Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,900)

Search Parameters:
Keywords = organic acid metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1095 KB  
Review
Lactic Acid Bacteria for Fungal Control and Shelf-Life Extension in Fresh Pasta: Mechanistic Insights and Clean-Label Strategies
by Noor Sehar, Roberta Pino, Michele Pellegrino and Monica Rosa Loizzo
Molecules 2026, 31(2), 389; https://doi.org/10.3390/molecules31020389 (registering DOI) - 22 Jan 2026
Abstract
The global food industry is undergoing a major shift driven by increasing consumer demand for clean-label and naturally preserved foods. Fresh pasta is highly vulnerable to fungal damage because of its high water activity (aw > 0.85), typically ranging between 0.92 and [...] Read more.
The global food industry is undergoing a major shift driven by increasing consumer demand for clean-label and naturally preserved foods. Fresh pasta is highly vulnerable to fungal damage because of its high water activity (aw > 0.85), typically ranging between 0.92 and 0.97, moderate to near-neutral pH (around 5.0–7.0), and nutrient-rich composition, all of which create favorable conditions for fungal growth during refrigeration, mainly by genera such as Penicillium and Aspergillus. Fungal contamination results in significant economic losses due to reduced product quality and poses potential health risks associated with mycotoxin production. Although conventional chemical preservatives are relatively effective in preventing spoilage, their use conflicts with clean-label trends and faces growing regulatory and consumer scrutiny. In this context, antifungal lactic acid bacteria (LAB) have emerged as a promising natural alternative for biopreservation. Several LAB strains, particularly those isolated from cereal-based environments (e.g., Lactobacillus plantarum and L. amylovorus), produce a broad spectrum of antifungal metabolites, including organic acids, phenylalanine-derived acids, cyclic dipeptides, and volatile compounds. These metabolites act synergistically to inhibit fungal growth through multiple mechanisms, such as cytoplasmic acidification, energy depletion, and membrane disruption. However, the application of LAB in fresh pasta production requires overcoming several challenges, including the scale-up from laboratory to industrial processes, the maintenance of metabolic activity within the complex pasta matrix, and the preservation of desirable sensory attributes. Furthermore, regulatory approval (GRAS/QPS status), economic feasibility, and effective consumer communication are crucial for successful commercial implementation. This review analyzes studies published over the past decade on fresh pasta spoilage and the antifungal activity of lactic acid bacteria (LAB), highlighting the progressive refinement of LAB-based biopreservation strategies. The literature demonstrates a transition from early descriptive studies to recent research focused on strain-specific mechanisms and technological integration. Overall, LAB-mediated biopreservation emerges as a sustainable, clean-label approach for extending the shelf life and safety of fresh pasta, with future developments relying on targeted strain selection and synergistic preservation strategies. Full article
(This article belongs to the Special Issue The Chemistry of Food Quality Changes During Processing and Storage)
Show Figures

Figure 1

16 pages, 2218 KB  
Article
Spatial Metabolomics Reveals the Biochemical Basis of Stipe Textural Gradient in Flammulina filiformis
by Xueqin Shu, Qian Dong, Qian Zhang, Jie Zhou, Chenchen Meng, Shilin Zhang, Sijun Long, Xun Liu, Bo Wang and Weihong Peng
Agriculture 2026, 16(2), 276; https://doi.org/10.3390/agriculture16020276 (registering DOI) - 22 Jan 2026
Abstract
Flammulina filiformis is a widely cultivated edible mushroom valued for its taste and nutrition. However, its stipe often develops a fibrous and stringy texture that unpleasantly lodges between teeth during chewing. Texture analysis confirmed a distinct toughness gradient, with the upper stipe being [...] Read more.
Flammulina filiformis is a widely cultivated edible mushroom valued for its taste and nutrition. However, its stipe often develops a fibrous and stringy texture that unpleasantly lodges between teeth during chewing. Texture analysis confirmed a distinct toughness gradient, with the upper stipe being more brittle and less tough than the lower part. UHPLC-MS/MS-based metabolomics of these regions identified 953 metabolites, predominantly spanning lipids and lipid-like molecules, organic acids and derivatives, and nucleosides, nucleotides, and analogues. Comparative analysis revealed that the tender upper stipe was characterized by a widespread downregulation of primary metabolites, including severe depletion of key signaling molecules (cAMP, cGMP) and amino acids such as L-tryptophan. In contrast, the tough lower stipe was enriched with metabolites indicative of an oxidative environment, notably a broad spectrum of oxidized lipids and phenolic compounds. KEGG pathway analysis attributed this dichotomy to distinct metabolic programs. While the upper stipe exhibited downregulation in tryptophan and purine metabolism, the lower stipe was enriched for pathways associated with redox homeostasis and lipid peroxidation, including glutathione metabolism and lipid peroxidation. The co-accumulation of oxidized lipids and phenolics suggests a potential mechanism for oxidation-driven tissue fortification. This study reveals a spatially programmed metabolic basis for the textural differentiation in F. filiformis stipes, providing a framework for understanding tissue development and highlighting potential regulatory targets for breeding varieties with improved eating quality. Full article
Show Figures

