined with limited access to immediate medical intervention, [...] Read more.
Wound care in military and combat environments poses distinct challenges that set it apart from conventional medical practice in civilian settings. The nature of injuries sustained on the battlefield—often complex, contaminated, and involving extensive tissue damage—combined with limited access to immediate medical intervention, significantly increases the risk of infection, delayed healing, and adverse outcomes. Traditional wound dressings frequently prove inadequate under such extreme conditions, as they have not been designed to address the specific physiological and logistical constraints present during armed conflicts. This review provides a comprehensive overview of recent progress in the development of advanced wound dressings tailored for use in military scenarios. Special attention has been given to multifunctional dressings that go beyond basic wound coverage by incorporating biologically active macromolecules such as collagen, chitosan, thrombin, alginate, therapeutic peptides, and growth factors. These compounds contribute to properties including moisture balance control, exudate absorption, microbial entrapment, and protection against secondary infection. This review highlights the critical role of advanced wound dressings in improving medical outcomes for injured military personnel. The potential of these technologies to reduce complications, enhance healing rates, and ultimately save lives underscores their growing importance in modern battlefield medicine. Full article
(This article belongs to the Collection Advances in Skin Wound Healing)
Show Figures

Figure 1

20 pages, 5647 KiB  
Article
Research on the Improved ICP Algorithm for LiDAR Point Cloud Registration
by Honglei Yuan, Guangyun Li, Li Wang and Xiangfei Li
Sensors 2025, 25(15), 4748; https://doi.org/10.3390/s25154748 - 1 Aug 2025
Viewed by 263
Abstract
Over three decades of research has been undertaken on point cloud registration algorithms, resulting in mature theoretical frameworks and methodologies. However, among the numerous registration techniques used, the impact of point cloud scanning quality on registration outcomes has rarely been addressed. In most [...] Read more.
Over three decades of research has been undertaken on point cloud registration algorithms, resulting in mature theoretical frameworks and methodologies. However, among the numerous registration techniques used, the impact of point cloud scanning quality on registration outcomes has rarely been addressed. In most engineering and industrial measurement applications, the accuracy and density of LiDAR point clouds are highly dependent on laser scanners, leading to significant variability that critically affects registration quality. Key factors influencing point cloud accuracy include scanning distance, incidence angle, and the surface characteristics of the target. Notably, in short-range scanning scenarios, incidence angle emerges as the dominant error source. Building on this insight, this study systematically investigates the relationship between scanning incidence angles and point cloud quality. We propose an incident-angle-dependent weighting function for point cloud observations, and further develop an improved weighted Iterative Closest Point (ICP) registration algorithm. Experimental results demonstrate that the proposed method achieves approximately 30% higher registration accuracy compared to traditional ICP algorithms and a 10% improvement over Faro SCENE’s proprietary solution. Full article
Show Figures

Figure 1

27 pages, 6094 KiB  
Article
National Multi-Scenario Simulation of Low-Carbon Land Use to Achieve the Carbon-Neutrality Target in China
by Junjun Zhi, Chenxu Han, Qiuchen Yan, Wangbing Liu, Likang Zhang, Zuyuan Wang, Xinwu Fu and Haoshan Zhao
Earth 2025, 6(3), 85; https://doi.org/10.3390/earth6030085 (registering DOI) - 1 Aug 2025
Viewed by 171
Abstract
Refining the land use structure can boost land utilization efficiency and curtail regional carbon emissions. Nevertheless, prior research has predominantly concentrated on static linear planning analysis. It has failed to account for how future dynamic alterations in driving factors (such as GDP and [...] Read more.
Refining the land use structure can boost land utilization efficiency and curtail regional carbon emissions. Nevertheless, prior research has predominantly concentrated on static linear planning analysis. It has failed to account for how future dynamic alterations in driving factors (such as GDP and population) affect simulation outcomes and how the land use spatial configuration impacts the attainment of the carbon-neutrality goal. In this research, 1 km spatial resolution LULC products were employed to meticulously simulate multiple land use scenarios across China at the national level from 2030 to 2060. This was performed by taking into account the dynamic changes in driving factors. Subsequently, an analysis was carried out on the low-carbon land use spatial structure required to reach the carbon-neutrality target. The findings are as follows: (1) When employing the PLUS (Patch—based Land Use Simulation) model to conduct simulations of various land use scenarios in China by taking into account the dynamic alterations in driving factors, a high degree of precision was attained across diverse scenarios. The sustainable development scenario demonstrated the best performance, with kappa, OA, and FoM values of 0.9101, 93.15%, and 0.3895, respectively. This implies that the simulation approach based on dynamic factors is highly suitable for national-scale applications. (2) The simulation accuracy of the PLUS and GeoSOS-FLUS (Systems for Geographical Modeling and Optimization, Simulation of Future Land Utilization) models was validated for six scenarios by extrapolating the trends of influencing factors. Moreover, a set of scenarios was added to each model as a control group without extrapolation. The present research demonstrated that projecting the trends of factors having an impact notably improved the simulation precision of both the PLUS and GeoSOS-FLUS models. When contrasted with the GeoSOS-FLUS model, the PLUS model attained superior simulation accuracy across all six scenarios. The highest precision indicators were observed in the sustainable development scenario, with kappa, OA, and FoM values reaching 0.9101, 93.15%, and 0.3895, respectively. The precise simulation method of the PLUS model, which considers the dynamic changes in influencing factors, is highly applicable at the national scale. (3) Under the sustainable development scenario, it is anticipated that China’s land use carbon emissions will reach their peak in 2030 and achieve the carbon-neutrality target by 2060. Net carbon emissions are expected to decline by 14.36% compared to the 2020 levels. From the perspective of dynamic changes in influencing factors, the PLUS model was used to accurately simulate China’s future land use. Based on these simulations, multi-scenario predictions of future carbon emissions were made, and the results uncover the spatiotemporal evolution characteristics of China’s carbon emissions. This study aims to offer a solid scientific basis for policy-making related to China’s low-carbon economy and high-quality development. It also intends to present Chinese solutions and key paths for achieving carbon peak and carbon neutrality. Full article
Show Figures

Figure 1

Back to TopTop