Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (289)

Search Parameters:
Keywords = oriented porous

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2891 KiB  
Article
Hysteresis Loops Design for Nanoporous Ferroelectrics
by Xuan Huang, Fengjuan Yang, Lifei Du, Jiong Wang, Yongfeng Liang and Pingping Wu
Materials 2025, 18(15), 3606; https://doi.org/10.3390/ma18153606 (registering DOI) - 31 Jul 2025
Abstract
The design and adjustable properties of nanoporous materials are important for current and future technological applications, research, and development. In addition, nanoporous ferroelectric materials have the potential to achieve competitive ferroelectric, dielectric, and piezoelectric characteristics. In this work, using the phase-field model, we [...] Read more.
The design and adjustable properties of nanoporous materials are important for current and future technological applications, research, and development. In addition, nanoporous ferroelectric materials have the potential to achieve competitive ferroelectric, dielectric, and piezoelectric characteristics. In this work, using the phase-field model, we found that the shape of pores in barium titanite ceramics governs the formation of the ferroelectric domain structure and the switching hysteresis loop. A remanent polarization-coercive field (Pr-Ec) diagram is introduced to denote the shape of the hysteresis loops. We performed a fundamental study in understanding how the domain structures affect the properties of domain-engineered porous ferroelectrics. Simulation results show that the hysteresis loop of porous ferroelectrics can be designed by controlling the shape/orientation of the ellipse-shaped pores. Numerical simulations also verify that the dielectric/piezoelectric properties can be improved with artificially designed porous structures. These phase-field results may be useful in the development of highly performing lead-free ferroelectric/piezoelectric materials. Full article
(This article belongs to the Special Issue Advances in Piezoelectric/Dielectric Ceramics and Composites)
Show Figures

Figure 1

18 pages, 3793 KiB  
Review
Research Progress on Vaterite Mineral and Its Synthetic Analogs
by Guoxi Sun, Xiuming Liu, Bin Lian and Shijie Wang
Minerals 2025, 15(8), 796; https://doi.org/10.3390/min15080796 - 29 Jul 2025
Viewed by 193
Abstract
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the [...] Read more.
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the following breakthroughs in the last two decades: (1) From primitive calculations and spectroscopic analyses to modern multidimensional research methods combining calculations and experiments, the crystal structure of vaterite has turned from early identifications in orthorhombic and hexagonal crystal systems to a complex polymorphic structure within the monoclinic crystal system. (2) The formation process of vaterite not only conforms to the classical crystal growth theory but also encompasses the nanoparticle aggregation theory, which incorporates the concepts of oriented nanoparticle assembly and mesoscale transformation. (3) Regardless of the conditions, the formation of vaterite depends on an excess of CO32− relative to Ca2+, and its stability duration relates to preservation conditions. (4) Vaterite demonstrates significant value in biomedical applications—including bone repair scaffolds, targeted drug carriers, and antibacterial coating materials—leveraging its porous structure, high specific surface area, and exceptional biocompatibility. While it also shows utility in environmental pollutant adsorption and general coating technologies, the current research remains predominantly concentrated on its medical applications. Currently, the rapid transformation of vaterite presents the primary limitation for its industrial application. Future research should prioritize investigating its formation kinetics and stability. Full article
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
Synthesis and Properties of Bi1.8Mn0.5Ni0.5Ta2O9-Δ Pyrochlore
by Sergey V. Nekipelov, Olga V. Petrova, Alexandra V. Koroleva, Mariya G. Krzhizhanovskaya, Kristina N. Parshukova, Nikolay A. Sekushin, Boris A. Makeev and Nadezhda A. Zhuk
Chemistry 2025, 7(4), 119; https://doi.org/10.3390/chemistry7040119 - 25 Jul 2025
Viewed by 150
Abstract
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a [...] Read more.
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a porous microstructure formed by randomly oriented oblong grains. The average crystallite size determined by X-ray diffraction is 65 nm. The charge state of transition element cations in the pyrochlore was analyzed by soft X-ray spectroscopy using synchrotron radiation. For mixed pyrochlore, a characteristic shift of Bi4f and Ta4f and Ta5p spectra to the region of lower energies by 0.25 and 0.90 eV is observed compared to the binding energy in Bi2O3 and Ta2O5 oxides. XPS Mn2p spectrum of pyrochlore has an intermediate energy position compared to the binding energy in MnO and Mn2O3, which indicates a mixed charge state of manganese (II, III) cations. Judging by the nature of the Ni2p spectrum of the complex oxide, nickel ions are in the charge state of +(2+ζ). The relative permittivity of the sample in a wide temperature (up to 350 °C) and frequency range (25–106 Hz) does not depend on the frequency and exhibits a constant low value of 25. The minimum value of 4 × 10−3 dielectric loss tangent is exhibited by the sample at a frequency of 106 Hz. The activation energy of conductivity is 0.7 eV. The electrical behavior of the sample is modeled by an equivalent circuit containing a Warburg diffusion element. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

