Pharmacological Inhibition of the PI3K/AKT/mTOR Pathway in Rheumatoid Arthritis Synoviocytes: A Systematic Review and Meta-Analysis (Preclinical)
Abstract
1. Introduction
2. Methodology
2.1. Design and Registration
2.2. Search Strategy
- AND
- AND
- AND
2.3. Inclusion and Exclusion Criteria
2.4. Study Selection, Screening, and Data Extraction
2.5. Quality Assessment of Included Studies
2.6. Statistical Analysis
3. Results
3.1. Risk of Bias Assessment (RoB) Using the SciRAP Tool
3.2. Quantitative Synthesis of Aggregated Effects
3.2.1. Phenotypic Effects of PI3K/AKT/mTOR Inhibitors
3.2.2. Effects on the Production of Proinflammatory Cytokines
3.2.3. Alterations in PI3K/AKT/mTOR Signaling Cascade Activity
3.2.4. Meta-Regression Analysis of the Impact of Cell Type on Effect Size
3.3. Qualitative Synthesis: Classification and Mechanisms of Interventions Targeting the PI3K/AKT/mTOR Axis
3.3.1. General Characteristics of Included Studies
3.3.2. Classical Pharmacological Agents and Drug Repurposing (n = 7)
3.3.3. Targeted Small-Molecule Inhibitors (n = 17)
3.3.4. Phytochemical Agents and TCM Formulations (n = 20)
3.3.5. Genetic and Epigenetic Interventions (n = 10)
3.3.6. Nanoplatforms, Biomaterials, and Physical Methods of Intervention (n = 5)
4. Discussion
4.1. Brief Summary of the Obtained Data
4.2. Biological Interpretation of the Results
4.2.1. Disruption of the “FLS–Macrophage” Inflammatory Circuit
4.2.2. Cellular Phenotype: Proliferation, Apoptosis, and Pannus Regression
4.2.3. p-AKT → p-mTOR—A Druggable “Bottleneck” of the Cascade
4.3. Comparison with the Existing Literature
4.3.1. Translatability of In Vitro Signals to Models of Articular Arthritis
4.3.2. Clinical Observations and “Rapamycin-like” Signals
4.3.3. “Negative” Results
4.4. Unresolved Research Questions
- The standardization of long-term in vitro protocols;
- Rigorous validation using multidonor 3D models;
- Comprehensive toxicological assessment of delivery platforms.
4.5. Clinical Stratification, Biomarkers, and Recommendations for Future Trials
4.6. Practical Implications and Clinical Translation
4.6.1. Preclinical Solutions: Dose Calibration and Prospective Optimization of Statistical Power
4.6.2. Clinical Solutions: Surrogate Biomarkers and Adaptive Early-Phase Trial Design
4.6.3. Laboratory Quality Control Measures
5. Limitations and Methodological Considerations
5.1. Limitations of Primary Studies
5.2. Limitations of the Meta-Analysis Itself
6. Conclusions
7. Use of Artificial Intelligence
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronym | Full Term |
RA | Rheumatoid Arthritis |
FLSs | Fibroblast-like Synoviocytes |
RA-FLS | Rheumatoid Arthritis Fibroblast-like Synoviocytes |
PI3K | Phosphoinositide 3-Kinase |
AKT | Protein Kinase B (AKT) |
mTOR | Mechanistic Target of Rapamycin |
TNF-α | Tumor Necrosis Factor Alpha |
IL-6 | Interleukin 6 |
IL-8 | Interleukin 8 |
MH7A | MH7A (Human RA Synoviocyte Cell Line) |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
SMD | Standardized Mean Difference |
SD | Standard Deviation |
qPCR | Quantitative Polymerase Chain Reaction |
ELISA | Enzyme-Linked Immunosorbent Assay |
Note: Full table in Supplementary Table S15. |
References
- Zheng, Y.; Wei, K.; Jiang, P.; Zhao, J.; Shan, Y.; Shi, Y.; Zhao, F.; Chang, C.; Li, Y.; Zhou, M.; et al. Macrophage polarization in rheumatoid arthritis: Signaling pathways, metabolic reprogramming, and crosstalk with synovial fibroblasts. Front. Immunol. 2024, 15, 1394108. [Google Scholar] [CrossRef]
- Németh, T.; Nagy, G.; Pap, T. Synovial fibroblasts as potential drug targets in rheumatoid arthritis, where do we stand and where shall we go? Ann. Rheum. Dis. 2022, 81, 1058–1067. [Google Scholar] [CrossRef]
- de Oliveira, P.G.; Farinon, M.; Sanchez-Lopez, E.; Miyamoto, S.; Guma, M. Fibroblast-Like Synoviocytes Glucose Metabolism as a Therapeutic Target in Rheumatoid Arthritis. Front. Immunol. 2019, 10, 1743. [Google Scholar] [CrossRef] [PubMed]
