Enhanced Hydrothermal Stability and Propylene Selectivity of Electron Beam Irradiation-Induced Hierarchical Fluid Catalytic Cracking Additives
Abstract
1. Introduction
2. Results
Characterization of the H-ZSM-5 Samples
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vogt, E.T.C.; Weckhuysen, B.M. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 2015, 44, 7342–7370. [Google Scholar] [CrossRef] [PubMed]
- Amghizar, I.; Vandewalle, L.A.; Van Geem, K.M.; Marin, G.B. New Trends in Olefin Production. Engineering 2017, 3, 171–178. [Google Scholar] [CrossRef]
- Farshi, A.; Shaiyegh, F.; Burogerdi, S.H.; Dehgan, A. FCC Process Role in Propylene Demands, Petrol. Sci. Technol. 2011, 29, 875–885. [Google Scholar]
- Akah, A.; Al-Ghrami, M. Maximizing propylene production via FCC technology. Appl. Petrochem. Res. 2015, 5, 377–392. [Google Scholar] [CrossRef]
- Hussain, A.I.; Aitani, A.M.; Kubu, M.; Čejka, J.; Al-Khattaf, S. Catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives for maximizing propylene yield. Fuel 2016, 167, 226–239. [Google Scholar] [CrossRef]
- Dong, X.; Shaikh, S.; Vittenet, J.R.; Wang, J.; Liu, Z.; Bhatte, K.D.; Ali, O.; Xu, W.; Osorio, I.; Saih, Y.; et al. Fine Tuning the Diffusion Length in Hierarchical ZSM-5 To Maximize the Yield of Propylene in Catalytic Cracking of Hydrocarbons. ACS Sustain. Chem. Eng. 2018, 6, 15832–15840. [Google Scholar] [CrossRef]
- Buchanan, J. The chemistry of olefins production by ZSM-5 addition to catalytic cracking units. Catal. Today 2000, 55, 207–212. [Google Scholar] [CrossRef]
- Corma, A.; Melo, F.V.; Sauvanaud, L.; Ortega, F. Light cracked naphtha processing: Controlling chemistry for maximum propylene production. Catal. Today 2005, 107, 699–706. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, S.; Song, Y.; Xu, L. Catalytic cracking of C4 alkenes to propene and ethene: Influences of zeolites pore structures and Si/Al2 ratios. Appl. Catal. A Gen. 2005, 288, 134–142. [Google Scholar] [CrossRef]
- Lima, R.B.; Neto, M.M.S.; Oliveira, D.S.; Santos, A.G.D.; Souza, L.D.; Caldeira, V.P.S. Obtainment of hierarchical ZSM-5 zeolites by alkaline treatment for the polyethylene catalytic cracking. Adv. Powder Technol. 2021, 32, 515–523. [Google Scholar] [CrossRef]
- Yokoi, T.; Mochizuki, H.; Namba, S.; Kondo, J.N.; Tatsumi, T. Control of the Al Distribution in the Framework of ZSM-5 Zeolite and Its Evaluation by Solid-State NMR Technique and Catalytic Properties. J. Phys. Chem. C 2015, 119, 15303–15315. [Google Scholar] [CrossRef]
- Fang, Y.; Yang, F.; He, X.; Zhu, X. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization. Front. Chem. Sci. Eng. 2019, 13, 543–553. [Google Scholar] [CrossRef]
- Ma, Q.; Fu, T.; Li, H.; Cui, L.; Li, Z. Insight into the Selection of the Post-Treatment Strategy for ZSM-5 Zeolites for the Improvement of Catalytic Stability in the Conversion of Methanol to Hydrocarbons. Ind. Eng. Chem. Res. 2020, 59, 11125–11138. [Google Scholar] [CrossRef]
- Ngo, P.T.; Vo, P.N.X.; Trinh-Le, L.P.; Pham, D.T.; Phan, P.D.; Cao, C.V.; Tran, T.V.; Luong, T.N.; Ha, Q.L.M.; Le-Phuc, N. Role of e-beam irradiation treatment on detemplation and structural hierarchy of ZSM-5 zeolite. Micropor. Mesopor. Mat. 2021, 315, 110928. [Google Scholar] [CrossRef]