Figure 1

29 pages, 1240 KB  
Review
Antioxidant and Anti-Inflammatory Activities of Probiotic Strains
by Olga Adriana Caliman-Sturdza, Josiana A. Vaz, Ancuta Veronica Lupaescu, Andrei Lobiuc, Codruta Bran and Roxana Elena Gheorghita
Int. J. Mol. Sci. 2026, 27(2), 1079; https://doi.org/10.3390/ijms27021079 - 21 Jan 2026
Abstract
This review highlights the anti-inflammatory and antioxidant effects of probiotics and their complex health-related impacts. The main health areas targeted are gastrointestinal inflammation, neuroinflammation, systemic metabolic disorders, and liver conditions. Probiotics work mechanistically to regulate key inflammatory pathways by suppressing nuclear factor (NF-κb) [...] Read more.
This review highlights the anti-inflammatory and antioxidant effects of probiotics and their complex health-related impacts. The main health areas targeted are gastrointestinal inflammation, neuroinflammation, systemic metabolic disorders, and liver conditions. Probiotics work mechanistically to regulate key inflammatory pathways by suppressing nuclear factor (NF-κb) and mitogen-activated protein kinase (MAPK) pathways and activating antioxidant defenses through nuclear erythroid 2-related factor (Nrf2). They stimulate anti-inflammatory cytokines (including interleukin 10 (IL-10) and inhibit pro-inflammatory mediators such as tumor necrosis factor-α (TNF-α), partly through the regulation of T cells. Probiotics also produce antioxidant metabolites (e.g., exopolysaccharides and short-chain fatty acids), which enhance the host’s resistance to oxidative stress. Supplementation with probiotics improves intestinal inflammation and oxidative injury in gut disorders. Clinical trials suggest that probiotic supplements may reduce neuroinflammation and oxidative stress, while improving cognitive or behavioral outcomes in neurodegenerative disorders. Overall, this review underscores that probiotics have potent anti-inflammatory and antioxidant effects within the gut–brain axis and across various organ systems, supporting their use as valuable adjunctive therapies for inflammatory and oxidative stress-related conditions. It further emphasizes that additional mechanistic research and controlled clinical trials are essential to translate these findings into the most effective therapeutic strategies. Full article
(This article belongs to the Special Issue Effects of Bioactive Compounds in Oxidative Stress and Inflammation)
Show Figures