- Ramezanidoraki, N.; Ouardi, D.E.; Le, M.; Moriceau, S.; Ahmadi, M.; Dossi, E.; Rolland, D.; Bun, P.; Le Pen, G.; Canaud, G.; et al. Activation of the PI3K/AKT/mTOR Pathway in Cajal–Retzius Cells Leads to Their Survival. Int. J. Mol. Sci. 2023, 24, 5376. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Xu, M.; Xu, S.; Zhang, S.; Lin, W.; Li, H.; Zeng, S.; Qiu, Q.; Liang, L.; Xiao, Y.; et al. Myricitrin inhibits fibroblast-like synoviocyte-mediated rheumatoid synovial inflammation and joint destruction by targeting AIM2. Front. Pharmacol. 2022, 13, 905376. [Google Scholar] [CrossRef] [PubMed]
- Barker, B.E.; Hanlon, M.M.; Marzaioli, V.; Smith, C.M.; Cunningham, C.C.; Fletcher, J.M.; Veale, D.J.; Fearon, U.; Canavan, M. The mammalian target of rapamycin contributes to synovial fibroblast pathogenicity in rheumatoid arthritis. Front. Med. 2023, 10, 1029021. [Google Scholar] [CrossRef]
- Njunge, L.W.; Liu, K.; Xiong, C.; Chen, L.; He, Q.; Wang, P.; Huang, G.; Li, Y.; Abhulimen, P.O.; Cheng, W.; et al. Deficient QPRT drives trans-Golgi NAD+ hyperinflation and pathological protein secretion in rheumatoid arthritis. medRxiv 2024. Preprint. [Google Scholar] [CrossRef]
- Tang, M. RNAcompare: Integrating machine learning algorithms to unveil the similarities of phenotypes based on patients’ clinical, multi-omics using Rheumatoid Arthritis and Heart Failure as Case Studies. bioRxiv 2025. Preprint. [Google Scholar] [CrossRef]
- Karonitsch, T.; Kandasamy, R.K.; Kartnig, F.; Herdy, B.; Dalwigk, K.; Niederreiter, B.; Holinka, J.; Sevelda, F.; Windhager, R.; Bilban, M.; et al. mTOR senses environmental cues to shape the fibroblast-like synoviocyte response to inflammation. Cell Rep. 2018, 23, 2157–2167. [Google Scholar] [CrossRef]
- Sugiura, T.; Kamino, H.; Nariai, Y.; Murakawa, Y.; Kondo, M.; Kawakami, M.; Ikeda, N.; Uchio, Y.; Urano, T. Screening of a panel of low molecular weight compounds that inhibit synovial fibroblast invasion in rheumatoid arthritis. J. Immunol. 2020, 205, 3277–3290. [Google Scholar] [CrossRef]
- Zhang, F.; Cheng, T.; Zhang, S.-X. Mechanistic target of rapamycin (mTOR): A potential new therapeutic target for rheumatoid arthritis. Arthritis Res. Ther. 2023, 25, 187. [Google Scholar] [CrossRef]
- Ba, X.; Huang, Y.; Shen, P.; Huang, Y.; Wang, H.; Han, L.; Lin, W.J.; Yan, H.J.; Xu, L.J.; Qin, K.; et al. WTD attenuating rheumatoid arthritis via suppressing angiogenesis and modulating the PI3K/AKT/mTOR/HIF-1α pathway. Front. Pharmacol. 2021, 12, 696802. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B.; PRISMA-S Group. PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Roth, N.; Zilliacus, J.; Beronius, A. Development of the SciRAP Approach for Evaluating the Reliability and Relevance of in vitro Toxicity Data. Front. Toxicol. 2021, 3, 746430. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Version 6.5 (updated February 2024); Cochrane: London, UK, 2024. [Google Scholar] [CrossRef]
- Chen, X.; Lin, H.; Chen, J.; Wu, L.; Zhu, J.; Ye, Y.; Chen, S.; Du, H.; Li, J. Paclitaxel inhibits synoviocyte migration and inflammatory mediator production in rheumatoid arthritis. Front. Pharmacol. 2021, 12, 714566. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Fan, J.; Lin, H.; Yang, X.; Ye, Y.; Liang, L.; Zhan, Z.; Dong, X.; Sun, L.; Xu, H. The anti-malaria agent artesunate inhibits expression of vascular endothelial growth factor and hypoxia-inducible factor-1α in human rheumatoid arthritis fibroblast-like synoviocyte. Rheumatol. Int. 2011, 31, 53–60. [Google Scholar] [CrossRef]
- Xu, H.; He, Y.; Yang, X.; Liang, L.; Zhan, Z.; Ye, Y.; Yang, X.; Lian, F.; Sun, L. Anti-malarial agent artesunate inhibits TNF-α-induced production of proinflammatory cytokines via inhibition of NF-κB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology 2007, 46, 920–926. [Google Scholar] [CrossRef]
- Zhu, C.; Wen, S.; Li, J.; Meng, H.; Zhang, J.; Zhao, K.; Wang, L.; Zhang, Y. FTY720 inhibits the development of collagen-induced arthritis in mice by suppressing the recruitment of CD4+ T lymphocytes. Drug Des. Dev. Ther. 2021, 15, 1981–1992. [Google Scholar] [CrossRef]