- Ferreira, M.L.; Al-Bogami, S.A.; de Lasa, H.I. Self Diffusivity of n-Dodecane and Benzothiophene in ZSM-5 Zeolites. Its Significance for a New Catalytic Light Diesel Desulfurization Process. Int. J. Chem. React. Eng. 2016, 14, 737–748. [Google Scholar] [CrossRef]
- Polezhaev, P.; Belloň, T.; Kurospajeva, N.C.; Vobecká, L.; Slouka, Z. Molecular sieving of tetraalkylammonium cations on cation exchange systems in DC electric field. Sep. Purif. Technol. 2020, 241, 116691. [Google Scholar] [CrossRef]
- Schlumberger, C.; Thommes, M. Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry—A Tutorial Review. Adv. Mater. Interfaces 2021, 8, 2002181. [Google Scholar] [CrossRef]
- Sotomayor, F.J.; Cychosz, K.A.; Thommes, M. Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies, Acc. Mater. Surf. Res. 2018, 3, 34–50. [Google Scholar]
- Osterrieth, J.W.M.; Rampersad, J.; Madden, D.; Rampal, N.; Skoric, L.; Connolly, B.; Allendorf, M.D.; Stavila, V.; Snider, J.L.; Ameloot, R.; et al. How Reproducible are Surface Areas Calculated from the BET Equation? Adv. Mater. 2022, 34, 2201502. [Google Scholar] [CrossRef]
- Chen, K.; Gan, Z.; Horstmeier, S.; White, J.L. Distribution of Aluminum Species in Zeolite Catalysts: 27Al NMR of Framework, Partially-Coordinated Framework, and Non-Framework Moieties. J. Am. Chem. Soc. 2021, 143, 6669–6680. [Google Scholar] [CrossRef]
- Loeffler, E.; Lohse, U.; Peuker, C.H.; Oehlmann, G. Study of different states of nonframework aluminum in hydrothermally dealuminated HZSM-5 zeolites using diffuse reflectance I.R. spectroscopy. Zeolites 1990, 10, 266–271. [Google Scholar] [CrossRef]
- Auepattana-aumrung, C.; Suriye, K.; Jongsomjit, B.; Panpranot, J.; Praserthdam, P. Inhibition effect of Na+ form in ZSM-5 zeolite on hydrogen transfer reaction via 1-butene cracking. Catal. Today 2020, 358, 237–245. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Lafon, O.; Trébosc, J.; Kim, K.D.; Stampfl, C.; Baiker, A.; Amoureux, J.-P.; Huang, J. Brønsted acid sites based on penta-coordinated aluminum species. Nat. Commun. 2016, 7, 13820. [Google Scholar] [CrossRef] [PubMed]
- Derouane, E.G.; Fripiat, J.G. Quantum mechanical calculations on molecular sieves. 1. Properties of the Si-O-T (T = Si, Al, B) bridge in zeolites. J. Phys. Chem. 1987, 91, 145–148. [Google Scholar] [CrossRef]
- Ong, L.H.; Dömök, M.; Olindo, R.; van Veen, A.C.; Lercher, J.A. Dealumination of HZSM-5 via steam-treatment. Micropor. Mesopor. Mater. 2012, 164, 9–20. [Google Scholar] [CrossRef]
- Hensen, E.J.M.; Poduval, D.G.; Magusin, P.C.M.M.; Coumans, A.E.; van Veen, J.A.R. Formation of acid sites in amorphous silica-alumina. J. Catal. 2010, 269, 201–218. [Google Scholar] [CrossRef]
- Bourgeat-Lami, E.; Massiani, P.; Di Renzo, F.; Espiau, P.; Fajula, F.; Courières, T.D. Study of the state of aluminum in zeolite-β. Appl. Catal. 1991, 72, 139–152. [Google Scholar] [CrossRef]
- van Bokhoven, J.A.; van der Eerden, A.M.J.; Koningsberger, D.C. Three-Coordinate Aluminum in Zeolites Observed with In situ X-ray Absorption Near-Edge Spectroscopy at the Al K-Edge: Flexibility of Aluminum Coordinations in Zeolites. Stud. Surf. Sci. Catal. 2002, 142, 1885. [Google Scholar] [CrossRef]