Figure 1

13 pages, 1436 KB  
Article
Lipid Metabolism and Oxidative Stress Altered in Crucian Carp (Carassius auratus) Following Exposure to Microplastics Under Laboratory and Field Conditions
by Yuxuan Wu, Zeda Song, Yuguang Lu, Xi Wang, Lihui An and Hongwei Wang
Water 2026, 18(2), 274; https://doi.org/10.3390/w18020274 - 21 Jan 2026
Abstract
Microplastics are pervasive in aquatic environments; however, their impacts on aquatic organisms at environmentally relevant concentrations remain poorly understood, particularly under field conditions. To address this gap, we employed high-throughput sequencing to assess these impacts under both field and laboratory conditions using crucian [...] Read more.
Microplastics are pervasive in aquatic environments; however, their impacts on aquatic organisms at environmentally relevant concentrations remain poorly understood, particularly under field conditions. To address this gap, we employed high-throughput sequencing to assess these impacts under both field and laboratory conditions using crucian carp (Carassius auratus) as a model organism. Following a 4-week exposure in situ, the abundance of intestinal microplastics slightly increased from an initial level of 55.00 ± 59.73 items/fish to 72.67 ± 27.50 items/fish (p > 0.05). Accordingly, a total of 3036 differentially expressed genes (DEGs) were identified in the hepatic transcriptome, with notable enrichment in pathways related to lipid metabolism and oxidative stress. Furthermore, a positive correlation between intestinal microplastic abundance and exposure concentration was observed in fish following a 2-week laboratory exposure to polyamide (PA), with intestinal burdens ranging from 7.50 ± 3.54 to 367.50 ± 17.68 items/fish. The number of DEGs in the hepatic transcriptome, ranging from 41 to 380 items, demonstrated a nonlinear relationship with microplastic levels. Furthermore, these DEGs were primarily enriched in pathways associated with lipid metabolism and oxidative stress, including the PPAR signaling pathway (ko03320) and fatty acid degradation (ko00071). This suggests that microplastics at environmental levels may have detrimental effects on organisms through perturbations in lipid metabolism and oxidative stress. As expected, these findings provide essential insights for evaluating the ecological risks linked to microplastic pollution at environmental levels. Full article
(This article belongs to the Special Issue Studies on Toxic Effects in Aquatic Organisms and Ecosystems)
Show Figures

Figure 1

20 pages, 3293 KB  
Article
Multi-Omics Analysis Provides Insights into the Key Regulatory Pathways of Energy Metabolism in GIFT Under Salinity Stress
by Yumeng Zhang, Binglin Chen, Dayu Li, Zhiying Zou, Jinglin Zhu, Jie Yu, Hong Yang and Wei Xiao
Vet. Sci. 2026, 13(1), 105; https://doi.org/10.3390/vetsci13010105 - 21 Jan 2026
Abstract
Salinity stress represents a critical environmental constraint that significantly limits the development of tilapia aquaculture in brackish water environments. Its substantial impacts on fundamental physiological processes in fish, particularly osmotic balance, energy metabolism, and antioxidant defense mechanisms, have become a major scientific concern [...] Read more.
Salinity stress represents a critical environmental constraint that significantly limits the development of tilapia aquaculture in brackish water environments. Its substantial impacts on fundamental physiological processes in fish, particularly osmotic balance, energy metabolism, and antioxidant defense mechanisms, have become a major scientific concern in aquaculture research. To systematically elucidate the molecular mechanisms underlying the response of genetically improved farmed tilapia (Oreochromis niloticus) to salinity stress and to test the hypothesis that it adapts through metabolic reprogramming for energy reallocation under such conditions, this study employed an integrated transcriptomic and metabolomic approach. Through a rigorously controlled experimental design with freshwater (0‰) as the control group and brackish water (24‰) as the experimental group, we conducted a comprehensive analysis of dynamic changes in gene expression profiles and metabolite spectra in the liver tissues of experimental fish. The study yielded the following key findings: First, salinity stress significantly suppressed growth performance indicators, including body weight and length, while simultaneously inducing extensive transcriptomic restructuring and profound metabolic remodeling in liver tissue. A total of 1529 differentially expressed genes (including 399 up-regulated and 1130 down-regulated genes) and 127 significantly differential metabolites were identified. Second, the organism achieved strategic reallocation of energy resources through coordinated suppression of multiple energy-consuming anabolic pathways, particularly steroid biosynthesis and fatty acid metabolism, with the remarkable down-regulation of Fasn, a key gene in the fatty acid synthesis pathway, being especially prominent. Energy-sensing and metabolic homeostasis regulatory networks played a central coordinating role in this process, guiding the organism through metabolic reprogramming by regulating downstream metabolic nodes. From a multi-omics integrative perspective, this study provides in-depth insights into the sophisticated metabolic remodeling and energy allocation strategies employed by GIFT to cope with salinity stress. These findings, particularly the suppression of fatty acid biosynthesis and the reprogramming of glycolysis/gluconeogenesis pathways, not only elucidate the molecular mechanisms by which teleosts achieve environmental adaptation through energy reallocation, but also provide actionable molecular targets for the selective breeding of salinity-resilient tilapia strains. Full article
(This article belongs to the Section Veterinary Physiology, Pharmacology, and Toxicology)
Show Figures

