Lactic Acid Bacteria for Fungal Control and Shelf-Life Extension in Fresh Pasta: Mechanistic Insights and Clean-Label Strategies
Abstract
1. Introduction
2. The Spoilage Challenge in Fresh Pasta
2.1. Intrinsic Factors Favoring Microbial Growth
2.1.1. High Water Activity and Nutrient Composition
2.1.2. The Role of pH and Formulation (Egg-Based vs. Egg-Free)
2.2. Primary Fungal Spoilers and Contamination Routes
2.2.1. Dominant Genera: Penicillium and Aspergillus
| Fungal Genus | Common Appearance | Optimal Growth Condition | Primary Risk | Key Mycotoxins of Concern | Ref. |
|---|---|---|---|---|---|
| Penicillium spp. | Blue-green spore masses, rapid surface colonization | Psychrotrophic (grows at refrigeration temps: 4–8 °C), high aw (>0.85), pH 5–7 | Visual spoilage, off-flavors, texture degradation | Ochratoxin A (P. verrucosum), Patulin (P. expansum) | [11,25] |
| Aspergillus flavus, A. niger | Yellow green to black powdery growth | Mesophilic (25–35 °C) but can grow at 8–10 °C, aw > 0.80, pH 3–7 | Mycotoxin production, visible spoilage | Aflatoxins (B1, B2, G1, G2)—potent hepatocarcinogens | [27] |
| Aspergillus spp. (other) | Diverse colors: yellow, brown, black | Moderate aw (0.75–0.85), pH 3–7 | Mycotoxin risk, discoloration | Ochratoxin A (A. ochraceus) | [28] |
| Eurotium repens, E. rubrum | Yellow to orange cleistothecia, often with surface drying | Xerophilic (low aw: 0.70–0.75), pH 4–7 | Persistent contamination from raw materials, surface spoilage | Non-toxigenic, but indicators of poor storage | [29] |
| Other contaminants (e.g., Cladosporium, Rhizopus) | Dark green/black spots, fuzzy growth | Variable, often high humidity | Visual defects, odor issues | Rarely toxigenic in pasta systems |
2.2.2. Production Chain Sources
2.3. Spoilage Effects: Risk of Quality and Mycotoxins
3. Antifungal Lactic Acid Bacteria: Sources and Selection
3.1. Promising LAB Species from Cereal Environments
| Lab Strains | Natural Habitat/Sources | Key Antifungal Metabolites | Reported Efficacy Against | Type of Antifungal Evidence | Ref. |
|---|---|---|---|---|---|
| Lactiplantibacillus plantarum | Sourdough, fermented cereals, plant material | PLA, cyclic dipeptides (e.g., cyclo(Phe-Pro), cyclo(Leu-Pro)), organic acids, hydroxy fatty acids | Penicillium spp., Aspergillus spp. | In vitro growth inhibition assays | [48] |
| Ligilactobacillus amylovorus | Cereal grains, sourdough, malted barley | Organic acids, PLA, antifungal peptides | Penicillium chrysogenum, A. flavus | Agar diffusion and metabolite identification | [49] |
| Levilactobacillus brevis | Sourdough, fermented grains | Cyclic dipeptides (e.g., cyclo(Phe-Pro), cyclo(Leu-Pro)), organic acids, PLA (strain-dependent) | Penicillium spp., Fusarium spp. | Dual-culture inhibition assays | [53] |
| Limosilactobacillus reuteri | Human/animal gut, some fermented foods | Reuterin (from glycerol), organic acids | Broad spectrum (fungi and bacteria) | In vitro inhibition (glycerol-supplemented media) | [54] |
| Lentilactobacillus harbinensis | Traditional Chinese fermented cereals | PLA, acetic acid, other phenolic acids | Penicillium, Aspergillus (in dairy models) | In vitro inhibition | [55] |
| Pediococcus pentosaceus | Fermented cereals, vegetables, meats | Organic acids, bacteriocins, cyclic peptides (strain-dependent) | Penicillium, Aspergillus (in dairy models) | In vitro inhibition | [56] |
3.2. Strategies for Screening and Validating Antifungal Activities
3.3. Criteria in the Selection of Strains Used in Pasta
4. Mechanisms of Action and Antifungal Metabolites of Primary Interest
4.1. The Antifungal Metabolite Cocktail
4.1.1. Organic Acids: Lactic and Acetic Acid
4.1.2. Phenyllactic Acid and Other Phenolic Compounds
4.1.3. Volatile Compounds and Cyclic Dipeptides
4.2. Synergistic Effects and Modes of Action
4.3. Effect of Pasta Matrix on Metabolite Production and Effectiveness
5. Application and Efficacy in Pasta Systems
5.1. The Incorporation of LAB into the Pasta-Making Process
5.2. The Assessment of Shelf-Life Extension and Fungal Inhibition
5.3. Impact on Pasta Quality and Sensory Properties
6. Industrial Perspectives
7. Future Implications
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lahiri, D.; Nag, M.; Sarkar, T.; Ray, R.R.; Shariati, M.A.; Rebezov, M.; Bangar, S.P.; Lorenzo, J.M.; Domínguez, R. Lactic Acid Bacteria (LAB): Autochthonous and Probiotic Microbes for Meat Preservation and Fortification. Foods 2022, 11, 2792. [Google Scholar] [CrossRef]
- Lordi, A.; Panza, O.; Conte, A.; Del Nobile, M.A. Best Combination of Vegetable By-Products for the Shelf-Life Extension of Fresh Pasta. Foods 2024, 13, 44. [Google Scholar] [CrossRef]
- De Oliveira Do Nascimento, K.; Do Nascimento Dias Paes, S.; Maria Augusta, I. A Review “Clean Labeling”: Applications of Natural Ingredients in Bakery Products. J. Food Nutr. Res. 2018, 6, 285–294. [Google Scholar] [CrossRef]
- Mei, J.; Ma, X.; Xie, J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods 2019, 8, 490. [Google Scholar] [CrossRef]
- Turco, I.; Bacchetti, T.; Bender, C.; Oboh, G.; Zimmermann, B.; Ferretti, G. Polyphenol Content and Glycemic Load of Pasta Enriched with Faba Bean Flour. Funct. Foods Health Dis. 2016, 6, 291. [Google Scholar] [CrossRef]