13 pages, 3561 KiB  
Article
Preparing Surface-Functionalized Polymer Films with Hierarchically Ordered Structure by a Combination of Nanoimprinting and Controlled Graft Polymerization
by Masahiko Minoda, Daichi Shimizu, Tatsuya Nohara and Jin Motoyanagi
Surfaces 2025, 8(3), 48; https://doi.org/10.3390/surfaces8030048 - 11 Jul 2025
Viewed by 269
Abstract
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared [...] Read more.
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared by combining both nanoimprinting using anodically oxidized porous alumina (AAO) as a template and surface-initiated atom transfer radical polymerization (SI-ATRP). To prepare such polymer films, we designed a new copolymer (poly{[2-(4-methyl-2-oxo-2H-chromen-7-yloxy)ethyl methacrylate]-co-[2-(2-bromo-2-methylpropionyloxy)ethyl methacrylate]}; poly(MCMA-co-HEMABr)) with coumarin moieties and α-haloester moieties in the pendants. The MCMA repeating units function to fix the pillar structure by photodimerization, and the HEMABr ones act as the polymerization initiation sites for SI-ATRP on the pillar surfaces. Surface structures consisting of vertically oriented multiple pillars were fabricated on the spin-coated poly(MCMA-co-HEMABr) thin films by nanoimprinting using an AAO template. Then, the coumarin moieties inside each pillar were crosslinked by UV light irradiation to fix the pillar structure. SEM observation confirmed that the internally crosslinked pillar structures were maintained even when immersed in organic solvents such as 1,2-dichloroethane and anisole, which are employed as solvents under SI-ATRP conditions. Finally, poly(2,2,2-trifluoroethyl methacrylate) and poly(N-isopropylacrylamide) chains were grafted onto the thin film by SI-ATRP, respectively, to prepare the hierarchically ordered surface structure. Furthermore, in this study, the surface properties as well as the thermoresponsive hydrophilic/hydrophobic switching of the obtained polymer films were investigated. The surface morphology and chemistry of the films with and without pillar structures were compared, especially the interfacial properties expressed as wettability. Grafting poly(TFEMA) increased the static contact angle for both flat and pillar films, and the con-tact angle of the pillar film surface increased from 104° for the flat film sample to 112°, suggesting the contribution of the pillar structure. Meanwhile, the pillar film surface grafted with poly(NIPAM) brought about a significant change in wettability when changing the temperature between 22 °C and 38 °C. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

15 pages, 2767 KiB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Viewed by 607
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