Figure 1

18 pages, 2737 KB  
Article
Transcriptomic Insight into Early Response of Apple Infected with Penicillium expansum Exposed to Blue LED Light
by Nik Mahnič, Urban Kunej, Jernej Jakše, Nataša Toplak, Simon Koren, Matej Bernard Kobav, Rajko Vidrih and Barbara Jeršek
Agronomy 2026, 16(2), 246; https://doi.org/10.3390/agronomy16020246 - 20 Jan 2026
Abstract
The aim of the study was to investigate the early response of apple fruit infected with Penicillium expansum (P. expansum) to blue light-emitting diode (LED) light (BLL) irradiation. To focus our study on the interaction between apple fruit, the pathogen, and [...] Read more.
The aim of the study was to investigate the early response of apple fruit infected with Penicillium expansum (P. expansum) to blue light-emitting diode (LED) light (BLL) irradiation. To focus our study on the interaction between apple fruit, the pathogen, and BLL, the effect of BLL was also studied on apples without P. expansum and P. expansum grown on malt extract agar (MEA). Transcriptome analysis revealed that the most pronounced responses among biological processes were observed in inoculated apples under BLL. The upregulated processes included water transport, response to heat, and response to high light intensity. The defence response of apples was enhanced by the upregulation of thaumatin-like proteins and caffeic acid 3-O-methyltransferase, while the cellular response to phosphate deficiency and the regulation of multicellular organism development were downregulated. In P. expansum grown on apples under BLL, transcriptome analysis revealed downregulation of genes related to signalling, response to organic compounds, and regulation of metabolic and biosynthetic processes, while genes involved in the biosynthesis of secondary metabolites were upregulated. In addition, the expression of patulin cluster genes was predominantly downregulated in P. expansum. The significant upregulation of genes related to cryptochrome inhibition, defence response, and caffeic acid metabolism in apples under BLL, together with the reduced virulence of P. expansum, contributes to the inhibition of fungal growth. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 1102 KB  
Article
Boron Toxicity Alters Yield, Mineral Nutrition and Metabolism in Tomato Plants: Limited Mitigation by a Laminaria digitata-Derived Biostimulant
by Valeria Navarro-Perez, Erika Fernandez-Martinez, Francisco García-Sánchez, Silvia Simón-Grao and Vicente Gimeno-Nieves
Agronomy 2026, 16(2), 247; https://doi.org/10.3390/agronomy16020247 - 20 Jan 2026
Abstract
The use of unconventional water sources, such as those from marine desalination plants, is challenging for agriculture due to boron concentrations exceeding 0.5 mg L−1, which can impact crop yield and quality. To ensure sustainability, it is crucial to understand crop [...] Read more.
The use of unconventional water sources, such as those from marine desalination plants, is challenging for agriculture due to boron concentrations exceeding 0.5 mg L−1, which can impact crop yield and quality. To ensure sustainability, it is crucial to understand crop responses to high boron levels and to develop strategies to mitigate its toxic effects. This study evaluated the impact of irrigation with a nutrient solution containing 15 mg L−1 of boron on tomato plants (Solanum lycopersicum L.). To modulate the physiological effects of boron toxicity, two biostimulant products based on an extract from the brown alga Laminaria digitata and other active ingredients were applied foliarly. Agronomic, nutritional, and metabolic parameters were analyzed, including total yield, number of fruits per plant, and fruit quality. Additionally, mineral analysis and metabolomic profiling of leaves and fruits were performed, focusing on amino acids, organic acids, sugars, and other metabolites. A control treatment was irrigated with a nutrient solution containing 0.25 mg L−1 of boron. The results showed that a boron concentration of 15 mg L−1 significantly reduced total yield by 45% and significantly decreased fruit size and firmness. Mineral and metabolomic analyses showed significant reductions in Mg and Ca concentrations, significant increases in P and Zn levels, excessive boron accumulation in leaves and fruits, and significant changes in metabolites associated with nitrogen metabolism and the Krebs cycle. Biostimulant application did not significantly improve agronomic performance, likely due to high boron accumulation in the leaves, although significant changes were detected in leaf nutritional status and metabolic profiles. Full article
17 pages, 980 KB  
Article
Dose-Dependent Effects of Pear (Pyrus communis L.) Juice on Kombucha Polyphenols, Antioxidant Capacity, and Enzyme Inhibition
by Agata Kuraj and Joanna Kolniak-Ostek
Molecules 2026, 31(2), 371; https://doi.org/10.3390/molecules31020371 - 20 Jan 2026
Abstract
This study investigated the dose-dependent impact of pear juice supplementation on the chemical composition, phenolic profile, and biological activity of kombucha during 14 days of fermentation. Four formulations (0–75% pear juice) were evaluated for changes in (poly)phenols, organic acids, antioxidant capacity, and enzyme [...] Read more.
This study investigated the dose-dependent impact of pear juice supplementation on the chemical composition, phenolic profile, and biological activity of kombucha during 14 days of fermentation. Four formulations (0–75% pear juice) were evaluated for changes in (poly)phenols, organic acids, antioxidant capacity, and enzyme inhibition. UPLC-QToF-MS analysis demonstrated substantial remodeling of the phenolic profile in pear-enriched beverages, with marked increases in chlorogenic acid, arbutin, and flavonols. The total phenolic content increased proportionally with juice addition, reaching its highest level in the 75% juice formulation. Fermentation enhanced the antioxidant potential, with FRAP values more than doubling relative to the control. Pear supplementation also enhanced the inhibitory activity of key metabolic and neuroactive enzymes, including α-glucosidase, acetylcholinesterase, and butyrylcholinesterase. Principal component analysis linked phenolic enrichment to improved functional properties, highlighting the biochemical contribution of fruit-derived substrates to fermentation dynamics. Overall, the results demonstrate that pear juice acts as an effective bioactive modulator of kombucha fermentation, promoting the release, transformation, and accumulation of phenolic compounds and enhancing the antioxidant and enzyme-inhibitory potential of the beverage. These findings provide mechanistic insights into fruit-tea co-fermentation and support the development of phenolic-rich fermented beverages with improved nutritional quality and health benefits. Full article
Show Figures