- Cao, L.; Jiang, H.; Yang, J.; Mao, J.; Wei, G.; Meng, X.; Zang, H. LncRNA MIR31HG is induced by tocilizumab and ameliorates rheumatoid arthritis fibroblast-like synoviocyte-mediated inflammation via miR-214-PTEN-AKT signaling pathway. Aging 2021, 13, 24385–24398. [Google Scholar] [CrossRef]
- Liu, R.; Song, Y.; Li, C.; Zhang, Z.; Xue, Z.; Huang, Q.; Yu, L.; Zhu, D.; Cao, Z.; Lu, A.; et al. The naturally occurring flavonoid nobiletin reverses methotrexate resistance via inhibition of P-glycoprotein synthesis. J. Biol. Chem. 2022, 298, 101756. [Google Scholar] [CrossRef]
- Bartok, B.; Hammaker, D.; Firestein, G.S. Phosphoinositide 3-kinase δ regulates migration and invasion of synoviocytes in rheumatoid arthritis. J. Immunol. 2014, 192, 2063–2070. [Google Scholar] [CrossRef] [PubMed]
- Bartok, B.; Boyle, D.L.; Liu, Y.; Ren, P.; Ball, S.T.; Bugbee, W.D.; Rommel, C.; Firestein, G.S. PI3 kinase δ is a key regulator of synoviocyte function in rheumatoid arthritis. Am. J. Pathol. 2012, 180, 1906–1916. [Google Scholar] [CrossRef] [PubMed]
- Aripova, N.; Duryee, M.J.; England, B.R.; Hunter, C.D.; Mordeson, J.E.; Ryan, E.M.; Daubach, E.C.; Romberger, D.J.; Thiele, G.M.; Mikuls, T.R. Citrullinated and malondialdehyde-acetaldehyde modified fibrinogen activates macrophages and promotes an aggressive synovial fibroblast phenotype in patients with rheumatoid arthritis. Front. Immunol. 2023, 14, 1203548. [Google Scholar] [CrossRef]
- Hui, W.; Zhao, C.; Bourgoin, S.G. Differential effects of inhibitor combinations on lysophosphatidic acid-mediated chemokine secretion in unprimed and tumor necrosis factor-α-primed synovial fibroblasts. Front. Pharmacol. 2017, 8, 848. [Google Scholar] [CrossRef]
- Mitra, A.; Raychaudhuri, S.K.; Raychaudhuri, S.P. IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine 2012, 60, 38–42. [Google Scholar] [CrossRef]
- Chen, D.; Cai, X.; Ouyang, H.; Yuan, S.; Wang, X.; Lin, L.; Chen, Z.; Huang, M. Increased eEF2K promotes glycolysis and aggressive behaviors of fibroblast-like synoviocytes in rheumatoid arthritis. J. Inflamm. Res. 2022, 15, 2725–2743. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, M.; Liu, M.; Chen, X.; Zhu, L.; Xu, J.; Xue, J.; Wu, H.; Du, Y. Semaphorin 5A suppresses ferroptosis through activation of PI3K-AKT-mTOR signaling in rheumatoid arthritis. Cell Death Disease 2022, 13, 650. [Google Scholar] [CrossRef]
- Li, X.-F.; Wu, S.; Yan, Q.; Wu, Y.-Y.; Chen, H.; Yin, S.-Q.; Chen, X.; Wang, H.; Li, J. PTEN methylation promotes inflammation and activation of fibroblast-like synoviocytes in rheumatoid arthritis. Front. Pharmacol. 2021, 12, 700373. [Google Scholar] [CrossRef]
- Rodriguez-Trillo, A.; Mosquera, N.; Pena, C.; Rivas-Tobío, F.; Mera-Varela, A.; Gonzalez, A.; Conde, C. Non-Canonical WNT5A Signaling Through RYK Contributes to Aggressive Phenotype of the Rheumatoid Fibroblast-Like Synoviocytes. Front. Immunol. 2020, 11, 555245. [Google Scholar] [CrossRef]
- Deng, H.; Zheng, M.; Hu, Z.; Zeng, X.; Kuang, N.; Fu, Y. Effects of daphnetin on the autophagy signaling pathway of fibroblast-like synoviocytes in rats with collagen-induced arthritis (CIA) induced by TNF-α. Cytokine 2020, 127, 154952. [Google Scholar] [CrossRef]
- Kong, L.; Wang, L.; Zhao, Q.; Di, G.; Wu, H. Rhodojaponin II inhibits TNF-α-induced inflammatory cytokine secretion in MH7A human rheumatoid arthritis fibroblast-like synoviocytes. J. Biochem. Mol. Toxicol. 2020, 34, e22551. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y. Cinnamaldehyde attenuates the progression of rheumatoid arthritis through down-regulation of PI3K/AKT signaling pathway. Inflammation 2020, 43, 1751–1761. