molecules-logo

Journal Browser

Journal Browser

Potential of Natural Products as Drug Leads Possessing Antioxidant, Antiaging and Anticancer Properties

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 7518

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdansk, Poland
Interests: cancer cell lines; cytotoxicity; plant extracts; secondary plant metabolites; phytochemistry; anticancer activity; antimicrobial activity; antioxidant activity
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdansk, Poland
Interests: phytochemistry; essential oils; gas chromatography; plant extracts; anticancer activity; antimicrobial activity; antioxidant activity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Natural compounds originating from plants, animals and minerals exhibit different biological and pharmacological properties. Some, especially those with significant activity, could serve as potential antioxidant and antiaging drugs to combat against free radicals. The formation of oxidative stress is an integral part of cell life and responsible for premature aging processes as well as cellular damage leading to the development of cancer. Currently, finding safe compounds of natural origin that have therapeutic potential for preventing or treating diseases presents a serious challenge.

This Special Issue aims to collect scientific papers concerning studies on the antioxidant, antiaging and anticancer activities of natural compounds or products. Studies on their possible mechanisms of biological action in normal and cancer cells, their effect on the skin, the chemistry of active natural compounds and any other relevant topics are of interest.

Dr. Justyna Stefanowicz-Hajduk
Prof. Dr. Renata J. Ochocka
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural compounds
  • plant extracts
  • plant secondary metabolites
  • oxidative stress
  • tumor
  • skin
  • aging
  • phytochemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 4721 KiB  
Article
Antiaging Properties of Kalanchoe blossfeldiana Ethanol Extract—Ex Vivo and In Vitro Studies
by Justyna Stefanowicz-Hajduk, Anna Nowak, Anna Hering, Łukasz Kucharski, Piotr Graczyk, Mariusz Kowalczyk, Tadeusz Sulikowski and Anna Muzykiewicz-Szymańska
Molecules 2024, 29(23), 5548; https://doi.org/10.3390/molecules29235548 - 24 Nov 2024
Cited by 1 | Viewed by 1237
Abstract
Species of the genus Kalanchoe have a long history of therapeutic use in ethnomedicine, linked to their remarkable medical properties. These species include Kalanchoe blossfeldiana succulents, which grow in tropical regions. Despite the great interest in this plant, there are no reports about [...] Read more.
Species of the genus Kalanchoe have a long history of therapeutic use in ethnomedicine, linked to their remarkable medical properties. These species include Kalanchoe blossfeldiana succulents, which grow in tropical regions. Despite the great interest in this plant, there are no reports about its therapeutic effects on the skin. In this study, the antioxidant properties of K. blossfeldiana ethanol extracts and the skin permeation of a topical hydrogel containing the extract (HKB) were assessed. Additionally, the content of active compounds in the K. blossfeldiana extract was evaluated by UHPLC-MS and HPLC-UV. The extract was analyzed with three antioxidant assays: ABTS, DPPH, and FRAP. Furthermore, the antielastase and antihialuronidase properties of the tested extract were assessed. Ex vivo penetration studies were performed using the Franz diffusion cells. The estimation of the cytotoxicity of HKB was performed by using an MTT assay ((4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) on the human fibroblasts HFF-1. The results obtained show that the antioxidant properties of K. blossfeldiana extract were similar to those of ascorbic acid, while antielastase and antihialuronidase tests indicated the strong antiaging and anti-inflammatory activity of the extract (IC50 was 26.8 ± 0.13 and 77.31 ± 2.44 µg/mL, respectively). Moreover, active ingredients contained in K. blossfeldiana extract penetrated through the human skin and accumulated in it. The cytotoxicity test showed that HKB had no significant effect on human fibroblasts at a concentration up to 0.5%. In conclusion, the hydrogel containing the K. blossfeldiana extract can be considered as an interesting and new alternative to dermatologic and cosmetic preparations. Full article
Show Figures