Figure 1

21 pages, 4845 KB  
Article
Synchronizing the Liver Clock: Time-Restricted Feeding Aligns Rhythmic Gene Expression in Key Metabolic Pathways
by Shiyan Liu, Feng Zhang, Yiming Wang, Kailin Zhuo and Yingying Zhao
Cells 2026, 15(2), 193; https://doi.org/10.3390/cells15020193 - 20 Jan 2026
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely linked to metabolic syndrome and circadian rhythm disruption, yet the mechanisms by which lifestyle interventions restore circadian organization remain incompletely understood. In this study, we employed a stringent 3 h time-restricted feeding (TRF) regimen in a [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is closely linked to metabolic syndrome and circadian rhythm disruption, yet the mechanisms by which lifestyle interventions restore circadian organization remain incompletely understood. In this study, we employed a stringent 3 h time-restricted feeding (TRF) regimen in a mouse model of high-fat diet (HFD)-induced metabolic dysfunction. TRF markedly improved metabolic outcomes, including lipid accumulation, glucose tolerance, and behavioral and physiological rhythms. Importantly, through transcriptomic profiling using RNA sequencing, we found that TRF induced circadian rhythmicity in previously arrhythmic hepatic genes. This approach revealed that TRF promotes transcriptional synchronization within key metabolic pathways. Genes involved in autophagy, fatty acid metabolism, and protein catabolism exhibited coherent peak expression at defined time windows, suggesting that TRF temporally restructures gene networks to enhance metabolic efficiency. This intra-pathway synchronization likely minimizes energy waste and enables cells to execute specialized functions in a temporally optimized manner. Together, our findings identify temporal reorganization of metabolic pathways as a mechanistic basis for the benefits of TRF, providing new insight into circadian-based strategies for managing metabolic disease. Full article
Show Figures