- Omegna, A.; van Bokhoven, J.A.; Prins, R. Flexible Aluminum Coordination in Alumino–Silicates. Structure of Zeolite H–USY and Amorphous Silica–Alumina. J. Phys. Chem. B 2003, 107, 8854–8860. [Google Scholar] [CrossRef]
- Triantafillidis, C.S.; Vlessidis, A.G.; Nalbandian, L.; Evmiridis, N.P. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites. Micropor. Mesopor. Mater. 2001, 47, 369–388. [Google Scholar] [CrossRef]
- Holzinger, J.; Beato, P.; Lundegaard, L.F.; Skibsted, J. Distribution of Aluminum over the Tetrahedral Sites in ZSM-5 Zeolites and Their Evolution after Steam Treatment. J. Phys. Chem. C 2018, 122, 15595–15613. [Google Scholar] [CrossRef]
- Brunner, E.; Ernst, H.; Freude, D.; Hunger, M.; Krause, C.B.; Prager, D.; Reschtilowski, W.; Schwieger, W.; Bergk, K.H. Solid-state NMR and catalytic studies of mildly hydrothermally dealuminated HZSM-5. Zeolites 1989, 9, 282–286. [Google Scholar] [CrossRef]
- Aramburo, L.A.; de Smit, E.; Arstad, B.; van Schooneveld, M.M.; Sommer, L.; Juhin, A.; Yokosawa, T.; Zandbergen, H.W.; Olsbye, U.; de Groot, F.F.F.; et al. X-ray Imaging of Zeolite Particles at the Nanoscale: Influence of Steaming on the State of Aluminum and the Methanol-To-Olefin Reaction. Angew. Chem. Int. Ed. 2012, 51, 3616. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, S.M.T.; Mezari, B.; Pidko, E.A.; Magusin, P.C.M.M.; Hensen, E.J.M. Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite. J. Catal. 2013, 307, 194–203. [Google Scholar] [CrossRef]
- Katada, N.; Igi, H.; Kim, J.-H. Determination of the Acidic Properties of Zeolite by Theoretical Analysis of Temperature-Programmed Desorption of Ammonia Based on Adsorption Equilibrium. J. Phys. Chem. B 1997, 101, 5969–5977. [Google Scholar] [CrossRef]
- Auepattana-aumrung, C.; Márquez, V.; Wannakao, S.; Jongsomjit, B.; Panpranot, J.; Praserthdam, P. Role of Al in Na-ZSM-5 zeolite structure on catalyst stability in butene cracking reaction. Sci. Rep. 2020, 10, 13643. [Google Scholar] [CrossRef]
- Mirodataos, C.; Barthomeuf, D. A new concept in zeolite-catalyzed reactions: Energy gradient selectivity. J. Catal. 1985, 93, 246–255. [Google Scholar] [CrossRef]
- Jentoft, F.; Gates, B. Solid-acid-catalyzed alkane cracking mechanisms: Evidence from reactions of small probe molecules. Top. Catal. 1997, 4, 1–13. [Google Scholar] [CrossRef]
- Mehla, S.; Kukade, S.; Kumar, P.; Rao, P.V.C.; Sriganesh, G.; Ravishankar, R. Fine tuning H-transfer and β-scission reactions in VGO FCC using metal promoted dual functional ZSM-5. Fuel 2019, 242, 487–495. [Google Scholar] [CrossRef]
- Roeffaers, M.B.J.; Ameloot, R.; Baruah, M.; Uji-I, H.; Bulut, M.; de Cremer, G.; Müller, U.; Jacobs, P.A.; Hofkens, J.; Sels, B.F.; et al. Morphology of Large ZSM-5 Crystals Unraveled by Fluorescence Microscopy. J. Am. Chem. Soc. 2008, 130, 5763–5772. [Google Scholar] [CrossRef]
- ASTM D4463-96; Standard Guide for Metals Free Steam Deactivation of Fresh Fluid Cracking Catalysts. ASTM International: West Conshohocken, PA, USA, 1996. Available online: www.astm.org (accessed on 23 August 2018).