- Garnier, L.; Valence, F.; Mounier, J. Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms 2017, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Ashiq, S. Natural Occurrence of Mycotoxins in Food and Feed: Pakistan Perspective. Compr. Rev. Food Sci. Food Saf. 2014, 14, 159–175. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, P.; Chan, Y.; Chen, S.; Lu, W.; Li, P. A New Strategy to Design Novel Modified Atmosphere Packaging Formulation Maintains the Qualities of Postharvest Strawberries (Fragaria ananassa) during Low-Temperature Storage. J. Food Saf. 2023, 43, e13082. [Google Scholar] [CrossRef]
- Yang, W.; Wu, Z.; Huang, Z.Y.; Miao, X. Preservation of Orange Juice Using Propolis. J. Food Sci. Technol. 2017, 54, 3375–3383. [Google Scholar] [CrossRef]
- Amobonye, A.; Aruwa, C.E.; Aransiola, S.; Omame, J.; Alabi, T.D.; Lalung, J. The Potential of Fungi in the Bioremediation of Pharmaceutically Active Compounds: A Comprehensive Review. Front. Microbiol. 2023, 14, 1207792. [Google Scholar] [CrossRef]
- Schettino, R.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Extension of the Shelf-Life of Fresh Pasta Using Chickpea Flour Fermented with Selected Lactic Acid Bacteria. Microorganisms 2020, 8, 1322. [Google Scholar] [CrossRef]
- Capozzi, V.; Capozzi, V.; Menga, V.; Digesu, A.M.; De Vita, P.; van Sinderen, D.; Cattivelli, L.; Fares, C.; Fares, C.; Spano, G. Biotechnological Production of Vitamin B2-Enriched Bread and Pasta. J. Agric. Food Chem. 2011, 59, 8013–8020. [Google Scholar] [CrossRef]
- Zhao, S.; Hao, X.; Yang, F.; Wang, Y.; Fan, X.; Wang, Y. Antifungal Activity of Lactobacillus plantarum ZZUA493 and Its Application to Extend the Shelf Life of Chinese Steamed Buns. Foods 2022, 11, 195. [Google Scholar] [CrossRef] [PubMed]
- Ponzio, A.; Rebecchi, A.; Zivoli, R.; Morelli, L. Reuterin, Phenyllactic Acid, and Exopolysaccharides as Main Antifungal Molecules Produced by Lactic Acid Bacteria: A Scoping Review. Foods 2024, 13, 752. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, D.; Bilska, B.; Marciniak-Łukasiak, K.; Łepecka, A.; Trząskowska, M.; Neffe-Skocińska, K.; Tomaszewska, M.; Szydłowska, A.; Kołożyn-Krajewska, D. Consumer Understanding of the Date of Minimum Durability of Food in Association with Quality Evaluation of Food Products After Expiration. Int. J. Environ. Res. Public Health 2020, 17, 1632. [Google Scholar] [CrossRef]
- Kõrge, K.; Likozar, B.; Bajić, M.; Novak, U. Active Chitosan–Chestnut Extract Films Used for Packaging and Storage of Fresh Pasta. Int. J. Food Sci. Technol. 2020, 55, 3043–3052. [Google Scholar] [CrossRef]
- Zahorec, J.; Šoronja-Simović, D.; Petrović, J.; Šereš, Z.; Sterniša, M.; Jozinović, A.; Šubarić, D.; Ačkar, Đ.; Babić, J.; Možina, S.S. Application of Plant Ingredients for Improving Sustainability of Fresh Pasta. Sustainability 2024, 16, 209. [Google Scholar] [CrossRef]
- Wu, W.; Li, H.; Chen, Y.; Luo, Y.; Zeng, J.; Huang, J.; Gao, T. Recent Advances in Drying Processing Technologies for Aquatic Products. Processes 2024, 12, 942. [Google Scholar] [CrossRef]
- Amri, Z.; Bhouri, A.M.; Dhibi, M.; Hammami, M.; Hammami, S.; Mechri, B. Nutritional Composition, Lipid Profile and Stability, Antioxidant Activities and Sensory Evaluation of Pasta Enriched by Linseed Flour and Linseed Oil. BMC Biotechnol. 2024, 24, 1. [Google Scholar] [CrossRef]
- Kõiv, V.; Tenson, T. Gluten-Degrading Bacteria: Availability and Applications. Appl. Microbiol. Biotechnol. 2021, 105, 3045–3059. [Google Scholar] [CrossRef]
- Arp, C.G.; Pasini, G. Exploring Edible Insects: From Sustainable Nutrition to Pasta and Noodle Applications—A Critical Review. Foods 2024, 13, 3587. [Google Scholar] [CrossRef]
- Zhao, P.; Ndayambaje, J.P.; Liu, X.; Xia, X. Microbial Spoilage of Fruits: A Review on Causes and Prevention Methods. Food Rev. Int. 2020, 36, 225–246. [Google Scholar] [CrossRef]
- Rachman, A.; Brennan, M.A.; Morton, J.; Brennan, C.S. Effect of Egg White Protein and Soy Protein Isolate Addition on Nutritional Properties and In-Vitro Digestibility of Gluten-Free Pasta Based on Banana Flour. Foods 2020, 9, 589. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.B.; Churey, J.J.; Worobo, R.W. Association of Fungal Genera from Spoiled Processed Foods with Physicochemical Food Properties and Processing Conditions. Food Microbiol. 2019, 83, 211–218. [Google Scholar] [CrossRef]
- Huang, Y.; Fu, L.; Gan, Y.; Qi, G.; Hao, L.; Xin, T.; Xu, W.; Song, J. Analysis of Whole-Genome for Identification of Seven Penicillium Species with Significant Economic Value. Int. J. Mol. Sci. 2024, 25, 8172. [Google Scholar] [CrossRef]
- Yuan, L.; Sadiq, F.A.; Liu, T.J.; Li, Y.; Gu, J.S.; Yang, H.Y.; He, G.Q. Spoilage Potential of Psychrotrophic Bacteria Isolated from Raw Milk and the Thermo-Stability of Their Enzymes. J. Zhejiang Univ. Sci. B 2018, 19, 630–642. [Google Scholar] [CrossRef]
- Kagot, V.; De Saeger, S.; De Boevre, M.; Okoth, S. Biocontrol of Aspergillus and Fusarium Mycotoxins in Africa: Benefits and Limitations. Toxins 2019, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Almiman, B. Identifying the Optimal Temperature and Water Activity Conditions of Phytopathogenic Fungi Recovered from Al-Baha Province. J. Umm Al-Qura Univ. Appl. Sci. 2024, 10, 640–651. [Google Scholar] [CrossRef]
