Research Progress on Vaterite Mineral and Its Synthetic Analogs
Abstract
1. Introduction
2. Crystal Structure: From Controversy to Consensus
Space Group | Lattice Parameters | Proposed by | Method |
---|---|---|---|
Pbnm | a = 4.13 b = 7.15 c = 8.48 | Meyer H. J. [18] | XRD, Microtwinning Hypothesis |
P63/mmc | a = 4.13 b = 4.13 c = 8.49 | Kamhi S. R. [2] | XRD, Microtwinning Hypothesis |
P6522 | a = 7.290 b = 7.290 c = 25.302 | Wang J. [25] | First-principles calculations (Density Functional Theory (DFT), Plane-wave pseudopotential method) |
Ama2 | a = 8.4721 b = 7.1575 c = 4.1265 | Le Bail A. [23], Demichelis R. [24] | Microtwinning Hypothesis, DFT (all-electron quantum mechanics) |
P65 | a = 7.1120 b = 7.1120 c = 25.4089 | Demichelis R. [24] | DFT (all-electron quantum mechanics) |
P3221 | a = 7.1239 b = 7.1239 c = 25.3203 | ||
P212121 | a = 4.3668 b = 6.5831 c = 8.4282 | ||
C12/c1 | a = 12.170 b = 7.120 c = 9.470 β = 118.37° | Mugnaioli E. [15] | Electron diffraction (ED) data acquisition based on Automated electron diffraction tomography (ADT) and precession electron diffraction (PED) |
C1 | a = 12.353 b = 7.102 c = 25.733 β = 99.78° | Demichelis R. [24] | |
C121 | a = 12.245 b = 7.197 c = 9.305 β = 115.16° | ||
C1c1 | a = 12.281 b = 7.142 c = 9.371 β = 115.48° |
3. Mechanism of Formation: Integration of Classical and Non-Classical Theories
3.1. Vaterite Formation Mechanism from the Perspective of the Classical Crystal Growth Theory
3.2. The Interpretation of Complex Morphology by the Non-Classical Crystallization Theory
3.2.1. The Morphology Control Mechanism of Double-Hydrophilic Block Copolymers
3.2.2. Interfacial Control of Crystallization Pathways
4. Stability Regulation: From Molecular Design to Engineering Practice
4.1. Synergistic Regulation of pH and Ionic Effects
4.2. Anisotropic Response of High-Pressure Behavior
4.3. Crystallization Kinetics Regulation Strategy
4.3.1. Inorganic Additive Modulation
- I. Metal ions: dual role of lattice doping and interface modulation
- II. Non-metal ions: supersaturation drive and kinetic regulation
4.3.2. Organic Molecular Regulation: From Amino Acids to Proteins
4.3.3. Polymer Template Modulation: Space Constraints and Synergistic Adsorption
5. Microbial Mineralization: Metabolic-Interfacial Synergistic Control Mechanism
5.1. Kinetic Regulation of Vaterite Formation by Microbial Metabolic Activities
5.2. Nucleation Template Effect Mediated by the Microbial Cell Interface
6. Application Frontiers: Environment, Medicine, and Materials
- I. Selective adsorption of vaterite and its application in environmental remediation
- II. Triple advantages of vaterite and its application in biomedicine
- III. Surface modification of vaterite coating and its application in biomaterials
7. Challenges and Prospects
- Research Status on Formation and Transformation Mechanisms
- 2.
- Technical bottlenecks for controlled preparation and large-scale production
- 3.
- The contradictory relationship between stability and the synergistic optimization of function
- 4.