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Y.; Liu, M.; Zhou, B.; Yang, G. Diosmetin exhibits anti-proliferative and anti-inflammatory effects on TNF-α-stimulated human rheumatoid arthritis fibroblast-like synoviocytes through regulating the Akt and NF-κB signaling pathways. Phytother. Res. 2020, 34, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, R.; Zhang, P.; Li, J.; Yue, Y.; Hu, Y.; Cheng, W.; Pan, X. Genistein suppresses tumor necrosis factor α-induced inflammation via modulating reactive oxygen species/Akt/nuclear factor κB and adenosine monophosphate-activated protein kinase signal pathways in human synoviocyte MH7A cells. Drug Des. Dev. Ther. 2014, 8, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, R.; Ouyang, S.; Zou, M.; Duan, Y.; Li, L.; Guan, T.; Zhang, T.; He, J. Compounds DRG and DAG, Two Phenol Glycosides, Inhibit TNF-α-stimulated Inflammatory Response through Blocking NF-kB/AKT/JNK Signaling Pathways in MH7A Cells. Inflammation 2021, 44, 1762–1770. [Google Scholar] [CrossRef]
- Yang, L.; Cao, N.; Miao, Y.; Dai, Y.; Wei, Z. Morin acts as a USP7 inhibitor to hold back the migration of rheumatoid arthritis fibroblast-like synoviocytes in a “Prickle1-mTORC2” dependent manner. Mol. Nutr. Food Res. 2021, 65, 2100367. [Google Scholar] [CrossRef]
- Tu, Y.; Wang, K.; Tan, L.; Han, B.; Hu, Y.; Ding, H.; He, C. Dolichosin A, a coumestan isolated from Glycine tabacina, inhibits IL-1β-induced inflammation in SW982 human synovial cells and suppresses RANKL-induced osteoclastogenesis: From network pharmacology to experimental pharmacology. J. Ethnopharmacol. 2020, 258, 112855. [Google Scholar] [CrossRef]
- Lee, H.R.; Yoo, S.J.; Kim, J.; Lee, Y.R.; Joo, H.K.; Jeon, B.H.; Kang, S.W. Apurinic/apyrimidinic endonuclease 1 alleviates inflammation in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Cent. Eur. J. Immunol. 2024, 49, 113–125. [Google Scholar] [CrossRef]
- Tian, J.; Chen, J.W.; Gao, J.S.; Li, L.; Xie, X. Resveratrol inhibits TNF-α-induced IL-1β, MMP-3 production in human rheumatoid arthritis fibroblast-like synoviocytes via modulation of PI3kinase/Akt pathway. Rheumatol. Int. 2013, 33, 1829–1835. [Google Scholar] [CrossRef]
- Chen, B.C.; He, H.Y.; Niu, K.; Rui, K.; Huang, J.G.; Xie, Y.Q.; Xiao, M. Network pharmacology-based approach uncovers the JAK/STAT signaling mechanism underlying Paederia scandens extract treatment of rheumatoid arthritis. Am. J. Transl. Res. 2022, 14, 5295–5307. [Google Scholar]
- Du, H.; Wang, Y.; Zeng, Y.; Huang, X.; Liu, D.; Ye, L.; Li, Y.; Chen, X.; Liu, T.; Li, H.; et al. Tanshinone IIA suppresses proliferation and inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis patients induced by TNF-α and attenuates the inflammatory response in AIA mice. Front. Pharmacol. 2020, 11, 568. [Google Scholar] [CrossRef]
- Jiang, H.; Fan, C.; Lu, Y.; Cui, X.; Liu, J. Astragaloside regulates lncRNA LOC100912373 and the miR-17-5p/PDK1 axis to inhibit the proliferation of fibroblast-like synoviocytes in rats with rheumatoid arthritis. Int. J. Mol. Med. 2021, 48, 130. [Google Scholar] [CrossRef]
- Aihaiti, Y.; Cai, Y.S.; Tuerhong, X.; Yang, Y.N.; Ma, Y.; Zheng, H.S.; Xu, K.; Xu, P. Therapeutic effects of naringin in rheumatoid arthritis: Network pharmacology and experimental validation. Front. Pharmacol. 2021, 12, 672054. [Google Scholar] [CrossRef]
- Chen, J.; Lin, X.; He, J.; Liu, D.; He, L.; Zhang, M.; Luan, H.; Hu, Y.; Tao, C.; Wang, Q. Artemisitene suppresses rheumatoid arthritis progression via modulating METTL3-mediated N6-methyladenosine modification of ICAM2 mRNA in fibroblast-like synoviocytes. Clin. Transl. Med. 2022, 12, e1148. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Du, J.; Gan, H.; Chen, J.; Zhou, Y.; Tian, J.; Ling, G.; Li, F. Resveratrol promotes apoptosis and G2/M cell cycle arrest of fibroblast-like synoviocytes in rheumatoid arthritis through regulation of autophagy and the serine-threonine kinase-p53 axis. Arch. Med. Sci. 2024, 20, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Zong, S.; Zhou, J.; Cai, W.; Yu, Y.; Wang, Y.; Song, Y.; Cheng, J.; Li, Y.; Gao, Y.; Wu, B.; et al. Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synoviocytes from rheumatoid arthritis patients through the ROS/mTOR signaling pathway. J. South. Med. Univ. 2023, 43, 552–559, [In Chinese, English abstract]. [Google Scholar] [CrossRef]