- Deng, J.; Li, Y.; Yuan, Y.; Yin, F.; Chao, J.; Huang, J.; Liu, Z.; Wang, K.; Zhu, M. Secondary Metabolites from the Genus Eurotium and Their Biological Activities. Foods 2023, 12, 4452. [Google Scholar] [CrossRef]
- Tournas, V.H.; Niazi, N.S. Potentially Toxigenic Fungi from Selected Grains and Grain Products. J. Food Saf. 2017, 38, e12422. [Google Scholar] [CrossRef]
- Sabillón, L.; Bianchini, A. From Field to Table: A Review on the Microbiological Quality and Safety of Wheat-Based Products. Cereal Chem. 2016, 93, 105–115. [Google Scholar] [CrossRef]
- Massaro, A.; Galiano, A. Re-Engineering Process in a Food Factory: An Overview of Technologies and Approaches for the Design of Pasta Production Processes. Prod. Manuf. Res. 2020, 8, 80–100. [Google Scholar] [CrossRef]
- Hebishy, E.; Yerlikaya, O.; Reen, F.J.; Mahony, J.; Akpinar, A.; Saygili, D.; Datta, N. Microbiological Aspects and Challenges of Dairy Powders—II: Biofilm/Biofouling. Int. J. Dairy Technol. 2024, 77, 691–712. [Google Scholar] [CrossRef]
- Karanth, S.; Feng, S.; Pradhan, A.K.; Patra, D. Linking Microbial Contamination to Food Spoilage and Food Waste: The Role of Smart Packaging, Spoilage Risk Assessments, and Date Labeling. Front. Microbiol. 2023, 14, 1198124. [Google Scholar] [CrossRef]
- Uhlig, E.; Bucher, M.; Strenger, M.; Kloß, S.; Schmid, M. Towards Reducing Food Wastage: Analysis of Degradation Products Formed during Meat Spoilage under Different Conditions. Foods 2024, 13, 2751. [Google Scholar] [CrossRef]
- Benedict, K.; Chiller, T.M.; Mody, R.K. Invasive Fungal Infections Acquired from Contaminated Food or Nutritional Supplements: A Review of Literature. Foodborne Pathog. Dis. 2016, 13, 343–349. [Google Scholar] [CrossRef]
- Sudha, A.; Durgadevi, D.; Archana, S.; Muthukumar, A.; Suthin Raj, T.; Nakkeeran, S.; Poczai, P.; Nasif, O.; Ansari, M.J.; Sayyed, R.Z. Unraveling the Tripartite Interaction of Volatile Compounds of Streptomyces rochei with Grain Mold Pathogens Infecting Sorghum. Front. Microbiol. 2022, 13, 923360. [Google Scholar] [CrossRef]
- Nagashri, N.; Raghavan, R.; Archana, L. Microbial Volatile Compounds (MVOCs) in Food Industries and Food Safety Applications. In Microbial Volatile Compounds; IGI Global: Hershey, PA, USA, 2024; pp. 75–96. [Google Scholar] [CrossRef]
- Chun, S.; Chambers, E.; Han, I. Development of a Sensory Flavor Lexicon for Mushrooms and Subsequent Characterization of Fresh and Dried Mushrooms. Foods 2020, 9, 980. [Google Scholar] [CrossRef]
- Martínez, M.M.; Gómez, M.; Marcos, P. Texture Development in Gluten-Free Breads: Effect of Different Enzymes and Extruded Flour. J. Texture Stud. 2013, 44, 480–489. [Google Scholar] [CrossRef]
- Kabak, B.; Var, I.; Dobson, A.D.W. Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- Massoud, R.; Cruz, A.; Darani, K.K. Ochratoxin A: From Safety Aspects to Prevention and Remediation Strategies. Curr. Nutr. Food Sci. 2018, 14, 11–16. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, Y.Y.; Galani Yamdeu, J.H.; Orfila, C. A Review of Postharvest Approaches to Reduce Fungal and Mycotoxin Contamination of Foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1521–1560. [Google Scholar] [CrossRef]
- Da Costa, R.J.; Voloski, F.L.S.; Duval, E.H.; Fiorentini, Â.M.; Mondadori, R.G. Preservation of Meat Products with Bacteriocins Produced by Lactic Acid Bacteria Isolated from Meat. J. Food Qual. 2019, 2019, 4726510. [Google Scholar] [CrossRef]
- Sicignano, A.; Masi, P.; Di Monaco, R.; Cavella, S. From Raw Material to Dish: Pasta Quality Step by Step. J. Sci. Food Agric. 2015, 95, 2579–2587. [Google Scholar] [CrossRef] [PubMed]
- Luz, C.; D’Opazo, V.; Meca, G.; Mañes, J. Antifungal Activity and Shelf-Life Extension of Loaf Bread Produced with Sourdough Fermented by Lactobacillus Strains. J. Food Process. Preserv. 2019, 43, e14126. [Google Scholar] [CrossRef]
- Hadaegh, H.; Tajabadi Ebrahimi, M.; Azizi Nezhad, R.; Seyyedain Ardabili, S.M.; Chamani, M. The Impact of Different Lactic Acid Bacteria Sourdoughs on the Quality Characteristics of Toast Bread. J. Food Qual. 2017, 2017, 7825203. [Google Scholar] [CrossRef]
- Sharma, K.; Attri, S.; Goel, G. Selection and Evaluation of Probiotic and Functional Characteristics of Autochthonous Lactic Acid Bacteria Isolated from Fermented Wheat Flour Dough Babroo. Probiotics Antimicrob. Proteins 2018, 11, 774–784. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Mu, C.; Zhu, W.; Shen, J.; Zoetendal, E.G.; Wang, H. Amino Acid Utilization Allows Intestinal Dominance of Lactobacillus amylovorus. ISME J. 2022, 16, 2491–2502. [Google Scholar] [CrossRef]
- Bartkiene, E.; Domig, K.; Mayrhofer, S.; Pugajeva, I.; Bartkevics, V.; Krungleviciute, V. Parameters of Rye, Wheat, Barley, and Oat Sourdoughs Fermented with Lactobacillus plantarum LUHS135 That Influence the Quality of Mixed Rye–Wheat Bread, Including Acrylamide Formation. Int. J. Food Sci. Technol. 2017, 52, 1473–1482. [Google Scholar] [CrossRef]
