Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (626)

Search Parameters:
Keywords = organ-preserving treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 816 KiB  
Review
Hemodynamic Support in Cardiogenic Shock in the Cardiac Catheterization Laboratory
by Cesar Jiménez-Méndez, Ana Lara-Palomo, Ana Pérez-Asensio, Luis Martín-Alfaro, Mauricio Urgiles, Rafael Vázquez-García and Livia Gheorghe
Emerg. Care Med. 2025, 2(3), 39; https://doi.org/10.3390/ecm2030039 - 13 Aug 2025
Viewed by 149
Abstract
Cardiogenic shock is a life-threatening, time-sensitive syndrome characterized by clinical and biochemical tissue hypoperfusion caused by circulatory failure secondary to inadequate cardiac output. Inadequate cardiac contractility secondary to acute myocardial infarction appears on the top of the list of the most prevalent etiologies [...] Read more.
Cardiogenic shock is a life-threatening, time-sensitive syndrome characterized by clinical and biochemical tissue hypoperfusion caused by circulatory failure secondary to inadequate cardiac output. Inadequate cardiac contractility secondary to acute myocardial infarction appears on the top of the list of the most prevalent etiologies of this syndrome. Despite some advances in its management, this primary cardiac disorder still has an extremely high mortality. In addition to treating the main etiology, immediate hemodynamic support is necessary to reduce the risk of developing multi-organ dysfunction and to preserve cell metabolism, as soon as we suspect it, even when needed in the catheterization laboratory. The cardiac catheterization laboratory has become a pivotal setting for implementing rapid hemodynamic support measures, such as pharmacological interventions and mechanical circulatory support, during critical procedures. Despite inotrope pharmacological treatment, mechanical circulatory support has recently garnered significant interest in this field. The aim of this review is to analyze hemodynamic support in cardiogenic shock in the most common contemporary scenario: the cardiac catheterization laboratory. Full article
Show Figures

Figure 1

19 pages, 597 KiB  
Review
The Effects of Radiation Therapy on the Ocular Apparatus: Implications for Management
by Frank J. Arturi, Danielle Arons, Nicholas J. Murphy, Catherine Yu, Drishti Panse, Daniel R. Cherry, Kristin Hsieh, Julie R. Bloom, Anthony D. Nehlsen, Lucas Resende Salgado and Kunal K. Sindhu
Cancers 2025, 17(16), 2605; https://doi.org/10.3390/cancers17162605 - 8 Aug 2025
Viewed by 242
Abstract
Radiotherapy is utilized in the treatment of various cancers of the central nervous system and head and neck. Given the high concentration of organs-at-risk in this region, care must be exercised to minimize the dose delivered to these structures. Studies have shown that [...] Read more.
Radiotherapy is utilized in the treatment of various cancers of the central nervous system and head and neck. Given the high concentration of organs-at-risk in this region, care must be exercised to minimize the dose delivered to these structures. Studies have shown that excessive radiation exposure can adversely impact the eyes, potentially resulting in the loss of their function. For instance, radiation doses greater than 50 Gy have been shown to increase the incidence of retinopathy, and radiation doses as low as 0.5 Gy have been shown to induce cataract formation. In this review, we discuss the ocular complications of radiotherapy used in the treatment of cancers of the central nervous system and head and neck. We then transition to potential strategies to spare the eyes during radiotherapy in an effort to reduce the rates and severity of ocular complications and preserve vision. Full article
(This article belongs to the Special Issue New Approaches in Radiotherapy for Cancer)
Show Figures

Figure 1

14 pages, 572 KiB  
Study Protocol
Effect of Remote Ischemic Preconditioning Evaluated by Nurses on Improvement of Arterial Stiffness, Endothelial Function, Diastolic Function, and Exercise Capacity in Patients with Heart Failure with Preserved Ejection Fraction (PIRIC-FEp Study): Protocol for Randomised Controlled Trial
by Iris Otero Luis, Alicia Saz-Lara, Arturo Martinez-Rodrigo, María José Rodríguez-Sánchez, María José Díaz Valentín, María José Simón Saiz, Rosa María Fuentes Chacón and Iván Cavero Redondo
Biomedicines 2025, 13(8), 1923; https://doi.org/10.3390/biomedicines13081923 - 7 Aug 2025
Viewed by 201
Abstract
Background/Objectives: Heart failure with preserved ejection fraction (HFpEF) has increased in prevalence as the population ages and associated comorbidities increase. Remote ischemic preconditioning (RIPC) has been shown to provide protection against ischemic injury to the heart and other organs. Therefore, the aim [...] Read more.
Background/Objectives: Heart failure with preserved ejection fraction (HFpEF) has increased in prevalence as the population ages and associated comorbidities increase. Remote ischemic preconditioning (RIPC) has been shown to provide protection against ischemic injury to the heart and other organs. Therefore, the aim of this project will be to analyse the effectiveness of RIPC in terms of arterial stiffness, endothelial function, diastolic function, and exercise capacity in patients with HFpEF. Methods: The PIRIC-FEp study will be a parallel, randomised controlled trial with two groups conducted at the Faculty of Nursing in Cuenca, University of Castilla-La Mancha. Individuals who are diagnosed with HFpEF and are older than 40 years, with a left ventricular ejection fraction ≥50% and a sedentary lifestyle, will be included. The exclusion criteria will include, among others, patients with noncardiac causes of heart failure symptoms, significant pulmonary disease, diabetes, peripheral vascular disease, or myocardial infarction within the previous three months. A sample size of 48 patients was estimated, with 24 for each group. Participants will be randomly allocated (1:1) to either the RIPC intervention group or the control group to evaluate the effects on arterial stiffness, endothelial function, diastolic function, and exercise capacity. Assessments will be conducted at baseline and after a three-month follow-up period. Results: The findings will be published in a peer-reviewed journal article. Conclusions: This study is important for daily clinical practice because it provides a new approach for the treatment of HFpEF patients via RIPC. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