- From Isotope Tracing to Agricultural Innovation: Vaterite Phase-Transition-Inspired Controlled-Release Fertilizer
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Luca, R.; Cau Ontiveros, M.A.; Miriello, D.; Pecci, A.; Le Pera, E.; Bloise, A.; Crisci, G.M. Archaeometric study of mortars and plasters from the Roman City of Pollentia (Mallorca-Balearic Islands). Period. Mineral. 2013, 82, 353–379. [Google Scholar]
- Kamhi, S.R. On the structure of vaterite CaCO3. Acta Crystallogr. 1963, 16, 770–772. [Google Scholar] [CrossRef]
- San, X.; Hu, J.; Chen, M.; Niu, H.; Smeets, P.J.; Malliakas, C.D.; Deng, J.; Koo, K.; Dos Reis, R.; Dravid, V.P.; et al. Unlocking the mysterious polytypic features within vaterite CaCO3. Nat. Commun. 2023, 14, 7858. [Google Scholar] [CrossRef] [PubMed]
- Okumura, T.; Takahashi, G.; Suzuki, M.; Kogure, T. Stacking Structure of Vaterite Revealed by Atomic Imaging and Diffraction Analysis. Chemistry 2024, 30, e202401557. [Google Scholar] [CrossRef]
- Febrida, R.; Cahyanto, A.; Herda, E.; Muthukanan, V.; Djustiana, N.; Faizal, F.; Panatarani, C.; Joni, I.M. Synthesis and Characterization of Porous CaCO3 Vaterite Particles by Simple Solution Method. Materials 2021, 14, 4425. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, M.; Zhao, L.; Zhao, Y.; Ruan, H.; Gong, F. Research Progress of Scale Preparation of Aragonite Calcium Carbonate. Technol. Dev. Chem. Ind. 2020, 49, 25–28+50. [Google Scholar]
- Zafar, B.; Campbell, J.; Cooke, J.; Skirtach, A.G.; Volodkin, D. Modification of Surfaces with Vaterite CaCO3 Particles. Micromachines 2022, 13, 473. [Google Scholar] [CrossRef]
- Parakhonskiy, B.V.; Haase, A.; Antolini, R. Sub-Micrometer Vaterite Containers: Synthesis, Substance Loading, and Release. Chem. Int. Ed. 2012, 51, 1195–1197. [Google Scholar] [CrossRef]
- Jariya, S.I.; Babu, A.A.; Narayanan, T.S.; Vellaichamy, E.; Ravichandran, K. Development of a novel smart carrier for drug delivery: Ciprofloxacin loaded vaterite/reduced graphene oxide/PCL composite coating on TiO2 nanotube coated titanium. Ceram. Int. 2022, 48, 9579–9594. [Google Scholar] [CrossRef]
- Choukrani, G.; Álvarez Freile, J.; Avtenyuk, N.U.; Wan, W.; Zimmermann, K.; Bremer, E.; Dähne, L. High Loading Efficiency and Controlled Release of Bioactive Immunotherapeutic Proteins Using Vaterite Nanoparticles. Part. Part. Syst. Charact. 2021, 38, 7. [Google Scholar] [CrossRef]
- Lowenstam, H.A.; Abbott, D.P. Vaterite-Mineralization Product of Hard Tissues of A Marine Organism (Ascidiacea). Science 1975, 188, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Feng, Q.L.; Li, Z. Special vaterite found in freshwater lackluster pearls. Cryst. Growth Des. 2007, 7, 275–279. [Google Scholar] [CrossRef]
- Wightman, R.; Wallis, S.; Aston, P. Leaf margin organisation and the existence of vaterite-producing hydathodes in the alpine plant Saxifraga scardica. Flora 2018, 241, 27–34. [Google Scholar] [CrossRef]
- Konopacka-Lyskawa, D. Synthesis Methods and Favorable Conditions for Spherical Vaterite Precipitation: A Review. Crystals 2019, 9, 223. [Google Scholar] [CrossRef]
- Mugnaioli, E.; Andrusenko, I.; Schüler, T.; Loges, N.; Dinnebier, R.E.; Panthöfer, M.; Tremel, W.; Kolb, U. Ab Initio structure determination of vaterite by automated electron diffraction. Angew. Chem. Int. Ed. Engl 2012, 51, 7041–7045. [Google Scholar] [CrossRef]
- Gibson, R.E.; Wyckoff, R.W.G.; Merwin, H.E. Vaterite and mu-calcium carbonate. Am. J. Sci. 1925, 10, 325–333. [Google Scholar] [CrossRef]
- von Olshausen, S. Strukturunterschungen nach der Debye-Scherrer-Methode. Zeitschr. Kristallographie 1925, 61, 463–514. [Google Scholar]