23 pages, 4126 KiB  
Article
Enhanced Hydrothermal Stability and Propylene Selectivity of Electron Beam Irradiation-Induced Hierarchical Fluid Catalytic Cracking Additives
by Nguyen Xuan Phuong Vo, Thuy Phuong Ngo, Van Tri Tran, Ngoc Thuy Luong, Phuc Nguyen Le and Van Chung Cao
Catalysts 2025, 15(7), 620; https://doi.org/10.3390/catal15070620 - 24 Jun 2025
Viewed by 1612
Abstract
A cheap, environmentally friendly, easily scalable post-treatment of Na-ZSM-5 (Si/Al molar ratio = 20 or 30) via electron-beam irradiation to produce hierarchical H-ZSM-5 as a propylene-increasing fluid catalytic cracking additive was performed. Higher specific surface areas and highly accessible porous systems were obtained [...] Read more.
A cheap, environmentally friendly, easily scalable post-treatment of Na-ZSM-5 (Si/Al molar ratio = 20 or 30) via electron-beam irradiation to produce hierarchical H-ZSM-5 as a propylene-increasing fluid catalytic cracking additive was performed. Higher specific surface areas and highly accessible porous systems were obtained among the irradiated samples. A combination of 27Al, 1H magic angle spinning nuclear magnetic resonance and NH3-temperature-programmed desorption methods showed that upon irradiation, some of the framework’s tetrahedral Al atoms were removed as non-framework Al atoms via flexible coordination with Si-OH groups (either framework or non-framework defects), thus increasing the H-ZSM-5 acidity and stability during hydrothermal dealumination. The enhanced selectivity and stability toward propylene production over the irradiated H-ZSM-5 samples were attributed to the integration of the reserved population of medium acid sites into the highly accessible hierarchical network. N2 adsorption–desorption isotherm data showed that the Si-rich H-ZSM-5 samples possessed an obvious ink-bottle-shaped micro-mesopore network and a greater degree of disordered orientation of the straight pore systems toward the exterior surfaces. Micro-activity test data suggested that with an increasing Si/Al ratio, the H-ZSM-5 additives lost some extent of their cracking activity due to the constricted hierarchical pore network toward the exterior surface but gained more stability and selectivity for propylene due to the reserved medium acid sites. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Graphical abstract

17 pages, 3084 KiB  
Article
Microstructural Evolution and Domain Engineering in Porous PZT Thin Films
by Evgeny Zhemerov, Arseniy Buryakov, Dmitry Seregin and Maxim Ivanov
Surfaces 2025, 8(2), 37; https://doi.org/10.3390/surfaces8020037 - 1 Jun 2025
Viewed by 2817
Abstract
Porous PZT films offer significant potential due to tunable electromechanical properties, yet the polarization behavior remains insufficiently understood because of discontinuous morphology and domain structures. In this work, we study the impact of porosity on the spontaneous polarization and electromechanical response of PZT [...] Read more.
Porous PZT films offer significant potential due to tunable electromechanical properties, yet the polarization behavior remains insufficiently understood because of discontinuous morphology and domain structures. In this work, we study the impact of porosity on the spontaneous polarization and electromechanical response of PZT thin films fabricated using a multilayer spin-coating technique with various concentrations (0–14%) of polyvinylpyrrolidone (PVP) as a porogen. Atomic force microscopy (AFM) and piezoresponse force microscopy (PFM) were employed to analyze the local topography, domain distribution, and polarization behavior of the films. The results indicate that increasing porosity leads to substantial changes in grain morphology, dielectric permittivity, and polarization response. Films with higher porosity exhibit a more fragmented polarization distribution and reduced piezoresponse, while certain orientations demonstrate enhanced domain mobility. Despite the decrease in overall polarization, the local coercive field remains relatively stable, suggesting structural stability during the local polarization switching. The findings highlight the crucial role of grain boundaries and local charge redistribution in determining local polarization behavior. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Graphical abstract