- Liu, C.; He, L.; Wang, J.; Wang, Q.; Sun, C.; Li, Y.; Jia, K.; Wang, J.; Xu, T.; Ming, R.; et al. Anti-angiogenic effect of Shikonin in rheumatoid arthritis by downregulating PI3K/AKT and MAPKs signaling pathways. J. Ethnopharmacol. 2020, 260, 113039. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.; Li, J.; Jing, M.; Zhang, L.; Sun, M.; Wang, Q.; Sun, H.; Hou, G.; Wang, C.; et al. Celastrol inhibits rheumatoid arthritis by inducing autophagy via inhibition of the PI3K/AKT/mTOR signaling pathway. Int. Immunopharmacol. 2022, 111, 109241. [Google Scholar] [CrossRef]
- Li, J.; Pang, J.; Liu, Z.; Ge, X.; Zhen, Y.; Jiang, C.C.; Liu, Y.; Huo, Q.; Sun, Y.; Liu, H. Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways. Sci. Rep. 2021, 11, 18263. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, X.; Piao, Y.; Che, X.; Si, M.; Jin, J. Baicalein Induces Apoptosis of Rheumatoid Arthritis Synovial Fibroblasts through Inactivation of the PI3K/Akt/mTOR Pathway. Evid Based Complement Alternat Med. 2022, 2022, 3643265. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Zhao, Q.; Ding, Y.; Zhang, B.; Kong, L. Protocatechuic acid inhibits proliferation, migration and inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. Artif. Cells Nanomed. Biotechnol. 2020, 48, 969–976. [Google Scholar] [CrossRef]
- Hao, W.T.; Huang, L.; Ren, Y.L.; Pan, W. Antioxidant glutathione inhibits inflammation in synovial fibroblasts via PTEN/PI3K/AKT pathway: An in vitro study. Arch. Rheumatol. 2022, 37, 212–222. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Ding, C.; Chu, Y.; Jiang, F.; Hu, Y.; Li, H.; Wang, Q. Sinomenine alleviates rheumatoid arthritis by suppressing the PI3K-Akt signaling pathway, as demonstrated through network pharmacology, molecular docking, and experimental validation. Drug Des. Dev. Ther. 2024, 18, 3523–3545. [Google Scholar] [CrossRef]
- Sun, G.; Xu, X.; Wan, L.; Nan, S.; Wang, Y.; Zhao, L.; Cheng, H.; Wang, K.; Liu, Y.; Fang, Y.; et al. Decoction Enhances Autophagy in Rheumatoid Arthritis Fibroblast-like Synoviocytes by Suppressing the PI3K/Akt/mTOR Signaling Axis. J. South. Med. Univ. 2022, 42, 1726–1731. (In Chinese) [Google Scholar] [CrossRef]
- Qi, L.V.; Zhu, X.Y.; Xia, Y.F.; Dai, Y.; Wei, Z.F. Tetrandrine inhibits migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes through down-regulating the expressions of Rac1, Cdc42, and RhoA GTPases and activation of the PI3K/Akt and JNK signaling pathways. Chin. J. Nat. Med. 2015, 13, 831–841. [Google Scholar]
- Ren, H.; Wei, G.; Kong, Z.; Zhang, M.; Li, Y.; Liu, S.; Guo, Y. METTL3-mediated methylation of RAC2 contributes to cell motility, oxidative stress and inflammation in TNF-α-stimulated rheumatoid arthritis fibroblast-like synovial cells. J. Orthop. Surg. Res. 2025, 20, 180. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jiang, C.; Cai, Y.; Guo, Y.; Wang, X.; Zhang, J.; Xu, J.; Xu, K.; Zhu, W.; Wang, S.; et al. Intervening upregulated SLC7A5 could mitigate inflammatory mediator by mTOR-P70S6K signal in rheumatoid arthritis synoviocytes. Arthritis Res. Ther. 2020, 22, 196. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Cui, X.; Chen, S.; Huang, S.; Jiang, H. LncRNA LOC100912373 modulates PDK1 expression by sponging miR-17-5p to promote the proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Am. J. Transl. Res. 2020, 12, 7709–7723. [Google Scholar] [PubMed]
- Liu, F.; Wang, Y.; Huang, D.; Sun, Y. LncRNA HOTAIR regulates the PI3K/AKT pathway via the miR-126-3p/PIK3R2 axis to participate in synovial angiogenesis in rheumatoid arthritis. Immun. Inflamm. Dis. 2023, 11, e1064. [Google Scholar] [CrossRef]
- Li, X.; Xu, X.; Zhang, Q.; Ling, M.; Li, X.; Tan, X. METTL14 promotes fibroblast-like synoviocytes activation via the LASP1/SRC/AKT axis in rheumatoid arthritis. Am. J. Physiol.-Cell Physiol. 2023, 324, C1089–C1100. [Google Scholar] [CrossRef]