- Meyer, H.J. Uber Vaterit Und Seine Struktur. Angew. Chem. Int. Ed. 1959, 71, 678. [Google Scholar]
- Meyer, H.J. Struktur und Fehlordnung des Vaterits. Z. Für Krist. Cryst. Mater. 1969, 128, 183–212. [Google Scholar] [CrossRef]
- Sato, M.; Matsuda, S. Structure of vaterite and infrared spectra. Z. Für Krist. 1969, 129, 405–410. [Google Scholar] [CrossRef]
- Gabrielli, C.; Jaouhari, R.; Joiret, S.; Maurin, G. In situ Raman spectroscopy applied to electrochemical scaling. Determination of the structure of vaterite. J. Raman Spectrosc. 2000, 31, 497–501. [Google Scholar] [CrossRef]
- Behrens, G.; Kuhn, T.L.; Ubic, R.; Heuer, H.A. Raman spectra of vateritic calcium carbonate. Spectrosc. Lett. 1995, 28, 983–995. [Google Scholar] [CrossRef]
- Le Bail, A.; Ouhenia, S.; Chateigner, D. Microtwinning hypothesis for a more ordered vaterite model. Powder Diffr. 2012, 26, 16–21. [Google Scholar] [CrossRef]
- Demichelis, R.; Raiteri, P.; Gale, J.D.; Dovesi, R. A new structural model for disorder in vaterite from first-principles calculations. Crystengcomm 2012, 14, 44–47. [Google Scholar] [CrossRef]
- Wang, J.W.; Becker, U. Structure and carbonate orientation of vaterite (CaCO3). Am. Mineral. 2009, 94, 380–386. [Google Scholar] [CrossRef]
- Steciuk, G.; Palatinus, L.; Rohlíček, J.; Ouhenia, S.; Chateigner, D. Stacking sequence variations in vaterite resolved by precession electron diffraction tomography using a unified superspace model. Sci. Rep. 2019, 9, 9156. [Google Scholar] [CrossRef]
- Christy, A.G. A Review of the Structures of Vaterite: The Impossible, the Possible, and the Likely. Cryst. Growth Des. 2017, 17, 3567–3578. [Google Scholar] [CrossRef]
- Andreassen, J.P. Formation mechanism and morphology in precipitation of vaterite-nano aggregation or crystal growth? J. Cryst. Growth 2005, 274, 256–264. [Google Scholar] [CrossRef]
- Gránásy, L.; Pusztai, T.; Tegze, G.; Warren, J.A.; Douglas, J.F. Growth and form of spherulites. Phys. Rev. E 2005, 72, 011605. [Google Scholar] [CrossRef]
- Ma, M.G.; Su, R.C. Biomineralization and Biomimetic Synthesis of Biomineral and Nanomaterials. In Advances in Biomimetics; Anne, G., Ed.; IntechOpen: Rijeka, Croatia, 2011; Chapther 2. [Google Scholar]
- Dietzsch, M.; Andrusenko, I.; Branscheid, R.; Emmerling, F.; Kolb, U.; Tremel, W. Snapshots of calcium carbonate formation-A step by step analysis. Z. Für Krist. Cryst. Mater. 2017, 232, 255–265. [Google Scholar] [CrossRef]
- Rudloff, J.; Cölfen, H. Superstructures of temporarily stabilized nanocrystalline CaCO3 particles: Morphological control via water surface tension variation. Langmuir 2004, 20, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.X.; Yu, S.H.; Guo, X.H. Double hydrophilic block copolymer controlled growth and self-assembly of CaCO3 multilayered structures at the air/water interface. Langmuir 2006, 22, 6125–6129. [Google Scholar] [CrossRef]
- Guo, X.H.; Yu, S.H.; Cai, G.B. Crystallization in a mixture of solvents by using a crystal modifier: Morphology control in the synthesis of highly monodisperse CaCO3 microspheres. Angew. Chem. Int. Ed. Engl. 2006, 45, 3977–3981. [Google Scholar] [CrossRef]
- Qi, L.M.; Li, J.; Ma, J.M. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Adv. Mater. 2002, 14, 300–303. [Google Scholar] [CrossRef]
- Meng, Q.W.; Wang, X.; Chen, D.Z.; Yu, X.H. Influence of hyperbranched DHBC with carboxyl terminal groups on the crystallization of CaCO3. Chin. J. Inorg. Chem. 2006, 22, 447–450. [Google Scholar]
- Qun, Z.; Chuanbao, C.; Juan, F.; Liang, F.; Liying, R. Influence of A Double-Hydrophilic Block Copolymer With Sulfonic Groups on The Crystallization of CaCO3. Acta Polym. Sin. 2008, 10, 1010–1014. [Google Scholar] [CrossRef]