Figure 1

14 pages, 995 KB  
Article
Antibiotics Induce Metabolic and Physiological Responses in Daphnia magna
by Katie O’Rourke, Izabela Antepowicz, Beatrice Engelmann, Ulrike Rolle-Kampczyk, Martin von Bergen and Konstantinos Grintzalis
Water 2026, 18(2), 265; https://doi.org/10.3390/w18020265 - 20 Jan 2026
Abstract
Antibiotics represent a unique and diverse group of drugs, which are known to exert deleterious effects on non-target species and contribute to the phenomenon of antimicrobial resistance. With central inclusion on the EU Surface Water Watch List, and reported known affects in multiple [...] Read more.
Antibiotics represent a unique and diverse group of drugs, which are known to exert deleterious effects on non-target species and contribute to the phenomenon of antimicrobial resistance. With central inclusion on the EU Surface Water Watch List, and reported known affects in multiple model organisms, the importance of the sufficient monitoring of antibiotics in the aquatic environment has been highlighted. Most studies report the impact of individual antibiotics following exposure for a single generation in animals. In this study, we assessed the impact of four antibiotics with different modes of action (amoxicillin, trimethoprim, erythromycin, and sulfamethoxazole) and their mixture on the sentinel species Daphnia magna over three generations, via biochemical markers and a targeted metabolomic analysis of central metabolic pathways. No mortality was observed at 50 mg/L of each selected antibiotic and their composite mixture. Thus, a working concentration of 1 mg/L was chosen to progress this study. Results indicated that enzyme activity was particularly sensitive to exposure to amoxicillin and the mixture, whereas trimethoprim and the mixture induced the most metabolic changes in glycolysis and the TCA cycle. Additionally, the quaternary mixture had a stronger impact on the first generation of daphnids, altering the activity of β-galactosidase, glutathione S-transferase, and acid and alkaline phosphatase, suggesting that Daphnia can adapt to stress caused by antibiotics. Full article
Show Figures

Figure 1

65 pages, 861 KB  
Review
Fermented Plant-Based Foods and Postbiotics for Glycemic Control—Microbial Biotransformation of Phytochemicals
by Emilia Cevallos-Fernández, Elena Beltrán-Sinchiguano, Belén Jácome, Tatiana Quintana and Nadya Rivera
Molecules 2026, 31(2), 360; https://doi.org/10.3390/molecules31020360 - 20 Jan 2026
Abstract
Plant-based fermented foods are increasingly promoted for glycemic control, yet their mechanisms and clinical impact remain incompletely defined. This narrative review synthesizes mechanistic, preclinical, and human data for key matrices—kimchi and other fermented vegetables, tempeh/miso/natto, and related legume ferments, kombucha and fermented teas, [...] Read more.
Plant-based fermented foods are increasingly promoted for glycemic control, yet their mechanisms and clinical impact remain incompletely defined. This narrative review synthesizes mechanistic, preclinical, and human data for key matrices—kimchi and other fermented vegetables, tempeh/miso/natto, and related legume ferments, kombucha and fermented teas, plant-based kefir, and cereal/pulse sourdoughs. Across these systems, microbial β-glucosidases, esterases, tannases, and phenolic-acid decarboxylases remodel polyphenols toward more bioaccessible aglycones and phenolic acids, while lactic and acetic fermentations generate organic acids, exopolysaccharides, bacterial cellulose, γ-polyglutamic acid, γ-aminobutyric acid, and bioactive peptides. We map these postbiotic signatures onto proximal mechanisms—α-amylase/α-glucosidase inhibition, viscosity-driven slowing of starch digestion, gastric emptying and incretin signaling, intestinal-barrier reinforcement, and microbiota-dependent short-chain–fatty-acid and bile-acid pathways—and their downstream effects on AMPK/Nrf2 signaling and the gut–liver axis. Animal models consistently show improved glucose tolerance, insulin sensitivity, and hepatic steatosis under fermented vs. non-fermented diets. In humans, however, glycemic effects are modest and highly context-dependent: The most robust signal is early postprandial attenuation with γ-PGA-rich natto, strongly acidified or low-glycemic sourdough breads, and selected kombucha formulations, particularly in individuals with impaired glucose regulation. We identify major sources of heterogeneity (starters, process parameters, substrates, background diet) and safety considerations (sodium, ethanol, gastrointestinal symptoms) and propose minimum reporting standards and trial designs integrating metabolomics, microbiome, and host-omics. Overall, plant-based ferments appear best positioned as adjuncts within cardiometabolic dietary patterns and as candidates for “purpose-built” postbiotic products targeting early glycemic excursions and broader metabolic risk. Full article
(This article belongs to the Special Issue Phytochemistry, Antioxidants, and Anti-Diabetes)
Show Figures