14 pages, 2930 KiB  
Article
Bi-Interfacial Electron Modulation in Co9S8/FeCoS2 Heterostructures Anchored on Bamboo-Derived Carbon Quasi-Aerogel for High-Performance Hydrogen Evolution
by Wenjing He, Jianliang Cao, Xinliang Zhou, Ning Zhang, Yuzhu Qi, Jin Li, Naiteng Wu and Xianming Liu
Gels 2025, 11(6), 390; https://doi.org/10.3390/gels11060390 - 25 May 2025
Viewed by 352
Abstract
Hydrogen energy as a sustainable alternative to fossil fuels necessitates the development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER). While transition metal sulfides have shown promise, their practical application is hindered by insufficient active sites, poor conductivity, and suboptimal [...] Read more.
Hydrogen energy as a sustainable alternative to fossil fuels necessitates the development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER). While transition metal sulfides have shown promise, their practical application is hindered by insufficient active sites, poor conductivity, and suboptimal hydrogen adsorption kinetics. Herein, we present a heterointerface engineering strategy to construct Co9S8/FeCoS2 heterojunctions anchored on bamboo fiber-derived nitrogen-doped porous carbon (Co9S8/FeCoS2/BFPC) through hydrothermal synthesis and subsequent carbonization. BFPC carbon quasi-aerogel support not only offers a high surface area and conductive pathways but also enables uniform dispersion of active sites through nitrogen doping, which simultaneously optimizes electron transfer and mass transport. Experimental results demonstrate exceptional HER performance in alkaline media, achieving a low overpotential of 86.6 mV at 10 mA cm−2, a Tafel slope of 68.87 mV dec−1, and remarkable stability over 73 h of continuous operation. This work highlights the dual advantages of heterointerface design and carbon substrate functionalization, providing a scalable template for developing noble metal-free electrocatalysts for energy conversion technologies. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

28 pages, 11372 KiB  
Article
Biological Control of Ca-Carbonate Crystal Microstructure and Texture: Adapting Crystal Morphology, Orientation, and Arrangement to Biomaterial Function
by Anna Sancho Vaquer, Erika Griesshaber, Juan Diego Castro-Claros, Carmen Salas, Xiaofei Yin, Antonio G. Checa and Wolfgang W. Schmahl
Crystals 2025, 15(5), 466; https://doi.org/10.3390/cryst15050466 - 15 May 2025
Viewed by 480
Abstract
The mineralized cover of chiton (Polyplacophora) soft tissue consists of aragonite, developed as shell-plates, girdle-scales, and girdle-spicules. This study characterizes crystallographic aspects of the girdle-spicules of the species Ischnochiton rissoi, Rhyssoplax olivacea, Acanthopleura vaillantii, and Acanthopleura spinosa. Spicule crystal [...] Read more.
The mineralized cover of chiton (Polyplacophora) soft tissue consists of aragonite, developed as shell-plates, girdle-scales, and girdle-spicules. This study characterizes crystallographic aspects of the girdle-spicules of the species Ischnochiton rissoi, Rhyssoplax olivacea, Acanthopleura vaillantii, and Acanthopleura spinosa. Spicule crystal arrangements and texture variations are described. Different misorientations between the spicule crystals are shown and are discussed with respect to the physical properties of the biomaterial. Characterization was performed with electron backscattered diffraction (EBSD), as well as with laser confocal and Field emission scanning electron microscopy (FE-SEM) imaging. All investigated species had porous spicules and distinct structural characteristics. Spicule crystal co-orientation strength was strongly increased for R. olivacea and I. rissoi, and it was almost random for A. vaillantii. R. olivacea, I. rissoi. A. spinosa spicule crystal texture was axial, whereas A. vaillantii spicule crystals were almost untextured. For all species investigated, spicule aragonite was twinned, as demonstrated with the strong 63°/64° peak in the misorientation angle distribution diagram, indicating a {110}-twin relationship. R. olivacea and I. rissoi spicules consisted of few twinned crystals and twin boundaries; A. vaillantii and A. spinosa spicules showed an abundance of twinned crystals and twin boundaries. We observed a difference in spicule dimension, morphology, arrangement on the girdle, and crystal organization for the investigated species, but always the generation of twinned aragonite. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