- ASTM D4365-13; Standard Test Method for Determining Micropore Volume and Zeolite Area of a Catalyst. ASTM International: West Conshohocken, PA, USA, 2013. Available online: www.astm.org (accessed on 20 July 2019).
- Wallenstein, D.; Seese, M.; Zhao, X. A novel selectivity test for the evaluation of FCC catalysts. Appl. Catal. A Gen. 2002, 231, 227–242. [Google Scholar] [CrossRef]
- ASTM D2887-14; Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography. ASTM International: West Conshohocken, PA, USA, 2014. Available online: www.astm.org (accessed on 11 July 2017).
- ASTM E1915-13; Standard Test Methods for Analysis of Metal Bearing Ores and Related Materials for Carbon, Sulphur, and Acid–Base Characteristics. ASTM International: West Conshohocken, PA, USA, 2013. Available online: www.astm.org (accessed on 13 September 2019).
Sample | Initial Gel Composition | Product Composition 1 | ||
---|---|---|---|---|
Molar Composition | Calculated Si/Al | Molar Composition | Practical Si/Al | |
20-NaZ | 1SiO2:0.35TPABr: 0.054Na2O:0.025Al2O3: 40H2O | 20.0 | ((C3H7)4N)3.56Na0.99Al4.55Si91.45O192 | 20.1 |
30-NaZ | 1SiO2:0.35TPABr: 0.054Na2O:0.016Al2O3: 40H2O | 31.3 | ((C3H7)4N)3.11Na0.14Al3.05Si92.95O192 | 30.5 |
Sample | Treatment | Composition 1 (wt.%) | Total Si, Al Contents (mmol g−1) | Bulk Si/Al | ||||
---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Na2O | H2O | QTSi | QTAl | |||
20-HZ | Activated (813 K-3 h) | 89.0 | 3.8 | 0.07 | 6.9 | 14.81 | 0.74 | 20.0 |
30-HZ | 92.5 | 2.6 | 0.09 | 4.7 | 15.40 | 0.51 | 30.2 | |
20-HZ-Irra | Irradiated (10 kGy) + Activated (813 K-3 h) | 89.9 | 3.8 | 0.08 | 5.3 | 14.96 | 0.74 | 20.2 |
30-HZ-Irra | 93.9 | 2.6 | 0.06 | 3.3 | 15.63 | 0.51 | 31.3 | |
20-HZ-St | Activated (813 K-3 h) + Steamed 973 K-4 h | 94.6 | 3.8 | 0.09 | 0.5 | 15.74 | 0.75 | 21.0 |
30-HZ-St | 96.7 | 2.6 | 0.07 | 0.5 | 16.09 | 0.52 | 30.9 | |
20-HZ-Irra-St | Irradiated (10 kGy) + Activated (813 K-3 h) + Steamed (973 K-4 h) | 92.8 | 3.9 | 0.09 | 2.3 | 15.44 | 0.77 | 20.1 |
30-HZ-Irra-St | 95.1 | 2.6 | 0.09 | 1.4 | 15.84 | 0.51 | 31.1 |
Sample | Textural Properties | |||||
---|---|---|---|---|---|---|
SBET a (m2/g) | Smicro b (m2/g) | Smeso c (m2/g) | Vtotal d (cm3/g) | Vmicro e (cm3/g) | Vmeso e (cm3/g) | |