- Borisov, S.V.; Magarill, S.A.; Pervukhina, N.V. Crystallographic Analysis of Symmetry-Stability Relations in Atomic Structures. J. Struct. Chem. 2019, 60, 1191–1218. [Google Scholar] [CrossRef]
- Borisov, S.V.; Magarill, S.A.; Pervukhina, N.V. Crystallographic Analysis of Three Modifications of Caco3: Calcite, Aragonite, Vaterite. J. Struct. Chem. 2021, 62, 1027–1037. [Google Scholar] [CrossRef]
- Maciejewski, M.; Oswald, H.R.; Reller, A. Thermal Transformations of Vaterite and Calcite. Thermochim. Acta 1994, 234, 315–328. [Google Scholar] [CrossRef]
- Tsuno, H.; Kagi, H.; Akagi, T. Effects of trace lanthanum ion on the stability of vaterite and transformation from vaterite to calcite in an aquatic system. Bull. Chem. Soc. Jpn. 2001, 74, 479–486. [Google Scholar] [CrossRef]
- Nassrallah-Aboukais, N.; Boughriet, A.; Gengembre, L.; Aboukais, A. Manganese(II)/vaterite/water systems-Spectroscopic and thermodynamic study. J. Chem. Soc. Faraday Trans. 1998, 94, 2399–2405. [Google Scholar] [CrossRef]
- Maruyama, K.; Kagi, H.; Komatsu, K.; Yoshino, T.; Nakano, S. Pressure-induced phase transitions of vaterite, a metastable phase of CaCO3. J. Raman Spectrosc. 2017, 48, 1449–1453. [Google Scholar] [CrossRef]
- Nassrallah-Aboukais, N.; Boughriet, A.; Gengembre, L.; Aboukais, A. Raman spectroscopic studies of carbonates part I: High-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys. Chem. Miner. 1993, 20, 1–18. [Google Scholar]
- Wehrmeister, U.; Soldati, A.L.; Jacob, D.E.; Häger, T.; Hofmeister, W. Raman spectroscopy of synthetic, geological and biological vaterite: A Raman spectroscopic study. J. Raman Spectrosc. 2010, 41, 193–201. [Google Scholar] [CrossRef]
- Arabit, J.; Prentice, D.; Luong, J.; Bouissonnié, A.; Govindhakannan, J.; Rosner, F.; Simonetti, D.; La Plante, E.; Gadt, T.; Sant, G. Isopropanol Mediates the Rapid and Selective Synthesis of Vaterite during Ambient Carbonation. ACS Sustain. Chem. Eng. 2025, 13, 7549–7561. [Google Scholar] [CrossRef]
- Arabit, J.; Prentice, D.; Luong, J.; Bouissonnié, A.; Govindhakannan, J.; Rosner, F.; Simonetti, D.; La Plante, E.; Gadt, T.; Sant, G. Sustainable utilization of magnesium slag through carbonation: A pathway to high-value products with vaterite calcium carbonate. J. Sustain. Cem. Based Mater. 2025, 14, 89–102. [Google Scholar]
- Kitamura, M. Crystallization and transformation mechanism of calcium carbonate polymorphs and the effect of magnesium ion. J. Colloid Interface Sci. 2001, 236, 318–327. [Google Scholar] [CrossRef]
- Hadiko, G.; Han, Y.S.; Fuji, M.; Takahashi, M. Effect of magnesium ion on the precipitation of hollow calcium carbonate by bubble templating method. Key Eng. Mater. 2006, 317, 65–68. [Google Scholar] [CrossRef]
- Song, X.; Tang, Z.; Hua, X.; Li, D.; Li, M.; Bu, X. The role of NH+ on controlling the pure vaterite transformations. J. Mol. Liq. 2024, 407, 125229. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, J.; Teng, H.; Becker, U. Growth process and crystallographic properties of ammonia-induced vaterite. Am. Mineral. 2012, 97, 1437–1445. [Google Scholar] [CrossRef]
- Kogo, M.; Umegaki, T.; Kojima, Y. Effect of pH on formation of single-phase vaterite. J. Cryst. Growth 2019, 517, 35–38. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Ren, Y.; Yan, H.; Wang, M.; Wang, D.; Lu, X.Y.; Wang, B.; Fan, T.; Guo, H. Controllable synthesis of all the anhydrous CaCO3 polymorphs with various morphologies in CaCl2-NH3-CO2 aqueous system. Powder Technol. 2018, 333, 410–420. [Google Scholar] [CrossRef]
- Li, H.; Yao, Q.Z.; Wang, F.P.; Huang, Y.R.; Fu, S.Q.; Zhou, G.T. Insights into the formation mechanism of vaterite mediated by a deep-sea bacterium Shewanella piezotolerans WP3. Geochim. Cosmochim. Acta 2019, 256, 35–48. [Google Scholar] [CrossRef]