- Su, J.; Fan, X.; Zou, Y.; Fu, G.; Feng, S.; Wang, X.; Yu, Y.; Li, L.; Bian, Z.; Huang, R.; et al. Inhibition of Aberrant Activated Fibroblast-Like Synoviocytes in Rheumatoid Arthritis by Leishmania Peptide via the Regulation of Fatty Acid Synthesis Metabolism. Adv. Sci. 2025, 12, e202409154. [Google Scholar] [CrossRef]
- Liang, Y.; Li, H.; Gong, X.; Ding, C. Long non-coding RNA THRIL mediates cell growth and inflammatory response of fibroblast-like synoviocytes by activating PI3K/AKT signals in rheumatoid arthritis. Inflammation 2020, 43, 1198–1210. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, R.; Song, Y.; Chen, Y.; Zhu, D.; Yu, L.; Huang, Q.; Zhang, Z.; Xue, Z.; Hua, Z.; et al. Hyaluronic acid hydrogels hybridized with Au-triptolide nanoparticles for intraarticular targeted multi-therapy of rheumatoid arthritis. Front. Pharmacol. 2022, 13, 849101. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, Y.; Huang, Y.; Wei, L.; Ran, J.; Li, Q.; Tian, Y.; Luo, Z.; Yang, L.; Liu, H.; et al. Macrophage-derived miR-100-5p orchestrates synovial proliferation and inflammation in rheumatoid arthritis through mTOR signaling. J. Nanobiotechnol. 2024, 22, 197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, X.; Zhang, M.; Wu, T.; Liu, X.; Zhang, Y.; Xie, Z.; Liu, S.; Xia, T.; Wang, Y.; et al. Efficient delivery of the lncRNA LEF1-AS1 through the antibody LAIR-1 (CD305)-modified Zn-Adenine targets articular inflammation to enhance the treatment of rheumatoid arthritis. Arthritis Res. Ther. 2023, 25, 238. [Google Scholar] [CrossRef]
- Wang, X.; He, J.; Zhang, Q.; He, J.; Wang, Q. Constructing a 3D co-culture in vitro synovial tissue model for rheumatoid arthritis research. Mater. Today Bio 2025, 31, 101492. [Google Scholar] [CrossRef]
- Meng, C.; Xia, Q.; Wu, H.; Huang, H.; Liu, H.; Li, Y.; Zhang, F.; Song, W. Photobiomodulation with 630-nm LED radiation inhibits the proliferation of human synoviocyte MH7A cells possibly via TRPV4/PI3K/AKT/mTOR signaling pathway. Lasers Med. Sci. 2020, 35, 1273–1282. [Google Scholar] [CrossRef]
- Modak, D.; Bhattacharjee, S. A review of fibroblast-like synoviocytes in the pathogenesis of Rheumatoid arthritis: Their activation and the inhibition of their apoptosis. Biomed. Res. Ther. 2022, 9, 5394–5409. [Google Scholar] [CrossRef]
- Ibanez, K.R.; Huang, T.T.; Lee, J.M. Combination Therapy Approach to Overcome the Resistance to PI3K Pathway Inhibitors in Gynecological Cancers. Cells 2024, 13, 1064. [Google Scholar] [CrossRef]
- Kuuliala, K.; Kuuliala, A.; Hämäläinen, M.; Koivuniemi, R.; Kautiainen, H.; Moilanen, E.; Repo, H.; Leirisalo-Repo, M. Impaired Akt Phosphorylation in Monocytes of Patients with Rheumatoid Arthritis. Scand. J. Immunol. 2017, 85, 155–161. [Google Scholar] [CrossRef]
- Ji, M.; Ryu, H.J.; Hong, J.H. Signalling and putative therapeutic molecules on the regulation of synoviocyte signalling in rheumatoid arthritis. Bone Jt. Res. 2021, 10, 285–297. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, X.; Gu, K.; Han, G.; Li, W.; Zhao, Q.; Jiang, B.; Feng, J.; Li, J.; Gu, Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Int. J. Mol. Med. 2018, 42, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, K.H.; Szmyd, B.; Barańska, M.; Kaszkowiak, M.; Kordiak, J.; Antczak, A.; Pastuszak-Lewandoska, D.; Brzeziańska-Lasota, E. A Strong Decrease in TIMP3 Expression Mediated by the Presence of miR-17 and 20a Enables Extracellular Matrix Remodeling in the NSCLC Lesion Surroundings. Front. Oncol. 2019, 9, 1372. [Google Scholar] [CrossRef] [PubMed]
- Weyand, C.M.; Goronzy, J.J. The immunology of rheumatoid arthritis. Nat. Immunol. 2021, 22, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xu, Y.; Liang, Q.; Yang, X.; Huang, J.; Wang, J.; Zhang, H.; Shi, J. Recent Advances in Dual PI3K/mTOR Inhibitors for Tumour Treatment. Front. Pharmacol. 2022, 13, 875372. [Google Scholar] [CrossRef]
- Wu, T.-T.; Guo, Q.-Q.; Chen, Z.-L.; Wang, L.-L.; Du, Y.; Chen, R.; Mao, Y.-H.; Yang, S.-G.; Huang, J.; Wang, J.-T.; et al. Design, synthesis and bioevaluation of novel substituted triazines as potential dual PI3K/mTOR inhibitors. Eur. J. Med. Chem. 2020, 204, 112637. [Google Scholar] [CrossRef]