19 pages, 7143 KiB  
Article
Substrate Bias-Driven Structural and Mechanical Evolution of AlCrN and AlCrSiN Coatings via Reactive Magnetron Sputtering
by Du-Cheng Tsai, Rong-Hsin Huang, Zue-Chin Chang, Erh-Chiang Chen, Yen-Lin Huang and Fuh-Sheng Shieu
Materials 2025, 18(7), 1671; https://doi.org/10.3390/ma18071671 - 5 Apr 2025
Viewed by 517
Abstract
AlCrN and AlCrSiN coatings were deposited via reactive magnetron sputtering. This study investigates the effects of radio frequency (RF) substrate bias, ranging from 0 V to 200 V, on the chemical composition, microstructure, and mechanical properties of the coatings. All crystalline coatings exhibited [...] Read more.
AlCrN and AlCrSiN coatings were deposited via reactive magnetron sputtering. This study investigates the effects of radio frequency (RF) substrate bias, ranging from 0 V to 200 V, on the chemical composition, microstructure, and mechanical properties of the coatings. All crystalline coatings exhibited a single wurtzite-type hexagonal close-packed (hcp) structure. At a 0 V substrate bias, the AlCrN coating consisted of porous V-shaped columnar crystallites, while the AlCrSiN coating exhibited a porous, fiber-like amorphous structure. As the substrate bias increased, crystal growth was promoted, void density decreased, and the surface morphology transitioned from a textured to a more rounded appearance. Additionally, the preferred orientation shifted toward the (101) direction. However, at excessively high substrate bias, re-nucleation occurred, leading to grain refinement and increased film densification, which in turn caused a further shift in the preferred orientation toward the (002) plane. Due to its multi-element composition and the low solubility of Si in nitrides, AlCrSiN coatings tend to exhibit an amorphous growth tendency during sputtering. As a result, their microstructure is more sensitive to substrate bias. This sensitivity results in the formation of a highly dense structure with an optimal crystallite size at a substrate bias of 100 V, leading to a hardness of 22.6 GPa—surpassing that of the AlCrN coating. Full article
Show Figures

Figure 1

24 pages, 5246 KiB  
Article
Elasticity in Porous 3D-Printed Polylactic Acid Scaffolds for Biomedical Applications: A Predictive Approach
by Matteo Sestini, Dario Puppi, Simona Braccini, Teresa Macchi, Beata Matungano, Sven Macolic, Tommaso Guazzini, Gianluca Parrini, Mario Milazzo and Serena Danti
Polymers 2025, 17(7), 836; https://doi.org/10.3390/polym17070836 - 21 Mar 2025
Cited by 1 | Viewed by 754
Abstract
Additive manufacturing (AM) is rapidly advancing, particularly in biomedical applications, necessitating a deeper understanding of the mechanical behavior of 3D-printed materials. Structures created using fused deposition modeling (FDM) exhibit anisotropic properties due to fabrication inhomogeneity and material architecture. Finite element modeling (FEM) is [...] Read more.
Additive manufacturing (AM) is rapidly advancing, particularly in biomedical applications, necessitating a deeper understanding of the mechanical behavior of 3D-printed materials. Structures created using fused deposition modeling (FDM) exhibit anisotropic properties due to fabrication inhomogeneity and material architecture. Finite element modeling (FEM) is commonly used to predict mechanical behavior, though studies on porous structures have not deeply investigated the influence of geometrical features on global mechanical behavior. This study aimed to correlate the mechanical properties of porous polylactic acid scaffolds with different patterns and infill densities, fabricated via AM through the synergies of experimental and computational approaches. Tensile testing and FEM simulations were conducted, revealing differences in elastic modulus and tensile strength based on infill orientation. A sensitivity analysis on the main geometrical features assessed variations in filament dimensions and layer spacing. FEM simulations showed strong agreement with experimental data, validating their predictive capability, with deviations due to minor structural defects and irregularities in the extruded filaments. This study established for the first time the influence of geometrical details on the elastic properties of porous scaffolds, opening up to new tailored design for, but not limited to, biomedical applications. Full article
Show Figures