- Hou, W.; Feng, Q. Morphology and formation mechanism of vaterite particles grown in glycine-containing aqueous solutions. Mater. Sci. Eng. C 2006, 26, 644–647. [Google Scholar] [CrossRef]
- Lu, H.; Lutz, H.; Roeters, S.J.; Hood, M.A.; Schäfer, A.; Munoz-Espi, R.; Berger, R.; Bonn, M.; Weidner, T. Calcium-Induced Molecular Rearrangement of Peptide Folds Enables Biomineralization of Vaterite Calcium Carbonate. J. Am. Chem. Soc. 2018, 140, 2793–2796. [Google Scholar] [CrossRef]
- Chen, T.; Shi, P.; Li, Y.; Duan, T.; Yu, Y.; Li, X.; Zhu, W. Biomineralization of varied calcium carbonate crystals by the synergistic effect of silk fibroin/magnesium ions in a microbial system. Crystengcomm 2018, 20, 2366–2373. [Google Scholar] [CrossRef]
- Liu, X.; Wang, B.; Zhang, Z.; Pan, Z.; Cheng, H.; Cheng, F. Glycine-induced synthesis of vaterite by direct aqueous mineral carbonation of desulfurization gypsum. Environ. Chem. Lett. 2022, 20, 2261–2269. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Jimenez-Lopez, C.; Rodriguez-Navarro, A.; Gonzalez-Muñoz, M.T.; Rodriguez-Gallego, M. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 2007, 71, 1197–1213. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yao, Q.Z.; Li, H.; Zhou, G.T.; Sheng, Y.M. Formation of Vaterite Mesocrystals in Biomineral-like Structures and Implication for Biomineralization. Cryst. Growth Des. 2015, 15, 1714–1725. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Wang, S.Q.; Tong, X.Y.; Kang, X. Crystal transformation and self-assembly theory of microbially induced calcium carbonate precipitation. Appl. Microbiol. Biotechnol. 2022, 106, 3555–3569. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Huang, H.; Nie, W.; Sun, M.; Li, X.; Lian, B. Facilitated Mechanism of Biological Vaterite Stability Mediated by Bacillus velezensis and Its Secretions. ACS Earth Space Chem. 2023, 7, 2019–2030. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Ren, K.; Dong, H.; Lian, B. Mechanisms of carbonate precipitation induced by two model bacteria. Chem. Geol. 2023, 628, 121461. [Google Scholar] [CrossRef]
- Debnath, A.; Hazra, C.; Sen, R. Insight into biomolecular interaction-based non-classical crystallization of bacterial biocement. Appl. Microbiol. Biotechnol. 2023, 107, 6683–6701. [Google Scholar] [CrossRef]
- Lv, J.J.; Ma, F.; Li, F.C.; Zhang, C.H.; Chen, J.N. Vaterite induced by &ITLysinibacillus&IT sp GW-2 strain and its stability. J. Struct. Biol. 2017, 200, 97–105. [Google Scholar]
- Clarà Saracho, A.; Haigh, S.K.; Hata, T.; Soga, K.; Farsang, S.; Redfern, S.A.; Marek, E. Characterisation of CaCO3 phases during strain-specific ureolytic precipitation. Sci. Rep. 2020, 10, 10168. [Google Scholar] [CrossRef] [PubMed]
- Lian, B.; Hu, Q.; Chen, J.; Ji, J.; Teng, H.H. Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim. Cosmochim. Acta 2006, 70, 5522–5535. [Google Scholar] [CrossRef]
- Tourney, J.; Ngwenya, B.T. Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chem. Geol. 2009, 262, 138–146. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Q.; Chi, W.; Cai, M.; Wang, R.; Fu, Z.; Xie, J.; Zou, Z. Multiple crystallization pathways of amorphous calcium carbonate in the presence of poly(aspartic acid) with a chain length of 30. Crystengcomm 2022, 24, 4809–4818. [Google Scholar] [CrossRef]
- Hoffmann, T.D.; Reeksting, B.J.; Gebhard, S. Bacteria-induced mineral precipitation: A mechanistic review. Microbiology 2021, 167, 001049. [Google Scholar] [CrossRef]
- Zheng, T.W.; Yi, H.H. Formation and Stabilization of Vaterite Aggregate Grooves with Aspartic Acid (Asp) by Bubbling CO2 into a Ca(OH) 2 Suspension. Cryst. Res. Technol. 2021, 56, 11. [Google Scholar]