20 pages, 2088 KiB  
Article
Sustainable Soil Management in Reservoir Riparian Zones: Impacts of Long-Term Water Level Fluctuations on Aggregate Stability and Land Degradation in Southwestern China
by Pengcheng Wang, Zexi Song, Henglin Xiao and Gaoliang Tao
Sustainability 2025, 17(15), 7141; https://doi.org/10.3390/su17157141 - 6 Aug 2025
Viewed by 302
Abstract
Soil structural instability in reservoir riparian zones, induced by water level fluctuations, threatens sustainable land use by accelerating land degradation. This study examined the impact of water-level variations on soil aggregate composition and stability based on key indicators, including water-stable aggregate content (WSAC), [...] Read more.
Soil structural instability in reservoir riparian zones, induced by water level fluctuations, threatens sustainable land use by accelerating land degradation. This study examined the impact of water-level variations on soil aggregate composition and stability based on key indicators, including water-stable aggregate content (WSAC), mean weight diameter (MWD), and geometric mean diameter (GMD). The Savinov dry sieving, Yoder wet sieving, and Le Bissonnais (LB) methods were employed for analysis. Results indicated that, with decreasing water levels and increasing soil layer, aggregates larger than 5 mm decreased, while aggregates smaller than 0.25 mm increased. Rising water levels and increasing soil layer corresponded to reductions in soil stability indicators (MWD, GMD, and WSAC), highlighting a trend toward soil structural instability. The LB method revealed the lowest aggregate stability under rapid wetting and the highest under slow wetting conditions. Correlation analysis showed that soil organic matter positively correlated with the relative mechanical breakdown index (RMI) (p < 0.05) and negatively correlated with the relative slaking index (RSI), whereas soil pH was negatively correlated with both RMI and RSI (p < 0.05). Comparative analysis of aggregate stability methods demonstrated that results from the dry sieving method closely resembled those from the SW treatment of the LB method, whereas the wet sieving method closely aligned with the FW (Fast Wetting) treatment of the LB method. The Le Bissonnais method not only reflected the outcomes of dry and wet sieving methods but also effectively distinguished the mechanisms of aggregate breakdown. The study concluded that prolonged flooding intensified aggregate dispersion, with mechanical breakdown influenced by water levels and soil layer. Dispersion and mechanical breakdown represent primary mechanisms of soil aggregate instability, further exacerbated by fluctuating water levels. By elucidating degradation mechanisms, this research provides actionable insights for preserving soil health, safeguarding water resources, and promoting sustainable agricultural in ecologically vulnerable reservoir regions of the Yangtze River Basin. Full article
Show Figures

Figure 1

23 pages, 1298 KiB  
Article
Evaluation of the Quality and Nutritional Value of Modified Corn Wet Distillers’ Grains Plus Solubles (mcWDGS) Preserved in Aerobic and Anaerobic Conditions
by Mateusz Roguski, Marlena Zielińska-Górska, Andrzej Radomski, Janusz Zawadzki, Marlena Gzowska, Anna Rygało-Galewska and Andrzej Łozicki
Sustainability 2025, 17(15), 7097; https://doi.org/10.3390/su17157097 - 5 Aug 2025
Viewed by 373
Abstract
To enhance the effectiveness of sustainable preservation of modified corn wet distillers’ grains plus solubles (mcWDGS), various additives were tested under aerobic and anaerobic conditions. In Experiment I, the mcWDGS was stored under aerobic conditions for 5 days at 25 °C. Treatments included [...] Read more.
To enhance the effectiveness of sustainable preservation of modified corn wet distillers’ grains plus solubles (mcWDGS), various additives were tested under aerobic and anaerobic conditions. In Experiment I, the mcWDGS was stored under aerobic conditions for 5 days at 25 °C. Treatments included different organic acids applied at 0.3% or 0.6% of fresh matter (FM). In Experiment II, the mcWDGS was ensiled anaerobically for 8 weeks at 25 °C using organic acids, a commercial acid mixture, or a microbial inoculant at 0.2% FM. In aerobic conditions, the best preservability was achieved with propionic and formic acids at 0.6% FM, as indicated by the lowest temperature, pH, and microbial counts on days 3 and 5 (p ≤ 0.01). Under anaerobic storage, the highest lactic acid concentrations were recorded in the control, citric acid, and commercial acid mixture variants (p ≤ 0.01). Acetic acid levels were highest in the control (p ≤ 0.01). The highest NH3-N content was found in the formic acid variant and the lowest in the inoculant variant (p ≤ 0.01). Aerobic stability after ensiling was greatest in the control and propionic acid groups (p ≤ 0.01). Nutritional analysis showed that the citric acid group had the highest dry matter content (p ≤ 0.01), while the control group contained the most crude protein (p ≤ 0.01) and saturated fatty acids (p ≤ 0.05). The propionic acid and commercial acid mixture variants had the highest unsaturated fatty acids (p ≤ 0.05). Antioxidant capacity was also greatest in the control (p ≤ 0.01). In conclusion, mcWDGS can be effectively preserved aerobically with 0.6% FM of propionic or formic acid, and anaerobically via ensiling, even without additives. These findings support its potential as a stable and nutritious feed ingredient. Full article
Show Figures