- Bartkiene, E.; Lele, V.; Ruzauskas, M.; Domig, K.J.; Starkute, V.; Zavistanaviciute, P.; Bartkevics, V.; Pugajeva, I.; Klupsaite, D.; Juodeikiene, G.; et al. Lactic Acid Bacteria Isolation from Spontaneous Sourdough and Their Characterization Including Antimicrobial and Antifungal Properties Evaluation. Microorganisms 2020, 8, 64. [Google Scholar] [CrossRef]
- Varsha, K.K.; Nampoothiri, K.M.; Priya, S.; Devendra, L. Control of Spoilage Fungi by Protective Lactic Acid Bacteria Displaying Probiotic Properties. Appl. Biochem. Biotechnol. 2014, 172, 3402–3413. [Google Scholar] [CrossRef]
- Arasu, M.V.; Abdullah Al-Dhabi, N.; Rejinie Mon, T.; Lee, K.D.; Huxley, V.; Kim, D.; Duraipandiyan, V.; Karuppiah, P.; Choi, K. Identification and Characterization of Lactobacillus brevis P68 with Antifungal, Antioxidant and Probiotic Functional Properties. Indian J. Microbiol. 2014, 55, 19–28. [Google Scholar] [CrossRef]
- Asare, P.T.; Zurfluh, K.; Greppi, A.; Lynch, D.; Schwab, C.; Stephan, R.; Lacroix, C. Reuterin Demonstrates Potent Antimicrobial Activity Against a Broad Panel of Human and Poultry Meat Campylobacter spp. Isolates. Microorganisms 2020, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Hajinia, F.; Sadeghi Mahoonak, A.; Sadeghi, A. The Use of Antifungal Oat-Sourdough Lactic Acid Bacteria to Improve Safety and Technological Functionalities of the Supplemented Wheat Bread. J. Food Saf. 2020, 41, e12873. [Google Scholar] [CrossRef]
- Qi, Y.; Huang, L.; Zeng, Y.; Li, W.; Zhou, D.; Xie, J.; Xie, J.; Tu, Q.; Deng, D.; Yin, J. Pediococcus pentosaceus: Screening and Application as Probiotics in Food Processing. Front. Microbiol. 2021, 12, 762467. [Google Scholar] [CrossRef]
- Dziki, D. Current Trends in Enrichment of Wheat Pasta: Quality, Nutritional Value and Antioxidant Properties. Processes 2021, 9, 1280. [Google Scholar] [CrossRef]
- Guzmán, C.; Alvarez, J.B. Wheat Waxy Proteins: Polymorphism, Molecular Characterization and Effects on Starch Properties. Theor. Appl. Genet. 2015, 129, 1–16. [Google Scholar] [CrossRef]
- Ben Miri, Y.; Luvisi, A.; De Bellis, L.; Benabdallah, A.; Chentir, I.; Djenane, D. Comprehensive Insights into Ochratoxin A: Occurrence, Analysis, and Control Strategies. Foods 2024, 13, 1184. [Google Scholar] [CrossRef] [PubMed]
- Kjeldgaard, B.; Neves, A.R.; Fonseca, C.; Kovács, Á.T.; Domínguez-Cuevas, P. Quantitative High-Throughput Screening Methods Designed for Identification of Bacterial Biocontrol Strains with Antifungal Properties. Microbiol. Spectr. 2022, 10, e01433-21. [Google Scholar] [CrossRef]
- Fredua-Agyeman, M.; Gaisford, S. Assessing Inhibitory Activity of Probiotic Culture Supernatants against Pseudomonas aeruginosa: A Comparative Methodology between Agar Diffusion, Broth Culture and Microcalorimetry. World J. Microbiol. Biotechnol. 2019, 35, 43. [Google Scholar] [CrossRef]
- Mani-López, E.; López-Malo, A.; Arrioja-Bretón, D. The Impacts of Antimicrobial and Antifungal Activity of Cell-Free Supernatants from Lactic Acid Bacteria in Vitro and Foods. Compr. Rev. Food Sci. Food Saf. 2021, 21, 604–641. [Google Scholar] [CrossRef]
- Chaves-López, C.; Serio, A.; Gianotti, A.; Sacchetti, G.; Ndagijimana, M.; Ciccarone, C.; Stellarini, A.; Corsetti, A.; Paparella, A. Diversity of Food-Borne Bacillus Volatile Compounds and Influence on Fungal Growth. J. Appl. Microbiol. 2015, 119, 487–499. [Google Scholar] [CrossRef]
- Suo, X.; Dall’Asta, M.; Giuberti, G.; Minucciani, M.; Wang, Z.; Vittadini, E. The Effect of Chickpea Flour and Its Addition Levels on Quality and In Vitro Starch Digestibility of Corn–Rice-Based Gluten-Free Pasta. Int. J. Food Sci. Nutr. 2022, 73, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Dopazo, V.; Luz, C.; Quiles, J.M.; Calpe, J.; Romano, R.; Mañes, J.; Meca, G. Potential Application of Lactic Acid Bacteria in the Biopreservation of Red Grape from Mycotoxigenic Fungi. J. Sci. Food Agric. 2021, 102, 898–907. [Google Scholar] [CrossRef]
- Daou, R.; Ismail, A.; Khabbaz, L.R.; Maroun, R.G.; Joubrane, K.; Khoury, A.E. Mycotoxins: Factors Influencing Production and Control Strategies. AIMS Agric. Food 2021, 6, 416–447. [Google Scholar] [CrossRef]
- Cajka, T.; Hricko, J.; Rakusanova, S.; Brejchova, K.; Novakova, M.; Rudl Kulhava, L.; Hola, V.; Paucova, M.; Fiehn, O.; Kuda, O. Hydrophilic Interaction Liquid Chromatography–Hydrogen/Deuterium Exchange–Mass Spectrometry (HILIC-HDX-MS) for Untargeted Metabolomics. Int. J. Mol. Sci. 2024, 25, 2899. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Binder, U.; Bracher, F.; Giera, M. Antifungal Drug Testing by Combining Minimal Inhibitory Concentration Testing with Target Identification by Gas Chromatography–Mass Spectrometry. Nat. Protoc. 2017, 12, 947–963. [Google Scholar] [CrossRef]
- Souza, L.V.; Martins, E.; De Carvalho, A.F.; Moreira, I.M.F.B. Strategies for the Development of Bioprotective Cultures in Food Preservation. Int. J. Microbiol. 2022, 2022, 6264170. [Google Scholar] [CrossRef] [PubMed]
- Bavaro, A.R.; Di Biase, M.; Linsalata, V.; D’Antuono, I.; Di Stefano, V.; Lonigro, S.L.; Garbetta, A.; Valerio, F.; Melilli, M.G.; Cardinali, A. Potential Prebiotic Effect of Inulin-Enriched Pasta after In Vitro Gastrointestinal Digestion and Simulated Gut Fermentation. Foods 2024, 13, 1815. [Google Scholar] [CrossRef]