Figure 1

32 pages, 1557 KB  
Review
Probiotic and Bioactive Compounds in Foods: From Antioxidant Properties to Gut Microbiota Modulation
by Berta Gonçalves, Alice Vilela, Alfredo Aires, Ivo Oliveira, Carla Gonçalves, Teresa Pinto and Fernanda Cosme
Molecules 2026, 31(2), 345; https://doi.org/10.3390/molecules31020345 - 19 Jan 2026
Viewed by 37
Abstract
Dietary bioactive compounds derived from plant-based and fermented foods act as plei-otropic modulators of human health, exerting antioxidant, anti-inflammatory, cardiopro-tective, neuroprotective, and metabolic effects beyond basic nutrition. Whole foods (fruits, vegetables, grains, nuts) provide synergistic mixtures of bioactives, whereas fermented foods generate a [...] Read more.
Dietary bioactive compounds derived from plant-based and fermented foods act as plei-otropic modulators of human health, exerting antioxidant, anti-inflammatory, cardiopro-tective, neuroprotective, and metabolic effects beyond basic nutrition. Whole foods (fruits, vegetables, grains, nuts) provide synergistic mixtures of bioactives, whereas fermented foods generate a wide range of microbial-derived metabolites (peptides, organic acids) as well as probiotics that enhance nutrient bioavailability and support gut health. The gut microbiota plays a central mediating role in the biological effects of dietary bioactives through a dynamic, bidirectional interaction: dietary compounds shape microbial composition by promoting beneficial taxa and suppressing pathogens, while microbial metabolism converts these compounds into bioactive metabolites, including short-chain fatty acids, that profoundly influence host health. Despite their demonstrated health potential, the clinical translation of many dietary bioactives is limited by low bioavailability, which is influenced by digestion processes, food matrix and processing conditions, host genetics, and individual microbiota profile. Overcoming these limitations requires a deeper understanding of the synergistic interactions among dietary bioactives, probiotics, microbial metabolites, and host signaling pathways. This review provides an integrated perspective of the sources, mechanisms of action, and health effects of food-derived bioactive compounds and probiotic mediated effects, while highlighting current translational challenges and future directions for the development of effective functional foods and personalized nutrition strategies. Full article
(This article belongs to the Special Issue Exploring Bioactive Compounds in Foods and Nutrients for Human Health)
Show Figures

Figure 1

15 pages, 1165 KB  
Article
Urinary Volatilomic Signatures for Non-Invasive Detection of Lung Cancer: A HS-SPME/GC-MS Proof-of-Concept Study
by Patrícia Sousa, Pedro H. Berenguer, Catarina Luís, José S. Câmara and Rosa Perestrelo
Int. J. Mol. Sci. 2026, 27(2), 982; https://doi.org/10.3390/ijms27020982 - 19 Jan 2026
Viewed by 45
Abstract
Lung cancer (LC) remains the leading cause of cancer-related death worldwide, largely due to late-stage diagnosis and the limited performance of current screening strategies. In this preliminary study, headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS) was used to comprehensively characterize the [...] Read more.
Lung cancer (LC) remains the leading cause of cancer-related death worldwide, largely due to late-stage diagnosis and the limited performance of current screening strategies. In this preliminary study, headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS) was used to comprehensively characterize the urinary volatilome of LC patients and healthy controls (HCs), with the dual aim of defining an LC-associated volatilomic signature and identifying volatile organic metabolites (VOMs) with discriminatory potential. A total of 56 VOMs spanning multiple chemical classes were identified, revealing a distinct metabolic footprint between groups. LC patients exhibited markedly increased levels of terpenoids and aldehydes, consistent with heightened oxidative stress, including lipid peroxidation, and perturbed metabolic pathways, whereas HCs showed a predominance of sulphur-containing compounds and volatile phenols, likely reflecting active sulphur amino acid metabolism and/or microbial-derived processes. Multivariate modelling using partial least squares-discriminant analysis (PLS-DA, R2 = 0.961; Q2 = 0.941; p < 0.001), supported by hierarchical clustering, demonstrated robust and clearly separated group stratification. Among the detected VOMs, octanal, dehydro-p-cymene, 2,6-dimethyl-7-octen-2-ol and 3,7-dimethyl-3-octanol displayed the highest discriminative power, emerging as promising candidate urinary biomarkers of LC. These findings provide proof-of-concept that HS-SPME/GC-MS-based urinary volatilomic profiling can capture disease-specific molecular signatures and may serve as a non-invasive approach to support the early detection of LC, warranting validation in independent cohorts and integration within future multi-omics diagnostic frameworks. Full article
Show Figures