Figure 1

25 pages, 7880 KiB  
Article
Antioxidant 1,2,3,4,6-Penta-O-galloyl-β-D-glucose Alleviating Apoptosis and Promoting Bone Formation Is Associated with Estrogen Receptors
by Yongqing Hua, Haili Wang, Tingting Chen, Yeru Zhou, Zhiyuan Chen, Xinyue Zhao, Shaoqin Mo, Hongyun Mao, Miao Li, Linxia Wang and Min Hong
Molecules 2024, 29(21), 5110; https://doi.org/10.3390/molecules29215110 - 29 Oct 2024
Viewed by 1153
Abstract
1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG) is the main phenolic active ingredient in Paeoniae Radix Alba, which is commonly used for the treatment of osteoporosis (OP). PGG is a potent natural antioxidant, and its effects on OP remain unknown. This study aimed to investigate [...] Read more.
1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG) is the main phenolic active ingredient in Paeoniae Radix Alba, which is commonly used for the treatment of osteoporosis (OP). PGG is a potent natural antioxidant, and its effects on OP remain unknown. This study aimed to investigate the effects of PGG on promoting bone formation and explore its estrogen receptor (ER)-related mechanisms. A hydrogen peroxide-induced osteoblast apoptosis model was established in MC3T3-E1 cells. The effects of PGG were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, alkaline phosphatase (ALP) staining, RT-qPCR, and Western blot methods. Furthermore, a prednisolone-induced zebrafish OP model was employed to study the effects in vivo. ER inhibitors and molecular docking methods were used further to investigate the interactions between PGG and ERs. The results showed that PGG significantly enhanced cell viability and decreased cell apoptosis by restoring mitochondrial function, attenuating reactive oxygen species levels, decreasing the mitochondrial membrane potential, and enhancing ATP production. PGG enhanced ALP expression and activity and elevated osteogenic differentiation. PGG also promoted bone formation in the zebrafish model, and these effects were reversed by ICI182780. These results provide evidence that the effects of PGG in alleviating apoptosis and promoting bone formation may depend on ERs. As such, PGG is considered a valuable candidate for treating OP. Full article
Show Figures

Figure 1

19 pages, 1605 KiB  
Article
Novel Insights into Phaseolus vulgaris L. Sprouts: Phytochemical Analysis and Anti-Aging Properties
by Ewelina Rostkowska, Ewa Poleszak, Agata Przekora, Michał Wójcik, Rafał Typek, Katarzyna Wojciechowska and Katarzyna Dos Santos Szewczyk
Molecules 2024, 29(13), 3058; https://doi.org/10.3390/molecules29133058 - 27 Jun 2024
Cited by 1 | Viewed by 2291
Abstract
Skin aging is an inevitable and intricate process instigated, among others, by oxidative stress. The search for natural sources that inhibit this mechanism is a promising approach to preventing skin aging. The purpose of our study was to evaluate the composition of phenolic [...] Read more.
Skin aging is an inevitable and intricate process instigated, among others, by oxidative stress. The search for natural sources that inhibit this mechanism is a promising approach to preventing skin aging. The purpose of our study was to evaluate the composition of phenolic compounds in the micellar extract of Phaseolus vulgaris sprouts. The results of a liquid chromatography–mass spectrometry (LC-MS) analysis revealed the presence of thirty-two constituents, including phenolic acids, flavanols, flavan-3-ols, flavanones, isoflavones, and other compounds. Subsequently, the extract was assessed for its antioxidant, anti-inflammatory, anti-collagenase, anti-elastase, anti-tyrosinase, and cytotoxic properties, as well as for the evaluation of collagen synthesis. It was demonstrated that micellar extract from common bean sprouts has strong anti-aging properties. The performed WST-8 (a water-soluble tetrazolium salt) assay revealed that selected concentrations of extract significantly increased proliferation of human dermal fibroblasts compared to the control cells in a dose-dependent manner. A similar tendency was observed with respect to collagen synthesis. Our results suggest that micellar extract from Phaseolus vulgaris sprouts can be considered a promising anti-aging compound for applications in cosmetic formulations. Full article
Show Figures

Figure 1

13 pages, 1594 KiB  
Article
Unified Synthesis and Biological Evaluation of Makaluvamine J and Its Analogs
by Yo Kiichi, Koshiro Fukuoka, Anna Kitano, Koya Ishino and Naoyuki Kotoku
Molecules 2024, 29(6), 1389; https://doi.org/10.3390/molecules29061389 - 20 Mar 2024
Cited by 3 | Viewed by 1981
Abstract
Makaluvamine J, a pyrroloiminoquinone alkaloid of marine sponge origin, and its analogs were synthesized and assessed for their potential to develop as a novel and selective growth inhibitor targeting human pancreatic cancer PANC-1 cells. Ts-damirone B, a common precursor featuring a pyrroloiminoquinone core [...] Read more.
Makaluvamine J, a pyrroloiminoquinone alkaloid of marine sponge origin, and its analogs were synthesized and assessed for their potential to develop as a novel and selective growth inhibitor targeting human pancreatic cancer PANC-1 cells. Ts-damirone B, a common precursor featuring a pyrroloiminoquinone core structure, was synthesized through Bartoli indole synthesis and IBX-mediated oxidation. Late-stage diversification at N-5 and N-9 yielded makaluvamine J and several analogs. A structure–activity relationship (SAR) analysis highlighted the significance of the lipophilic side chain at N-9 for the growth inhibitory activity of PANC-1 cells. The modest alkyl group at N-5 was found to improve selectivity against other cancer cells. Among the prepared analogs, the tryptamine analog 24 showed potent and selective cytotoxicity (IC50 = 0.029 µM, selective index = 13.1), exceeding those of natural products. Full article
Show Figures

Figure 1

Back to TopTop