- Lisiecka, K.; Wójtowicz, A.; Dziki, D.; Gawlik-Dziki, U. The Influence of Cistus incanus L. Leaves on Wheat Pasta Quality. J. Food Sci. Technol. 2019, 56, 4311–4322. [Google Scholar] [CrossRef]
- Cai, W.; Tang, F.; Zhao, X.; Guo, Z.; Zhang, Z.; Dong, Y.; Shan, C. Different Lactic Acid Bacteria Strains Affecting the Flavor Profile of Fermented Jujube Juice. J. Food Process. Preserv. 2019, 43, e14095. [Google Scholar] [CrossRef]
- Makhlouf, S.; Li, Y.O.; Sancho-Madriz, M.; Burns-Whitmore, B.; Jones, S.; Ye, S.-H. Effect of Selected Dietary Fibre Sources and Addition Levels on Physical and Cooking Quality Attributes of Fibre-Enhanced Pasta. Food Qual. Saf. 2019, 3, 117–127. [Google Scholar] [CrossRef]
- Colombo, M.; Todorov, S.D.; Nero, L.A. Safety Profiles of Beneficial Lactic Acid Bacteria Isolated from Dairy Systems. Braz. J. Microbiol. 2020, 51, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Herman, L.; Chemaly, M.; Cocconcelli, P.S.; Fernandez, P.; Klein, G.; Peixe, L.; Prieto, M.; Querol, A.; Suarez, J.E.; Sundh, I.; et al. The Qualified Presumption of Safety Assessment and Its Role in EFSA Risk Evaluations: 15 Years Past. FEMS Microbiol. Lett. 2018, 366, fny260. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Si, Q.; Xu, Q.; Pan, C.; Qu, T.; Chen, J. Evaluation of Stress Tolerance and Fermentation Performance in Commercial Yeast Strains for Industrial Applications. Foods 2025, 14, 142. [Google Scholar] [CrossRef]
- Jayaprakash, P.; Gaiani, C.; Edorh, J.-M.; Borges, F.; Beaupeux, E.; Maudhuit, A.; Desobry, S. Comparison of Electrostatic Spray Drying, Spray Drying, and Freeze Drying for Lacticaseibacillus rhamnosus GG Dehydration. Foods 2023, 12, 3117. [Google Scholar] [CrossRef]
- Moussavi, S.-E.; Sahin, E.; Riane, F. A Discrete Event Simulation Model Assessing the Impact of Using New Packaging in an Agri-Food Supply Chain. Int. J. Syst. Sci. Oper. Logist. 2024, 11, 2305816. [Google Scholar] [CrossRef]
- Raman, J.; Kim, J.-S.; Choi, K.R.; Eun, H.; Yang, D.; Ko, Y.-J.; Kim, S.-J. Application of Lactic Acid Bacteria (LAB) in Sustainable Agriculture: Advantages and Limitations. Int. J. Mol. Sci. 2022, 23, 7784. [Google Scholar] [CrossRef]
- Leyva Salas, M.; Mounier, J.; Valenza, F.; Coton, M.; Thierry, A.; Coton, E. Microbial antifungal agents for food biopreservation: A review. Microorganisms 2017, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- Siedler, S.; Balti, R.; Neves, A.R. Bioprotective Mechanisms of Lactic Acid Bacteria against Fungal Spoilage of Food. Curr. Opin. Biotechnol. 2018, 56, 138–146. [Google Scholar] [CrossRef]
- Saleh, I.; Abu-Dieyeh, M.H. Novel Prosopis juliflora Leaf Ethanolic Extract as Natural Antimicrobial Agent against Food Spoiling Microorganisms. Sci. Rep. 2021, 11, 86509. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.; Halim, M.; Ariff, A.B.; Rios-Solis, L. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review. Front. Microbiol. 2017, 8, 2285. [Google Scholar] [CrossRef]
- Hansen, G.; Johansen, C.L.; Marten, G.; Jespersen, L.; Wilmes, J.; Arneborg, N. Influence of Extracellular pH on Growth, Viability, Cell Size, Acidification Activity, and Intracellular pH of Lactococcus lactis in Batch Fermentations. Appl. Microbiol. Biotechnol. 2016, 100, 5965–5976. [Google Scholar] [CrossRef] [PubMed]
- Okoye, C.O.; Jiang, H.; Chen, X.; Wang, Y.; Wu, Y.; Gao, L.; Jiang, J. Multi-Omics Analyses Reveal the Regulation Mechanisms of Organic Acid Biosynthesis in Newly Isolated Lactic Acid Bacteria with Application in Corn Biomass Fermentation. Prep. Biochem. Biotechnol. 2025, 55, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hirozawa, M.T.; Bordini, J.G.; Suguiura, I.M.D.S.; Ono, E.Y.S.; Ono, M.A. Lactic Acid Bacteria and Bacillus spp. as Fungal Biological Control Agents. J. Appl. Microbiol. 2022, 134, lxac083. [Google Scholar] [CrossRef]
- Geißel, B.; Loiko, V.; Klugherz, I.; Zhu, Z.; Wagener, N.; Kurzai, O.; van den Hondel, C.A.M.J.J.; Wagener, J. Azole-Induced Cell Wall Carbohydrate Patches Kill Aspergillus fumigatus. Nat. Commun. 2018, 9, 5497. [Google Scholar] [CrossRef]
- Lipińska, L.; Klewicki, R.; Sójka, M.; Bonikowski, R.; Żyżelewicz, D.; Kołodziejczyk, K.; Klewicka, E. Antifungal Activity of Lactobacillus pentosus ŁOCK 0979 in the Presence of Polyols and Galactosyl-Polyols. Probiotics Antimicrob. Proteins 2017, 10, 186–200. [Google Scholar] [CrossRef]
- Balasubramanian, V.K.; Muthuramalingam, J.B.; Chou, J.-Y.; Chen, Y.-P. Recent Trends in Lactic Acid-Producing Microorganisms through Microbial Fermentation for the Synthesis of Polylactic Acid. Arch. Microbiol. 2023, 206, 1. [Google Scholar] [CrossRef]
- Kong, W.-L.; Rui, L.; Wu, X.-Q.; Ni, H. Antifungal Effects of Volatile Organic Compounds Produced by Rahnella aquatilis JZ-GX1 against Colletotrichum gloeosporioides in Liriodendron chinense × tulipifera. Front. Microbiol. 2020, 11, 1114. [Google Scholar] [CrossRef]
- Habschied, K.; Krstanović, V.; Zdunić, Z.; Babić, J.; Mastanjević, K.; Šarić, G.K. Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products. J. Fungi 2021, 7, 348. [Google Scholar] [CrossRef]