- Dupont, L.; Portemer, F.; Figlarz, M. Synthesis and study of a well crystallized CaCO3 vaterite showing a new habitus. J. Mater. Chem. 1997, 7, 797–800. [Google Scholar] [CrossRef]
- Rautaray, D.; Ahmad, A.; Sastry, M. Biosynthesis of CaCO3 Crystals of Complex Morphology Using a Fungus and an Actinomycete. J. Am. Chem. Soc. 2003, 125, 14656–14657. [Google Scholar] [CrossRef] [PubMed]
- Sondi, I.; Matijevic, E. Homogeneous Precipitation of Calcium Carbonates by Enzyme Catalyzed Reaction. J. Colloid Interface Sci. 2001, 238, 208–214. [Google Scholar] [CrossRef]
- Ueyama, N.; Takahasi, K.; Onoda, A.; Okamura, T.A.; Yamamoto, H. Tight binding of poly(carboxylate) ligand to calcium carbonate with intramolecular NH…O hydrogen bond. Macromol. Symp. 2002, 186, 129–134. [Google Scholar] [CrossRef]
- Takahashi, K.; Doi, M.; Kobayashi, A.; Taguchi, T.; Onoda, A.; Okamura, T.A.; Yamamoto, H.; Ueyama, N. Formation of 6-, 7- or 8-membered ring intra-side-chain NH O hydrogen bond toward Ca-binding oxyanion in poly(allylaminocarboxylate) ligands stabilizes CaCO3 vaterite crystals. J. Cryst. Growth 2004, 263, 552–563. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Influence of the primary structure of enzymes on the formation of CaCO3 polymorphs:: A comparison of plant (Canavalia Ensiformis) and bacterial (Bacillus Pasteurii) ureases. Langmuir 2005, 21, 8876–8882. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Decho, A.W. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J. Cryst. Growth 2002, 240, 230–235. [Google Scholar] [CrossRef]
- Tourney, J.; Ngwenya, B.T. The role of bacterial extracellular polymeric substances in geomicrobiology. Chem. Geol. 2014, 386, 115–132. [Google Scholar] [CrossRef]
- Chen, X.; Xin, M.; Li, M.; Chen, Z.; Chen, Z. Biomimetic Synthesis of Vaterite by N-Succinyl-OHydroxypropyl Sulfonated Chitosan. Chin. J. Mater. Res. 2016, 30, 31–37. [Google Scholar]
- Jin, B.; Wang, S.; Lei, Y.; Jia, H.; Niu, Q.; Dapaah, M.F.; Gao, Y.; Cheng, L. Green and effective remediation of heavy metals contaminated water using CaCO3 vaterite synthesized through biomineralization. J. Environ. Manag. 2024, 353, 120136. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, B.; Ping, H.; Fu, Z.; Li, Y.; Wang, W.; Wang, H.; Wang, Y.; Zhang, J.; Zhang, F. Template-free synthesis of hierarchical porous calcium carbonate microspheres for efficient water treatment. RSC Adv. 2016, 6, 472–480. [Google Scholar] [CrossRef]
- Liu, R.; Lian, B. Non-competitive and competitive adsorption of Cd2+, Ni2+, and Cu2+ by biogenic vaterite. Sci Total Environ. 2019, 659, 122–130. [Google Scholar] [CrossRef]
- Dang, H.C.; Yuan, X.; Xiao, Q.; Xiao, W.X.; Luo, Y.K.; Wang, X.L.; Song, F.; Wang, Y.Z. Facile batch synthesis of porous vaterite microspheres for high efficient and fast removal of toxic heavy metal ions. J. Environ. Chem. Eng. 2017, 5, 4505–4515. [Google Scholar] [CrossRef]
- Lin, P.Y.; Wu, H.M.; Hsieh, S.L.; Li, J.S.; Dong, C.; Chen, C.W.; Hsieh, S. Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal. Chemosphere 2020, 254, 126903. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Yu, S.H.; Jiang, H.F.; Yao, Q.Z.; Fu, S.Q.; Zhou, G.T. Performance and mechanism of simultaneous removal of Cd(II) and Congo red from aqueous solution by hierarchical vaterite spherulites. Appl. Surf. Sci. 2018, 444, 224–234. [Google Scholar] [CrossRef]
- Zhang, H. Preparation of Vaterite-Type Calcium Carbonate and Its Adsorption Behavior and Mechanism of Phosphorus and Lead in Water. Master’s Thesis, Inner Mongolia University of Science & Technology, Baotou, China.