Fresh H-ZSM-5 | ||||||
20-HZ | 370.8 | 219.6 (59.2%) | 151.2 (40.8%) | 0.163 | 0.108 (66.3%) | 0.055 (33.7%) |
20-HZ-Irra | 459.6 | 202.6 (44.1%) | 257.0 (55.9%) | 0.197 | 0.098 (49.7%) | 0.099 (50.3%) |
30-HZ | 395.0 | 314.6 (79.6%) | 80.4 (20.4%) | 0.171 | 0.124 (72.5%) | 0.047 (27.5%) |
30-HZ-Irra | 399.8 | 293.1 (73.1%) | 106.7 (26.7%) | 0.176 | 0.115 (65.3%) | 0.061 (34.7%) |
Steamed H-ZSM-5 | ||||||
20-HZ-St | 294.4 | 114.0 (38.7%) | 180.4 (61.3%) | 0.210 | 0.078 (37.1%) | 0.132 (62.9%) |
20-HZ-Irra-St | 348.7 | 128.0 (36.7%) | 220.7 (63.3%) | 0.285 | 0.138 (48.4%) | 0.147 (51.6%) |
30-HZ-St | 281.1 | 100.8 (35.9%) | 180.3 (64.1%) | 0.288 | 0.099 (34.4%) | 0.189 (65.6%) |
30-HZ-Irra-St | 295.9 | 119.2 (40.3%) | 176.7 (59.7%) | 0.291 | 0.116 (39.9%) | 0.175 (60.1%) |
Sample | Total Al Content a (μmol/g) | Concentrations of Al in Hydrated Samples b (μmol/g) | % Al NMR-Visible c | % de-Al d | Concentrations of Al in Hydrated Samples After Exposure to NH3/He Flow at 373 K e (μmol/g) | ||||
---|---|---|---|---|---|---|---|---|---|
Al(IV) ~55 ppm | Distorted Al(IV) ~30 ppm | Al(VI) ~0 ppm | Al(IV) ~55 ppm | Distorted Al(IV) ~30 ppm | Al(VI) ~0 ppm | ||||
20-HZ | 73.8 | 68.0 (99.3%) | 0 (0%) | 0.5 (0.7%) | 93 | 7.8 | 68.7 (100%) | 0 (0%) | 0 (0%) |
30-HZ | 50.6 | 49.0 (99.7%) | 0 (0%) | 0.2 (0.3%) | 97 | 3.1 | 50.2 (100%) | 0 (0%) | 0 (0%) |
20-HZ-Irra | 74.3 | 54.9 (83.9%) | 1.6 (2.5%) | 8.9 (13.7%) | 88 | 26.2 | 61.9 (94.6%) | 1.7 (2.5%) | 1.9 (2.8%) |
30-HZ-Irra | 50.7 | 42.0 (91.6%) | 0.4 (0.9%) | 3.5 (7.5%) | 90 | 17.0 | 44.9 (97.8%) | 0.5 (1.0%) | 0.5 (1.2%) |
20-HZ-St | 74.5 | 19.6 (57.3%) | 6.4 (18.7%) | 8.2 (24.0%) | 46 | 73.7 | 20.0 (58.5%) | 6.5 (19.0%) | 7.7 (22.5%) |
30-HZ-St | 51.5 | 21.1 (79.0%) | 1.3 (4.9%) | 4.3 (16.1%) | 52 | 60.0 | 22.0 (81.8%) | 1.1 (4.1%) | 3.8 (14.1%) |
20-HZ-Irra-St | 76.5 | 32.4 (71.7%) | 2.6 (5.7%) | 10.3 (22.7%) | 59 | 57.6 | 39.1 (86.4%) | 2.5 (5.5%) | 3.7 (8.1%) |
30-HZ-Irra-St | 51.1 | 26.8 (83.2%) | 0.3 (1.0%) | 5.1 (15.8%) | 63 | 47.5 | 30.27 (95.4%) | 0.1 (0.4%) | 1.3 (4.2%) |