Figure 1

19 pages, 3822 KiB  
Article
A CNC-Modified PAN Separator Improving the Cycle Stability of Lithium-Ion Batteries
by Anqi Zhou, Kailong Guo, Xuenuan Li, Xinyu Song, Xianming Liu, Weile Ding, Bin Guo, Donglei Guo, Guilong Liu, Naiteng Wu and Aimiao Qin
Coatings 2025, 15(3), 351; https://doi.org/10.3390/coatings15030351 - 19 Mar 2025
Cited by 1 | Viewed by 676
Abstract
In this paper, a composite separator for lithium-ion batteries was successfully prepared by electrostatic spinning, based on polyacrylonitrile (PAN) and 5% cellulose nanocrystals (CNCs) derived from sisal fiber. Its physical and electrochemical properties as well as the enhanced mechanism were investigated. The obtained [...] Read more.
In this paper, a composite separator for lithium-ion batteries was successfully prepared by electrostatic spinning, based on polyacrylonitrile (PAN) and 5% cellulose nanocrystals (CNCs) derived from sisal fiber. Its physical and electrochemical properties as well as the enhanced mechanism were investigated. The obtained 5%CNCs/PAN separator offers an excellent thermal stability, ultra-high electrolyte uptake (486 ± 30%), high ionic conductivity (2.82 mS cm−1 at 25 °C) and a wide electrochemical window (5.3 V). In addition, a lithium-ion battery assembled with the 5%CNCs/PAN separator can work stably for 1000 h at 5 mA cm−2. The CNCs in the electrolyte enable the immobilization of PF6, thereby inhibiting the migration of anions and increasing its Li+ transfer number (tLi+) to 0.75, which is 65.3% higher than that of a pure PAN separator. The battery with the 5%CNCs/PAN separator retains 97.4% of its initial reversible capacity after 100 cycles, which is much higher than that of a pure PAN separator, with a value of 62.9%. These results suggest the potential utility of 5%CNCs/PAN separators as high-performance separators required in lithium-ion batteries. Full article
Show Figures

Figure 1

16 pages, 2667 KiB  
Article
Chalcogen-Bonded [Se–N]2 Cyclic Supramolecular Synthons Enhanced by Halogen Bonds: Studies in the Gas Phase and Crystalline Phase
by Shaobin Miao, Xiaotian Sun, Yu Zhang and Weizhou Wang
Int. J. Mol. Sci. 2025, 26(5), 2324; https://doi.org/10.3390/ijms26052324 - 5 Mar 2025
Cited by 1 | Viewed by 678
Abstract
Chalcogen-bonded [Se–N]2 is a strong cyclic supramolecular synthon in supramolecular chemistry. Selenadiazole is commonly used in the synthesis of [Se–N]2. One nitrogen atom in a selenadiazole molecule participates in the formation of [Se–N]2, while the other nitrogen atom [...] Read more.
Chalcogen-bonded [Se–N]2 is a strong cyclic supramolecular synthon in supramolecular chemistry. Selenadiazole is commonly used in the synthesis of [Se–N]2. One nitrogen atom in a selenadiazole molecule participates in the formation of [Se–N]2, while the other nitrogen atom can participate in the formation of other types of noncovalent bonds. Investigating the effect of neighboring noncovalent bonds on [Se–N]2 is beneficial for its further synthesis and application. In this study, we combined theoretical calculations and crystallography to explore the effect of I···N halogen bonds on [Se–N]2 in both the gas phase and the crystalline phase. Gas-phase calculations show that the formation of halogen bonds increases the strength of [Se–N]2, and the strength of the halogen bond is directly proportional to the strength of [Se–N]2. In the crystalline phase, [Se–N]2 is influenced by more noncovalent bonds in addition to halogen bonds, making the results more complex. However, if the effect of other noncovalent bonds is relatively small, the strength of the halogen bond remains directly proportional to the strength of [Se–N]2. It is believed that the conclusions drawn from halogen bonds are also applicable to other types of noncovalent bonds. Full article
Show Figures