- He, X.; Hu, M.; Cui, Y.; Wang, X.; Lian, B. Simulated Experimental Study on the Removal of Methylene Blue-Cu(II) Composite Pollution by Magnetized Vaterite. Minerals 2024, 14, 1142. [Google Scholar] [CrossRef]
- Sawada, K.; Yoshida, S.; Suzuki, T. Adsorption Of Phosphate On Vaterite. J. Chem. Soc. Faraday Trans. 1992, 88, 2227–2231. [Google Scholar] [CrossRef]
- Chong, K.Y.; Chia, C.H.; Zakaria, S.; Sajab, M.S. Vaterite calcium carbonate for the adsorption of Congo red from aqueous solutions. J. Environ. Chem. Eng. 2014, 2, 2156–2161. [Google Scholar] [CrossRef]
- Nagpal, M.; Kakkar, R. Selective adsorption and separation of toxic cationic dyes using hierarchically porous SDBS modified vaterite microspheres (Hr-SMV). J. Phys. Chem. Solids 2020, 146, 109598. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, P.; An, X.; Wang, X.; Li, S.; Lian, B. Vaterite Synthesized by Waste Liquid of Extracting Chitin from Crab Shells and the Mineral Loading for Doxorubicin Hydrochloride. Minerals 2022, 12, 1608. [Google Scholar] [CrossRef]
- Song, X.; Tuo, Y.; Li, D.; Hua, X.; Wang, R.; Xue, J.; Yang, R.; Bu, X.; Luo, X. A Green Approach to Preparing Vaterite CaCO3 for Clean Utilization of Steamed Ammonia Liquid Waste and CO2 Mineralization. Sustainability 2023, 15, 13275. [Google Scholar] [CrossRef]
- Li, S.Y.; Lian, B. Application of Calcium Carbonate as a Controlled Release Carrier for Therapeutic Drugs. Minerals 2023, 13, 1136. [Google Scholar] [CrossRef]
- Grigorieva, D.V.; Mikhalchik, E.V.; Balabushevich, N.G.; Mosievich, D.V.; Murina, M.A.; Panasenko, O.M.; Sokolov, A.V.; Gorudko, I.V. Effect of Biopolymers and Functionalized by Them Vaterite Microparticles on Platelet Aggregation. J. Evol. Biochem. Physiol. 2024, 60, 1221–1233. [Google Scholar] [CrossRef]
- Fu, L.H.; Qi, C.; Hu, Y.R.; Mei, C.G.; Ma, M.G. Cellulose/vaterite nanocomposites: Sonochemical synthesis, characterization, and their application in protein adsorption. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 96, 426–435. [Google Scholar] [CrossRef]
- Peng, C.Y.; Zhao, Q.H.; Gao, C.Y. Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multilayers-coated CaCO3 microparticles. Colloids Surf. A-Physicochem. Eng. Asp. 2010, 353, 132–139. [Google Scholar] [CrossRef]
- Balabushevich, N.G.; Kovalenko, E.A.; Filatova, L.Y.; Kirzhanova, E.A.; Mikhalchik, E.V.; Volodkin, D.; Vikulina, A.S. Hybrid Mucin-Vaterite Microspheres for Delivery of Proteolytic Enzyme Chymotrypsin. Macromol. Biosci. 2022, 22, 7. [Google Scholar] [CrossRef] [PubMed]
- Schlicht, S.; Campbell, J.; Weber, A.; Westhoff, J.; Volodkin, D.; Fischer, D.; Drummer, D.; Vikulina, A. Vaterite-based in situ surface modification and process-dependent biocompatibility of laser sintered polypropylene. J. Mater. Res. Technol. JMRT 2024, 32, 3447–3455. [Google Scholar] [CrossRef]
- Fujikura, K.; Obata, A.; Lin, S.; Jones, J.R.; Law, R.V.; Kasuga, T. Preparation of Electrospun Poly(Lactic Acid)-Based Hybrids Containing Siloxane-Doped Vaterite Particles for Bone Regeneration. J. Biomater. Sci. Polym. Ed. 2012, 23, 1369–1380. [Google Scholar] [CrossRef]
- Wakita, T.; Obata, A.; Poologasundarampillai, G.; Jones, J.R.; Kasuga, T. Preparation of electrospun siloxane-poly(lactic acid)-vaterite hybrid fibrous membranes for guided bone regeneration. Compos. Sci. Technol. 2010, 70, 1889–1893. [Google Scholar] [CrossRef]
- Obata, A.; Tokuda, S.; Kasuga, T. Enhanced in vitro cell activity on silicon-doped vaterite/poly(lactic acid) composites. Acta Biomater. 2009, 5, 57–62. [Google Scholar] [CrossRef]