Sample | Framework Al Content a (μmol/g) | Concentration of OH Groups b (μmol/g) | Number of Acid Sites (Desorbed NH3) c (μmol/g) | Strong/ (Weak + Medium) Molar Ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Bridging Si-OH-Al (4.4 ppm) | Framework-Connected Al-OH (3.0 ppm) | Silanol Si-OH (2.5 ppm) | Terminal OH (2.0 ppm) | Total Acidity | Weak Acid | Medium Acid | Strong Acid | |||
20-HZ | 68.0 | 58.8 (46.2) | 10.3 (8.2%) | 22.3 (17.8%) | 33.9 (27.1%) | 131.5 | 58.3 (44.4%) | 13.3 (10.1%) | 59.9 (45.5%) | 0.84 |
30-HZ | 49.0 | 39.0 (39.5%) | 9.6 (9.7%) | 30.2 (30.5%) | 20.0 (20.3%) | 98.6 | 48.5 (49.2%) | 10.2 (10.3%) | 39.9 (40.5%) | 0.68 |
20-HZ-Irra | 54.9 | 18.6 (17.6%) | 35.5 (33.6%) | 21.1 (20.0%) | 30.4 (28.8%) | 108.6 | 50.2 (46.2%) | 32.8 (30.2%) | 25.6 (23.6%) | 0.31 |
30-HZ-Irra | 42.0 | 13.1 (14.6%) | 27.8 (31.1%) | 29.2 (32.6%) | 19.5 (21.7%) | 85.3 | 40.0 (46.9%) | 26.6 (31.1%) | 18.8 (22%) | 0.28 |
20-HZ-St | 19.6 | 10.7 (15.7%) | 9.4 (13.8%) | 27.3 (40.1%) | 20.8 (30.5%) | 60.7 | 33.7 (55.5%) | 11.5 (18.9%) | 15.6 (25.6%) | 0.34 |
30-HZ-St | 21.1 | 7.8 (13.2%) | 10.1 (17.2%) | 26.5 (41.7%) | 16.36 (27.9%) | 48.7 | 28.2 (58.0%) | 9.6 (19.6%) | 10.9 (22.4%) | 0.29 |
20-HZ-Irra-St | 32.4 | 14.9 (18.9%) | 16.8 (21.0%) | 23.6 (29.6%) | 24.5 (30.7%) | 77.0 | 43.3 (56.2%) | 16.9 (21.9%) | 16.8 (21.8%) | 0.28 |
30-HZ-Irra-St | 26.8 | 9.1 (14.5%) | 16.9 (26.9%) | 20.3 (32.4%) | 16.4 (26.1%) | 54.5 | 31.4 (57.5%) | 12.1 (22.2%) | 12.1 (20.3%) | 0.25 |
Product Yield (wt.%) | 100 wt.% Ecat (Base) | 90 wt.% E-cat + 10 wt.% H-ZSM-5 | |||||||
---|---|---|---|---|---|---|---|---|---|
20-HZ | 20-HZ-Irra | 20-HZ-St | 20-HZ-Irra-St | 30-HZ | 30-HZ-Irra | 30-HZ-St | 30-HZ-Irra-St | ||
Dry gas | 1.15 | 2.56 | 1.70 | 1.69 | 1.53 | 1.75 | 1.62 | 1.56 | 1.28 |
H2 | 0.11 | 0.09 | 0.09 | 0.13 | 0.06 | 0.14 | 0.15 | 0.12 | 0.15 |
C1 | 0.41 | 0.42 | 0.34 | 0.43 | 0.40 | 0.46 | 0.47 | 0.48 | 0.36 |
C2= | 0.36 | 1.70 | 0.97 | 0.84 | 0.75 | 0.85 | 0.71 | 0.57 | 0.51 |
C2 | 0.27 | 0.35 | 0.29 | 0.29 | 0.32 | 0.30 | 0.29 | 0.39 | 0.26 |
LPG | 12.26 | 29.53 | 29.76 | 21.26 | 23.02 | 22.61 | 23.38 | 16.21 | 18.57 |
C3= | 3.36 | 9.61 | 11.87 | 4.12 | 7.41 | 8.33 | 10.96 | 4.03 | 6.51 |
C3 | 0.70 | 3.02 | 1.54 | 0.99 | 1.12 | 2.14 | 1.01 | 0.84 | 0.93 |