Figure 1

36 pages, 3438 KB  
Review
Classical Food Fermentations as Modern Biotechnological Platforms: Alcoholic, Acetic, Butyric, Lactic and Propionic Pathways and Applications
by Anna Rymuszka and Wiktoria Gorczynska
Molecules 2026, 31(2), 333; https://doi.org/10.3390/molecules31020333 - 19 Jan 2026
Viewed by 52
Abstract
Fermentation remains central to food manufacturing and to the bio-based production of organic acids, solvents, and functional metabolites. This review integrates the biochemical pathways, key microorganisms, and application space of five major industrial fermentations—alcoholic, acetic, butyric, lactic, and propionic. We summarize the principal [...] Read more.
Fermentation remains central to food manufacturing and to the bio-based production of organic acids, solvents, and functional metabolites. This review integrates the biochemical pathways, key microorganisms, and application space of five major industrial fermentations—alcoholic, acetic, butyric, lactic, and propionic. We summarize the principal metabolic routes (EMP/ED glycolysis; oxidative ethanol metabolism; butyrate-forming pathways; and the Wood–Werkman, acrylate, and 1,2-propanediol routes to propionate) and relate them to the dominant microbial groups involved, including yeasts, acetic acid bacteria, lactic acid bacteria, clostridia, and propionibacteria. We highlight how the resulting metabolite spectra—ethanol, acetic acid, butyrate, lactate, propionate, and associated secondary metabolites—underpin product quality and safety in fermented foods and beverages and enable the industrial synthesis of platform chemicals, polymers, and biofuels. Finally, we discuss current challenges and opportunities for sustainable fermentation, including waste stream valorization, process intensification, and the integration of systems biology and metabolic engineering within circular economy frameworks. Full article
(This article belongs to the Special Issue Bioactive Compounds in Foods and Their By-Products)
Show Figures

Graphical abstract

18 pages, 5948 KB  
Article
Root and Leaf-Specific Metabolic Responses of Ryegrass to Arbuscular Mycorrhizal Fungi Under Cadmium Stress
by Dapeng Jin, Lingyu Xin, Panpan Tu, Huiping Song, Yan Zou, Zhiwei Bian and Zhengjun Feng
J. Fungi 2026, 12(1), 74; https://doi.org/10.3390/jof12010074 - 19 Jan 2026
Viewed by 90
Abstract
Cadmium (Cd) drastically inhibits plant growth and metabolism, whereas arbuscular mycorrhizal (AM) fungi can enhance plant Cd tolerance through metabolic regulation. To clarify tissue-specific responses, we conducted a pot experiment combined with GC-MS to examine how AM fungi influence root and leaf metabolism [...] Read more.
Cadmium (Cd) drastically inhibits plant growth and metabolism, whereas arbuscular mycorrhizal (AM) fungi can enhance plant Cd tolerance through metabolic regulation. To clarify tissue-specific responses, we conducted a pot experiment combined with GC-MS to examine how AM fungi influence root and leaf metabolism of ryegrass (Lolium perenne L.) under different Cd levels. Root and leaf metabolomes diverged substantially in composition and function. In total, 83 metabolites were identified in roots, mainly phenolics, amines, and sugars associated with carbon–nitrogen metabolism and stress-defense pathways, whereas 75 metabolites were identified in leaves, largely related to photosynthetic metabolism. Roots were more sensitive to Cd, showing significant metabolic alterations at Cd ≥ 5 mg·kg−1, including disruption of galactose metabolism, while leaves exhibited notable changes only at Cd ≥ 100 mg·kg−1, with suppression of citrate, L-aspartate, and starch and sucrose metabolism. AM fungi modulated plant metabolism more strongly under Cd stress. Specifically, AM fungi restored Cd-suppressed galactose and glyoxylate/dicarboxylate metabolism in roots, enhanced starch and sucrose metabolism and amino acid pathways in leaves, and increased stress-related amino acids and organic acids in both tissues. Overall, AM fungi substantially alleviated Cd-induced metabolic inhibition, particularly at Cd ≥ 50 mg·kg−1, providing mechanistic insight into AM-enhanced Cd tolerance and supporting the application of AM symbiosis in remediation of Cd-contaminated soils. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

Back to TopTop