- Santra, H.K.; Dutta, R.; Banerjee, D. Antifungal Activity of Bio-Active Cell-Free Culture Extracts and Volatile Organic Compounds (VOCs) Synthesised by Endophytic Fungal Isolates of Garden Nasturtium. Sci. Rep. 2024, 14, 60948. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tong, Z.; Zhang, X.; Wang, Y.; Fang, W.; Li, L.; Luo, Z. Unveiling the Mechanisms for the Plant Volatile Organic Compound Linalool to Control Gray Mold on Strawberry Fruits. J. Agric. Food Chem. 2019, 67, 9265–9276. [Google Scholar] [CrossRef]
- Lin, J.-C.; Chien, C.Y.; Lin, C.L.; Yao, B.Y.; Chen, Y.I.; Liu, Y.H.; Fang, Z.S.; Chen, J.Y.; Chen, W.Y.; Lee, N.N.; et al. Intracellular Hydrogelation Preserves Fluid and Functional Cell Membrane Interfaces for Biological Interactions. Nat. Commun. 2019, 10, 9049. [Google Scholar] [CrossRef]
- Zhang, S.-B.; Qin, Y.-L.; Li, S.F.; Lv, Y.-Y.; Zhai, H.-C.; Hu, Y.-S.; Ping, C.J. Antifungal Mechanism of 1-Nonanol against Aspergillus flavus Growth Revealed by Metabolomic Analyses. Appl. Microbiol. Biotechnol. 2021, 105, 7871–7888. [Google Scholar] [CrossRef] [PubMed]
- Muhialdin, B.J.; Hassan, Z.; Saari, N. In Vitro Antifungal Activity of Lactic Acid Bacteria Low Molecular Peptides against Spoilage Fungi of Bakery Products. Ann. Microbiol. 2018, 68, 557–567. [Google Scholar] [CrossRef]
- Ainsa, A.; Marquina, P.L.; Roncalés, P.; Beltrán, J.A.; Calanche, M.J.B. Enriched Fresh Pasta with a Sea Bass By-Product, a Novel Food: Fatty Acid Stability and Sensory Properties throughout Shelf Life. Foods 2021, 10, 255. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Schlundt, J.; Conway, P.L.; Wu, D. Development of a Dairy-Free Fermented Oat-Based Beverage with Enhanced Probiotic and Bioactive Properties. Front. Microbiol. 2020, 11, 609734. [Google Scholar] [CrossRef]
- Arena, M.P.; Drider, D.; Capozzi, V.; Fiocco, D.; Russo, P.; Spano, G. Immunobiosis and Probiosis: Antimicrobial Activity of Lactic Acid Bacteria with a Focus on Their Antiviral and Antifungal Properties. Appl. Microbiol. Biotechnol. 2018, 102, 9949–9958. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Guo, X.-N.; Sun, X.-H.; Zhu, K.-X. Frozen Dough Steamed Products: Deterioration Mechanism, Processing Technology, and Improvement Strategies. Compr. Rev. Food Sci. Food Saf. 2024, 23, 70028. [Google Scholar] [CrossRef]
- Akamine, I.T.; Vermelho, A.B.; Mansoldo, F.R.P. Probiotics in the Sourdough Bread Fermentation: Current Status. Fermentation 2023, 9, 90. [Google Scholar] [CrossRef]
- De Pasquale, I.; Verardo, V.; Rizzello, C.G.; Gómez-Caravaca, A.M.; Verni, M. Nutritional and Functional Advantages of the Use of Fermented Black Chickpea Flour for Semolina-Pasta Fortification. Foods 2021, 10, 182. [Google Scholar] [CrossRef]
- Dopazo, V.; Navarrè, A.; Calpe, J.; Riolo, M.; Moreno, M.; Meca, G.; Luz, C. Revalorization of Beer Brewing Waste as an Antifungal Ingredient for Bread Biopreservation. Food Biosci. 2024, 58, 103588. [Google Scholar] [CrossRef]
- Ambros, S.; Bauer, S.A.W.; Foerst, P.; Kulozik, U.; Shylkina, L. Microwave–Vacuum Drying of Lactic Acid Bacteria: Influence of Process Parameters on Survival and Acidification Activity. Food Bioprocess Technol. 2016, 9, 1901–1911. [Google Scholar] [CrossRef]
- Qin, Y.-L.; Lv, Y.-Y.; Hu, Y.-S.; Zhang, S.-B.; Cai, J.-P.; Zhai, H.-C. The Antifungal Mechanisms of Plant Volatile Compound 1-Octanol against Aspergillus flavus Growth. Appl. Microbiol. Biotechnol. 2022, 106, 5179–5196. [Google Scholar] [CrossRef]
- Alharaty, G.; Ramaswamy, H.S. The Effect of Sodium Alginate–Calcium Chloride Coating on the Quality Parameters and Shelf Life of Strawberry Cut Fruits. J. Compos. Sci. 2020, 4, 123. [Google Scholar] [CrossRef]
- Plewa-Tutaj, K.; Twarużek, M.; Kosicki, R.; Soszczyńska, E. Analysis of Mycotoxins and Cytotoxicity of Airborne Molds Isolated from the Zoological Garden—Screening Research. Pathogens 2024, 13, 294. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, M.; Aksenov, I.; Sedova, I.; Chalyy, Z. Stability of Mycotoxins in Individual Stock and Multi-Analyte Standard Solutions. Toxins 2020, 12, 94. [Google Scholar] [CrossRef]
- Alasmar, R.; Ul-Hassan, Z.; Zeidan, R.; Al-Thani, R.; Al-Shamary, N.; Alnaimi, H.; Migheli, Q.; Jaoua, S. Isolation of a Novel Kluyveromyces marxianus Strain QKM-4 and Evidence of Its Volatilome Production and Binding Potentialities in the Biocontrol of Toxigenic Fungi and Their Mycotoxins. ACS Omega 2020, 5, 17637–17645. [Google Scholar] [CrossRef]
- Mancebo-Campos, V.; Salvador, M.D.; Fregapane, G. Modelling Virgin Olive Oil Potential Shelf-Life from Antioxidants and Lipid Oxidation Progress. Antioxidants 2022, 11, 539. [Google Scholar] [CrossRef] [PubMed]
- Angiolillo, L.; Spinelli, S.; Conte, A.; Del Nobile, M.A. Extract from Broccoli Byproducts to Increase Fresh Filled Pasta Shelf Life. Foods 2019, 8, 621. [Google Scholar] [CrossRef]
- Tanveer, J.; Banerjee, D.; Dey, B.; Sahu, D.; Jayaraman, S.; Jarzebski, M.; Flores, F.; Kim, D.; Kim, H.; Paramasivan, B.; et al. Selected Materials Techniques for Evaluation of Attributes of Sourdough Bread with Kombucha SCOBY. Rev. Adv. Mater. Sci. 2025, 64, 20250133. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, Y.; Li, X. Detection Strategies for Volatile Fragrance Released from Agricultural Products: Progress and Prospects. Adv. Sens. Res. 2024, 3, 202400044. [Google Scholar] [CrossRef]