C4= | 4.73 | 10.20 | 10.37 | 10.65 | 9.47 | 8.17 | 7.78 | 7.85 | 7.64 |
n-C4 | 0.71 | 2.01 | 1.73 | 1.62 | 1.12 | 1.43 | 1.13 | 0.72 | 0.72 |
i-C4 | 2.76 | 4.69 | 4.25 | 3.88 | 3.90 | 2.54 | 2.50 | 2.80 | 2.77 |
Gasoline | 53.37 | 33.48 | 34.87 | 42.55 | 42.40 | 40.99 | 41.37 | 48.36 | 47.28 |
LCO | 13.95 | 13.05 | 14.25 | 17.56 | 15.79 | 12.68 | 13.53 | 13.08 | 13.95 |
HCO | 15.93 | 16.91 | 16.07 | 12.97 | 14.02 | 18.34 | 16.91 | 17.27 | 15.73 |
Coke | 3.34 | 4.47 | 3.35 | 3.97 | 3.24 | 3.63 | 3.19 | 3.52 | 3.19 |
Light olefins a | 8.45 | 21.51 | 23.21 | 15.61 | 17.63 | 17.35 | 19.45 | 12.42 | 14.66 |
C3= selectivity b | 9.33 | 5.65 | 12.24 | 4.90 | 9.88 | 9.80 | 15.44 | 7.07 | 12.76 |
HTC c | 0.73 | 0.66 | 0.58 | 0.51 | 0.53 | 0.49 | 0.47 | 0.44 | 0.46 |
CMR d | 0.42 | 0.55 | 0.40 | 0.37 | 0.39 | 0.69 | 0.64 | 0.55 | 0.46 |
C3 olefinicity e | 0.83 | 0.76 | 0.89 | 0.81 | 0.87 | 0.80 | 0.92 | 0.83 | 0.88 |
ΔC3=/Δgasoline | base | 0.31 | 0.46 | 0.07 | 0.37 | 0.40 | 0.63 | 0.13 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vo, N.X.P.; Ngo, T.P.; Tran, V.T.; Luong, N.T.; Le, P.N.; Cao, V.C. Enhanced Hydrothermal Stability and Propylene Selectivity of Electron Beam Irradiation-Induced Hierarchical Fluid Catalytic Cracking Additives. Catalysts 2025, 15, 620. https://doi.org/10.3390/catal15070620
Vo NXP, Ngo TP, Tran VT, Luong NT, Le PN, Cao VC. Enhanced Hydrothermal Stability and Propylene Selectivity of Electron Beam Irradiation-Induced Hierarchical Fluid Catalytic Cracking Additives. Catalysts. 2025; 15(7):620. https://doi.org/10.3390/catal15070620
Chicago/Turabian StyleVo, Nguyen Xuan Phuong, Thuy Phuong Ngo, Van Tri Tran, Ngoc Thuy Luong, Phuc Nguyen Le, and Van Chung Cao. 2025. "Enhanced Hydrothermal Stability and Propylene Selectivity of Electron Beam Irradiation-Induced Hierarchical Fluid Catalytic Cracking Additives" Catalysts 15, no. 7: 620. https://doi.org/10.3390/catal15070620
APA StyleVo, N. X. P., Ngo, T. P., Tran, V. T., Luong, N. T., Le, P. N., & Cao, V. C. (2025). Enhanced Hydrothermal Stability and Propylene Selectivity of Electron Beam Irradiation-Induced Hierarchical Fluid Catalytic Cracking Additives. Catalysts, 15(7), 620. https://doi.org/10.3390/catal15070620