- Malik, B.R.; Maddison, D.C.; Smith, G.A.; Peters, O.M. Autophagic and Endo-Lysosomal Dysfunction in Neurodegenerative Disease. Mol. Brain 2019, 12, 100. [Google Scholar] [CrossRef]
- Petricevic, M.; Biocina, B.; Lekic, A.; Gabelica, R. Antiplatelet therapy at the time of coronary artery surgery: Can a personalized approach improve outcomes? Eur. J. Cardio-Thorac. Surg. 2014, 45, 951–952. [Google Scholar] [CrossRef]
- Sharma, S.D.; Bluett, J. Towards Personalized Medicine in Rheumatoid Arthritis. Open Access Rheumatol. Res. Rev. 2024, 16, 89–114. [Google Scholar] [CrossRef]
- Bao, J.; Chen, Z.; Xu, L.; Wu, L.; Xiong, Y. Rapamycin protects chondrocytes against IL-18-induced apoptosis and ameliorates rat osteoarthritis. Aging 2020, 12, 5152–5167. [Google Scholar] [CrossRef] [PubMed]
- Dhanabalan, K.M.; Dravid, A.A.; Agarwal, S.; Sharath, R.K.; Padmanabhan, A.K.; Agarwal, R. Intra-articular injection of rapamycin microparticles prevent senescence and effectively treat osteoarthritis. Bioeng. Transl. Med. 2022, 8, e10298. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, Y.; Zhang, L.; Jiang, Y.; Long, C.; Yang, Q.; Yang, M. Metabolic changes in fibroblast-like synoviocytes in rheumatoid arthritis: State of the art review. Front. Immunol. 2024, 15, 1250884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Philippon, E.M.L.; van Rooijen, L.J.E.; Khodadust, F.; van Hamburg, J.P.; van der Laken, C.J.; Tas, S.W. A novel 3D spheroid model of rheumatoid arthritis synovial tissue incorporating fibroblasts, endothelial cells, and macrophages. Front. Immunol. 2023, 14, 1188835. [Google Scholar] [CrossRef]
- Xia, X.; He, C.; Xue, Z.; Wang, Y.; Qin, Y.; Ren, Z.; Huang, Y.; Luo, H.; Chen, H.N.; Zhang, W.H.; et al. Single cell immunoprofile of synovial fluid in rheumatoid arthritis with TNF/JAK inhibitor treatment. Nat. Commun. 2025, 16, 2152. [Google Scholar] [CrossRef]
- Domb, A.J.; Sharifzadeh, G.; Nahum, V.; Hosseinkhani, H. Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021, 13, 1615. [Google Scholar] [CrossRef]
- Jourdain, A.A.; Begg, B.E.; Mick, E.; Shah, H.; Calvo, S.E.; Skinner, O.S.; Sharma, R.; Blue, S.M.; Yeo, G.W.; Burge, C.B.; et al. Loss of LUC7L2 and U1 snRNP subunits shifts energy metabolism from glycolysis to OXPHOS. Mol. Cell 2021, 81, 1905–1919. [Google Scholar] [CrossRef]
- Rossetti, S.; Broege, A.; Sen, A.; Khan, S.; MacNeil, I.; Molden, J.; Kopher, R.; Schulz, S.; Laing, L. Gedatolisib shows superior potency and efficacy versus single-node PI3K/AKT/mTOR inhibitors in breast cancer models. npj Breast Cancer 2024, 10, 40. [Google Scholar] [CrossRef]
- Li, S.; Lin, J.; Wang, C.; Liu, J.; Wang, Y.; Chen, Y.; Zhou, D. Synergistic metabolic modulation of fibroblast-like synoviocytes via targeted dual prodrug nanoparticles to mitigate rheumatoid arthritis. Acta Pharm. Sin. B 2025, 15, 542–556. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on Strategies to Identify and Mitigate Risks for First-in-Human and Early Clinical Trials With Investigational Medicinal Products; EMEA/CHMP/SWP/28367/07 Rev. 1; EMA: London, UK, 2018; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-strategies-identify-mitigate-risks-first-human-early-clinical-trials-investigational_en.pdf (accessed on 24 July 2025).
- U.S. Food and Drug Administration. Guidance for Industry: Expedited Programs for Serious Conditions—Drugs and Biologics; Center for Drug Evaluation and Research (CDER): Beltsville, MD, USA; Center for Biologics Evaluation and Research (CBER): Silver Spring, MD, USA, 2014. Available online: https://www.fda.gov/media/86377/download (accessed on 24 July 2025).
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and Other Tools) Resource [Internet]; Food and Drug Administration (US): Silver Spring, MD, USA; National Institutes of Health (US): Bethesda, MD, USA, 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK453485/ (accessed on 24 July 2025).