- Odey, G.N.; Lee, W.Y. Evaluation of the Quality Characteristics of Flour and Pasta from Fermented Cassava Roots. Int. J. Food Sci. Technol. 2019, 55, 813–822. [Google Scholar] [CrossRef]
- Torres, O.L.; Lema, M.; Galeano, Y.V. Effect of Using Quinoa Flour (Chenopodium quinoa Willd.) on the Physicochemical Characteristics of an Extruded Pasta. Int. J. Food Sci. 2021, 2021, 8813354. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Huang, J.; Wu, X.; Fan, J.; Xu, Y.; Wu, C.; Jin, Y.; Zhou, R. Effect of Raw Material and Starters on the Metabolite Constituents and Microbial Community Diversity of Fermented Soy Sauce. J. Sci. Food Agric. 2019, 99, 5687–5695. [Google Scholar] [CrossRef]
- Plavec, T.V.; Berlec, A. Safety Aspects of Genetically Modified Lactic Acid Bacteria. Microorganisms 2020, 8, 297. [Google Scholar] [CrossRef] [PubMed]
- Bourdichon, F.; Tenning, P.; Laulund, S. Inventory of Microbial Species with a Rationale: A Comparison of the IDF/EFFCA Inventory of Microbial Food Cultures with the EFSA Biohazard Panel Qualified Presumption of Safety. FEMS Microbiol. Lett. 2019, 366, fnz048. [Google Scholar] [CrossRef]
- Hawaz, H.; Bottari, B.; Scazzina, F.; Carini, E. Eastern African Traditional Fermented Foods and Beverages: Advancements, Challenges, and Perspectives on Food Technology, Nutrition, and Safety. Compr. Rev. Food Sci. Food Saf. 2025, 24, 70137. [Google Scholar] [CrossRef]
- Vorländer, K.; Kampen, I.; Finke, J.H.; Kwade, A. Along the Process Chain to Probiotic Tablets: Evaluation of Mechanical Impacts on Microbial Viability. Pharmaceutics 2020, 12, 66. [Google Scholar] [CrossRef]
- Shi, C.; Maktabdar, M. Lactic Acid Bacteria as Biopreservation Against Spoilage Molds in Dairy Products—A Review. Front Microbiol. 2022, 12, 819684. [Google Scholar] [CrossRef]
- FMCG Gurus. Available online: https://fmcggurus.com/blog/fmcg-gurus-the-importance-of-clean-label-in-2023/ (accessed on 12 December 2025).
- Calasso, M.; Lisi, A.; Ressa, A.; Caponio, G.R.; Difonzo, G.; Minervini, F.; Gargano, M.L.; Vacca, M.; De Angelis, M. Incorporating Fresh Durum Wheat Semolina Pasta Fortified with Cardoncello (Pleurotus eryngii) Mushroom Powder as a Mediterranean Diet Staple. Antioxidants 2025, 14, 284. [Google Scholar] [CrossRef]
- Williams, A.N.; Cameron, A.J.; Stavrinides, J.; Sorout, N. The Integration of Genome Mining, Comparative Genomics, and Functional Genetics for Biosynthetic Gene Cluster Identification. Front. Genet. 2020, 11, 600116. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, S.; Li, R.; Zhao, Q. Unraveling the Specialized Metabolic Pathways in Medicinal Plant Genomes: A Review. Front. Plant Sci. 2024, 15, 1459533. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.G.; Bashor, C.J.; Mancuso, C.P.; Kiriakov, S.; Khalil, A.S. Precise, Automated Control of Conditions for High-Throughput Growth of Yeast and Bacteria with eVOLVER. Nat. Biotechnol. 2018, 36, 614–623. [Google Scholar] [CrossRef]
- Eghbal, N.; Liao, W.; Dantigny, P.; Azabou, S.; Dumas, E.; Gharsallaoui, A. Microencapsulation of Natural Food Antimicrobials: Methods and Applications. Appl. Sci. 2022, 12, 3837. [Google Scholar] [CrossRef]
- White, S.; Jackson-Davis, A.; Gordon, K.; Morris, K.; Dudley, A.; Abdallah-Ruiz, A.; Allgaier, K.; Sharpe, K.; Yenduri, A.K.; Green, K.; et al. A Review of Non-thermal Interventions in Food Processing Technologies. J. Food Prot. 2025, 88, 100508. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Shahbaz, H.M.; Yang, J.; Jo, M.H.; Kim, J.U.; Yoo, S.; Kim, S.H.; Lee, D.U.; Park, J. Effect of high-pressure processing combined with lactic acid bacteria on the microbial counts and physicochemical properties of uncooked beef patties during refrigerated storage. J. Food Proc. Pres. 2021, 45, e15345. [Google Scholar] [CrossRef]
- Tabanelli, G.; Barbieri, F.; Campedelli, I.; Venturini, M.C.; Gardini, F.; Montanari, C. Effects of bioprotective cultures on the microbial community during storage of Italian fresh filled pasta. Food Control 2020, 115, 107304. [Google Scholar] [CrossRef]
- Austrich-Comas, A.; Serra-Castelló, C.; Jofré, A.; Gou, P.; Bover-Cid, S. Control of Listeria monocytogenes in chicken dry-fermented sausages with bioprotective starter culture and high-pressure processing. Front Microbiol. 2022, 13, 983265. [Google Scholar] [CrossRef]
- Wang, M.-S.; Wang, L.-H.; Bekhit, A.E.-D.A.; Yang, J.; Hou, Z.-P.; Wang, Y.-Z.; Dai, Q.Z.; Zeng, X.-A. A review of sublethal effects of pulsed electric field on cells in food processing. J. Food Eng. 2018, 223, 32–41. [Google Scholar] [CrossRef]
- Peng, K.; Koubaa, M.; Bals, O.; Vorobiev, E. Effect of Pulsed Electric Fields on the Growth and Acidification Kinetics of Lactobacillus delbrueckii Subsp. bulgaricus. Foods 2020, 9, 1146. [Google Scholar] [CrossRef]
- Marzano, M.; Calasso, M.; Caponio, G.R.; Celano, G.; Fosso, B.; De Palma, D.; Vacca, M.; Notario, E.; Pesole, G.; De Leo, F.; et al. Extension of the shelf-life of fresh pasta using modified atmosphere packaging and bioprotective cultures. Front. Microbiol. 2022, 13, 1003437. [Google Scholar] [CrossRef] [PubMed]