Graphical abstract

19 pages, 3937 KiB  
Review
Geometric Characterisation of Stochastic Fibrous Networks: A Comprehensive Review
by Yagiz Kayali, Andrew Gleadall and Vadim V. Silberschmidt
Fibers 2025, 13(3), 27; https://doi.org/10.3390/fib13030027 - 5 Mar 2025
Viewed by 1087
Abstract
Fibrous networks are porous materials that can have stochastic and uniform microstructures. Various fibrous networks can be found in nature (e.g., collagens, hydrogels, etc.) or manufactured (e.g., composites and nonwovens). This study focuses on the geometrical characterisation of stochastic fibrous networks with continuous [...] Read more.
Fibrous networks are porous materials that can have stochastic and uniform microstructures. Various fibrous networks can be found in nature (e.g., collagens, hydrogels, etc.) or manufactured (e.g., composites and nonwovens). This study focuses on the geometrical characterisation of stochastic fibrous networks with continuous fibres in a 2D domain, discussing their main relevant parameters: basis weight, orientation distribution function, crimp, porosity, spatial distribution of fibres (uniformity), and fibre intersections. The comprehensive review of the literature is combined with original results to understand the effect of the analysed parameters on various features of fibrous networks such as mechanical performance, filtration, insulation, etc. Full article
Show Figures

Figure 1

23 pages, 17900 KiB  
Article
Unveiling the Impact of Microfractures on Longitudinal Dispersion Coefficients in Porous Media
by Muyuan Wang, Keliu Wu, Qingyuan Zhu and Jiawei Ye
Processes 2025, 13(3), 722; https://doi.org/10.3390/pr13030722 - 2 Mar 2025
Viewed by 818
Abstract
Longitudinal dispersion coefficient is a key parameter governing solute transport in porous media, with significant implications for various industrial processes. However, the impact of microfractures on the longitudinal dispersion coefficient remains insufficiently understood. In this study, pore-scale direct numerical simulations are performed to [...] Read more.
Longitudinal dispersion coefficient is a key parameter governing solute transport in porous media, with significant implications for various industrial processes. However, the impact of microfractures on the longitudinal dispersion coefficient remains insufficiently understood. In this study, pore-scale direct numerical simulations are performed to analyze solute transport in microfractured porous media during unstable miscible displacement. Spatiotemporal concentration profiles were fitted to the analytical solution of the convection–dispersion equation to quantify the longitudinal dispersion coefficient across different microfracture configurations. The results indicate that the longitudinal dispersion coefficient is highly sensitive to microfracture characteristics. Specifically, an increased projection length of microfractures in the flow direction and a reduced lateral projection length enhance longitudinal dispersion at the outlet. When Peclet number ≥1, the longitudinal dispersion coefficient follows a three-stage variation pattern along the flow direction, with microfracture connectivity and orientation dominating its scale sensitivity. Furthermore, both diffusion-dominated and mixed advective-diffusion regimes are observed. In diffusion-dominated regimes, significant channeling alters the applicability of traditional scaling laws, with the relationship between longitudinal dispersion coefficient and porosity holding only when the Peclet number is below 0.07. These results provide a comprehensive scale-up framework for CO2 miscible flooding in unconventional reservoirs and CO2 storage in saline aquifers, offering valuable insights for the numerical modeling of heterogeneous reservoir development. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Graphical abstract

Back to TopTop