Outcome | Coefficient, b | SE | 95% CI | p-Value | k |
---|---|---|---|---|---|
IL-6 | –5.85 | 2.60 | [0.00; 3.56] * | 0.025 | 6 |
IL-8 | 4.10 | 1.96 | [1.83; 0.77] | 0.037 | 9 |
Class (Number of Compounds/Approaches) | Representative Examples | Effects on RA-FLSs |
---|---|---|
Classical drugs/repurposing (7) | rapamycin, tocilizumab, methotrexate | Inhibition of p-AKT/mTOR, anti-migratory, anti-invasive effects |
Targeted small molecules (17) | INK007, BEZ235, resveratrol | Anti-proliferative, pro-apoptotic, anti-angiogenic effects |
Phytochemicals and TCM extracts (20) | naringin, shikonin, celastrol | Inhibition of key pathways; activation of autophagy |
Genetic/epigenetic modulation (10) | METTL3, lncRNA THRIL, miR-100-5p | Pathway modulation; autophagy regulation |
Nanomaterials/targeted delivery (5) | HA-Au@RGD hydrogel, (Zn-adenine)@Ab@LEF1-AS1 | Local pathway inhibition; dose-sparing effect |
Outcome | Doses (Range) | Time (h) | Change (%) | n | Control |
---|---|---|---|---|---|
Migration/Invasion | 2.5–10 nM PTX; 100 nM Rapamycin | 24–48 | –20 to –85 | 3–8 | DMSO, TNF-α |
Proliferation | 100 nM Rapamycin | 24 | –35 to –60 | 3–6 | TNF-α, DMSO |
IL-6 (pg/mL) | 100–400 µM Myricetin | 24 | –40 to –75 | 3–5 | DMSO |
p-Akt/Akt ratio | 100 nM Rapamycin; PTX | 24 | –30 to –60 | 3–6 | vehicle, TNF-α |
Apoptosis (Annexin V/PI) | 80 µM Nobiletin + MTX | 24–48 | 5 to 18 | 3–5 | vehicle |
Cell viability | 0.5–20 µM Artesunate | 24 | –20 to –45 | 3–5 | TNF-α, DMSO |
Outcome | Doses (Range) | Time (h) | Change (%) | n (Range) | Control |
---|---|---|---|---|---|
Migration/Invasion | 0.3–5 µM PI3Kδ inhibitors | 1–48 | –35 to 80 | 3–6 | DMSO, PDGF-BB |
Proliferation | 2 µM 5-azadC, 24 h; Ad-PTEN in vivo | 24–48 | –20 to –55 | 3–6 | vehicle |
p-Akt/Akt ratio | 0.3–1 µM INK007, 20 µM LY294002 | 1–24 | –30 to –70 | 3–5 | vehicle |
NO/PGE2/IL-6 | 2.5–5 µM Rhodojaponin II | 24 | –20 to –80 | 3–6 | vehicle |
Apoptosis | 20 µM Genistein; Diosmetin 5–20 µM | 24–48 | 10 to 30 | 3 | vehicle |
Outcome | Doses (Range) | Time (h) | Change (%) | n (range) | Control |
---|---|---|---|---|---|
Migration/Invasion | 100–400 µM Myricetin; | 24 | –20 to 54 | 3–5 | DMSO |
Proliferation | 0.5–100 µM Baicalein; 20–50 µM Resv. | 24–96 | –18 to –47 | 3–6 | DMSO, med. |
Apoptosis | 20–50 µM Resveratrol; Shikonin 1–3 µM | 24 | 5 to 25 | 3 | vehicle |
IL-6 | 100–400 µM Myricetin | 24 | –40 to –75 | 3–5 | DMSO |
MMP-1, MMP-3, MMP-13 | Myricetin, Baicalein | 24–48 | –25 to –60 | 3–6 | vehicle |
Outcome | Doses (Range) | Time (h) | Change (%) | n (Range) | Control |
---|---|---|---|---|---|
Proliferation | shRNA-RAC2, si-THRIL, 5-azadC + PTEN-OE | 24–48 | –20% | –60% | 3–16 |
Apoptosis | pcDNA-RAC2, pc-THRIL, lncRNA OE | 24–48 | +5% | +28% | 3–5 |
p-Akt/Akt, p-mTOR | siRNA, shRNA, OE | 24–48 | –30% | –70% | 3–5 |
Cytokines, MMP’s | shRNA, siRNA | 24–48 | –20% | –80% | 3–5 |
Outcome | Doses (Range) | Time (h) | Change (%) | n (Range) | Control |
---|---|---|---|---|---|
Proliferation | TP-PLGA-Au@RGD/HA (13 µM TP + NIR) | 24 | –35 to –54 | 3–6 | untreated |
p-mTOR, p-p70S6K | TP-PLGA-Au@RGD/HA, BMDM-sEVs | 24 | –38 to –54 | 3–5 | vehicle |
IL-6, TNF-α | (Zn-Adenine)@Ab@LEF1-AS1 NP, sEVs | 24–48 | –20 to 60 | 3–5 | vehicle |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobkova, T.; Bobkov, A.; Li, Y. Pharmacological Inhibition of the PI3K/AKT/mTOR Pathway in Rheumatoid Arthritis Synoviocytes: A Systematic Review and Meta-Analysis (Preclinical). Pharmaceuticals 2025, 18, 1152. https://doi.org/10.3390/ph18081152
Bobkova T, Bobkov A, Li Y. Pharmacological Inhibition of the PI3K/AKT/mTOR Pathway in Rheumatoid Arthritis Synoviocytes: A Systematic Review and Meta-Analysis (Preclinical). Pharmaceuticals. 2025; 18(8):1152. https://doi.org/10.3390/ph18081152
Chicago/Turabian StyleBobkova, Tatiana, Artem Bobkov, and Yang Li. 2025. "Pharmacological Inhibition of the PI3K/AKT/mTOR Pathway in Rheumatoid Arthritis Synoviocytes: A Systematic Review and Meta-Analysis (Preclinical)" Pharmaceuticals 18, no. 8: 1152. https://doi.org/10.3390/ph18081152
APA StyleBobkova, T., Bobkov, A., & Li, Y. (2025). Pharmacological Inhibition of the PI3K/AKT/mTOR Pathway in Rheumatoid Arthritis Synoviocytes: A Systematic Review and Meta-Analysis (Preclinical). Pharmaceuticals, 18(8), 1152. https://doi.org/10.3390/ph18081152