- Akanni, S.F.; Olatunde, S.J.; Oke, M.O. Non-Thermal Food Processing Technologies for Reducing Microbial Loads. Environ. Sustain. Lett. 2024, 3, 117–121. [Google Scholar] [CrossRef]
- Silva-Beltrán, N.P.; Gerba, C.P.; McKinney, J.; Ijaz, M.K.; Boon, S.A. Antifungal Activity and Mechanism of Action of Natural Product Derivatives as Potential Environmental Disinfectants. J. Ind. Microbiol. Biotechnol. 2023, 50, kuad036. [Google Scholar] [CrossRef] [PubMed]
- Borges, F.; Briandet, R.; Callon, C.; Champomier-Vergès, M.C.; Christieans, S.; Chuzeville, S.; Denis, C.; Desmasures, N.; Desmonts, M.H.; Feurer, C.; et al. Contribution of Omics to Biopreservation: Toward Food Microbiome Engineering. Front. Microbiol. 2022, 13, 951182. [Google Scholar] [CrossRef]


| Integration Strategy | Description | Main Advantages | Limitations/Challenges | Technological and Industrial Implications | Sensory Impact | TRL Level | Industrial Readiness | Ref. |
|---|---|---|---|---|---|---|---|---|
| Direct addition of viable LAB | Inoculation of frozen or freeze-dried LAB during dough mixing via water or flour | Simple implementation; homogeneous distribution; low initial costs | Limited control of inoculum level (106–107 CFU g−1); reduced viability during thermal/mechanical steps | Strong dependence on processing parameters; efficacy linked to cell survival during shelf life | Low–moderate (strain- and dose-dependent) | TRL 7–8 | High (minimal process modification) | [100] |
| Pre-fermented ingredients | Pre-fermentation (16–24 h) of a flour fraction with selected LAB, added as a liquid or dried fermentate | Early availability of metabolites; better strain adaptation; early sensory control | Requires dedicated fermentation facilities; higher process complexity | Improved reproducibility; increased operational costs | Moderate (can be controlled during fermentation) | TRL 6–7 | Medium–high (requires additional unit operation) | [11,101,102] |
| Cell-free supernatants (CFSs) | Addition of concentrated antifungal metabolites without live cells | Activity independent of cell viability; immediate antifungal effect | Difficult standardization; possible sensory impact; no metabolite renewal | Precise dosage control required; limited long-term protection | Moderate–high (risk of off-flavors) | TRL 5–6 | Medium (regulatory and sensory constraints) | [103] |
| Surface application (spraying/dipping) | Treatment of extruded pasta surface with LAB or metabolites | Targeted action at contamination sites; effective with moist packaging | Limited internal protection; additional equipment required | Highly effective with MAP; flexible post-extrusion application | Low (localized effect) | TRL 6–7 | Medium (equipment and line adaptation needed) | [97] |
| Process parameter optimization | Control of mixing, extrusion, and cooling/drying conditions | Improved LAB survival and distribution | High variability during industrial scale-up | Requires plant-specific optimization; critical for reproducibility | Indirect (process-mediated) | TRL 7–9 | High (integrated into existing QA systems) | [104] |
| Food Matrix | LAB Strain(s)/Treatment | Target Fungus | Storage Conditions | Shelf-Life Extension (%)/Outcome | Reference |
|---|---|---|---|---|---|
| Fresh semolina pasta fortified with chickpea sourdough fermented with selected LAB | Lactiplantibacillus plantarum + Furfurilactobacillus rossiae starter (chickpea sourdough) | Penicillium roqueforti DPPMAF1 (artificially inoculated) | 4 °C, sealed bags, 40-day storage | Longer mold-free period vs. control/calcium propionate; >40 days before visible colonies < control (<40 days) | [11] |
| Sourdough bread | Lactobacillus spp. sourdough fermentate | Various molds | Ambient (bread storage) | ~10–28 days of extended mold-free shelf life vs. control (varies by strain/product) | [46] |
| Sourdough bread | Selected sourdough Lactobacilli with antifungal activity | Bread spoilage fungi | Ambient (bread storage) | ~7–14-day extension vs. control (varies by strain/product) | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sehar, N.; Pino, R.; Pellegrino, M.; Loizzo, M.R. Lactic Acid Bacteria for Fungal Control and Shelf-Life Extension in Fresh Pasta: Mechanistic Insights and Clean-Label Strategies. Molecules 2026, 31, 389. https://doi.org/10.3390/molecules31020389
Sehar N, Pino R, Pellegrino M, Loizzo MR. Lactic Acid Bacteria for Fungal Control and Shelf-Life Extension in Fresh Pasta: Mechanistic Insights and Clean-Label Strategies. Molecules. 2026; 31(2):389. https://doi.org/10.3390/molecules31020389
Chicago/Turabian StyleSehar, Noor, Roberta Pino, Michele Pellegrino, and Monica Rosa Loizzo. 2026. "Lactic Acid Bacteria for Fungal Control and Shelf-Life Extension in Fresh Pasta: Mechanistic Insights and Clean-Label Strategies" Molecules 31, no. 2: 389. https://doi.org/10.3390/molecules31020389
APA StyleSehar, N., Pino, R., Pellegrino, M., & Loizzo, M. R. (2026). Lactic Acid Bacteria for Fungal Control and Shelf-Life Extension in Fresh Pasta: Mechanistic Insights and Clean-Label Strategies. Molecules, 31(2), 389. https://doi.org/10.3390/molecules31020389