- Schröder, R.; Besch, L.; Pohlit, H.; Panthöfer, M.; Roth, W.; Frey, H.; Tremel, W.; Unger, R.E. Particles of vaterite, a metastable CaCO3 polymorph, exhibit high biocompatibility for human osteoblasts and endothelial cells and may serve as a biomaterial for rapid bone regeneration. J. Tissue Eng. Regen. Med. 2018, 12, 1754–1768. [Google Scholar] [CrossRef]
- Maeda, H.; Maquet, V.; Chen, Q.Z.; Kasuga, T.; Jawad, H.; Boccaccini, A.R. Bioactive coatings by vaterite deposition on polymer substrates of different composition and morphology. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2007, 27, 741–745. [Google Scholar] [CrossRef]
- Yamada, S.; Yamamoto, A.; Kasuga, T. Poly(L-lactic acid)/vaterite composite coatings on metallic magnesium. J. Mater. Sci. Mater. Med. 2014, 25, 2639–2647. [Google Scholar] [CrossRef]
- Obata, A.; Hasegawa, D.; Nakamura, J.; Jones, J.R.; Kasuga, T. Induction of hydroxycarbonate apatite formation on polyethylene or alumina substrates by spherical vaterite particles deposition. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 1976–1981. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, F.; Jinag, L.; Lu, B.; Hou, G.; Zhu, J. Production of vaterite via wet carbonation of carbide residue: Enhancing cement properties and CO2 sequestration. Cem. Concr. Compos. 2024, 150, 105549. [Google Scholar] [CrossRef]
- Maeda, H.; Kogo, Y.; Obata, A.; Inukai, K.; Kato, K.; Kasuga, T. Surface modification of poly(L-lactic acid)-vaterite composites on a zirconia substrate by imogolite coating. J. Ceram. Soc. Jpn. 2013, 121, 749–752. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Zhu, J.; Zhao, R.; Guan, X. Process and Mechanism of Vaterite Calcium Carbonate Preparation from Calcium Carbide Slag. J. Build. Mater. 2023, 26, 939–948. [Google Scholar]
- Fan, T.B.; Jia, X.H.; Han, D.X.; Chen, S.; Jiang, Y.; Hu, T.T.; Guo, H.F.; Li, L.; Liu, Y.Y. Study on preparation of vaterite from dolomite by ammonia-alkali method and its mechanism. Inorg. Chem. Ind. 2021, 53, 56–60. [Google Scholar]
- Song, X.H.; Pan, M.Y.; Xu, J.F.; Huang, Z.Y.; Pan, Q.; Li, Q.N. Applications of Vaterite in Drug Loading and Controlled Release. Prog. Biochem. Biophys. 2025, 52, 162–181. [Google Scholar]
- Borkowski, A.; Działak, P.; Berent, K.; Gajewska, M.; Syczewski, M.D.; Słowakiewicz, M. Mechanism of bacteriophage-induced vaterite formation. Sci. Rep. 2024, 14, 20481. [Google Scholar] [CrossRef]
Pollutants | Maximum Adsorption Amount mg/g | Maximum Removal Rate |
---|---|---|
Cd2+ [81,82,83,84,85,86] | 1704.4 | 99.50% |
Pb2+ [82,84,85,87] | 2066 | 99.90% |
Zn2+ [82] | 587.3 | 90.40% |
Cu2+ [83,85,88] | 178.57 | 95.00% |
Fe2+ [85] | 99.30% | |
Ni2+ [83] | 270.27 | 75.00% |
Phosphates [87,89] | 91.08% | |
Congo Red [86,90] | 89 | 79.93% |
Crystalline Violet [91] | 316.8 | |
Methylene Blue [91] | 68.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, G.; Liu, X.; Lian, B.; Wang, S. Research Progress on Vaterite Mineral and Its Synthetic Analogs. Minerals 2025, 15, 796. https://doi.org/10.3390/min15080796
Sun G, Liu X, Lian B, Wang S. Research Progress on Vaterite Mineral and Its Synthetic Analogs. Minerals. 2025; 15(8):796. https://doi.org/10.3390/min15080796
Chicago/Turabian StyleSun, Guoxi, Xiuming Liu, Bin Lian, and Shijie Wang. 2025. "Research Progress on Vaterite Mineral and Its Synthetic Analogs" Minerals 15, no. 8: 796. https://doi.org/10.3390/min15080796
APA StyleSun, G., Liu, X., Lian, B., & Wang, S. (2025). Research Progress on Vaterite Mineral and Its Synthetic Analogs. Minerals, 15(8), 796. https://doi.org/10.3390/min15080796