Figure 1

17 pages, 1511 KiB  
Article
Impact of Selected Starter-Based Sourdough Types on Fermentation Performance and Bio-Preservation of Bread
by Khadija Atfaoui, Sara Lebrazi, Anas Raffak, Youssef Chafai, Karima El Kabous, Mouhcine Fadil and Mohammed Ouhssine
Fermentation 2025, 11(8), 449; https://doi.org/10.3390/fermentation11080449 - 1 Aug 2025
Viewed by 585
Abstract
The aim of this study is to evaluate the effects of different types of sourdough (I to IV), developed with a specific starter culture (including Lactiplantibacillus plantarum, Levilactobacillus brevis, and Candida famata), on bread fermentation performance and shelf-life. Real-time tracking of multiple [...] Read more.
The aim of this study is to evaluate the effects of different types of sourdough (I to IV), developed with a specific starter culture (including Lactiplantibacillus plantarum, Levilactobacillus brevis, and Candida famata), on bread fermentation performance and shelf-life. Real-time tracking of multiple parameters (pH, dough rising, ethanol release, and total titratable acidity) was monitored by a smart fermentation oven. The impact of the different treatments on the lactic acid, acetic acid, and ethanol content of the breads were quantified by high performance liquid chromatography analysis. In addition, the bio-preservation capacity of the breads contaminated with fungi was analyzed. The results show that liquid sourdough (D3: Type 2) and backslopped sourdough (D4: Type 3) increased significantly (p < 0.05) in dough rise, dough acidification (lower pH, higher titratable acidity), production of organic acids (lactic and acetic), and presented the optimal fermentation quotient. These findings were substantiated by chemometric analysis, which successfully clustered the starters based on performance and revealed a strong positive correlation between acetic acid production and dough-rise, highlighting the superior heterofermentative profile of D3 and D4. These types of sourdough also stood out for their antifungal capacity, preventing the visible growth of Aspergillus niger and Penicillium commune for up to 10 days after inoculation. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

20 pages, 6929 KiB  
Article
Protective Effects of Sodium Copper Chlorophyllin and/or Ascorbic Acid Against Barium Chloride-Induced Oxidative Stress in Mouse Brain and Liver
by Salma Benayad, Basma Es-Sai, Yassir Laaziouez, Soufiane Rabbaa, Hicham Wahnou, Habiba Bouchab, Hicham El Attar, Bouchra Benabdelkhalek, Loubna Amahdar, Oualid Abboussi, Raphaël Emmanuel Duval, Riad El Kebbaj and Youness Limami
Molecules 2025, 30(15), 3231; https://doi.org/10.3390/molecules30153231 - 1 Aug 2025
Viewed by 289
Abstract
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in [...] Read more.
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in the liver and brain of mice using a two-phase experimental protocol. Animals received either SCC (40 mg/kg), ASC (160 mg/kg), or their combination for 14 days prior to BaCl2 exposure (150 mg/L in drinking water for 7 days), allowing evaluation of both preventive and therapeutic effects. Toxicological and behavioral assessments confirmed the absence of systemic toxicity or neurobehavioral alterations following supplementation. Body weight, liver and kidney indices, and biochemical markers (Aspartate Aminotransferase (ASAT), Alanine Aminotransferase (ALAT), creatinine) remained within physiological ranges, and no anxiogenic or locomotor effects were observed. In the brain, BaCl2 exposure significantly increased SOD (+49%), CAT (+66%), GPx (+24%), and GSH (+26%) compared to controls, reflecting a robust compensatory antioxidant response. Although lipid peroxidation (MDA) showed a non-significant increase, SCC, ASC, and their combination reduced MDA levels by 42%, 37%, and 55%, respectively. These treatments normalized antioxidant enzyme activities and GSH, indicating an effective neuroprotective effect. In contrast, the liver exhibited a different oxidative profile. BaCl2 exposure increased MDA levels by 80% and GSH by 34%, with no activation of SOD, CAT, or GPx. Histological analysis revealed extensive hepatocellular necrosis, vacuolization, and inflammatory infiltration. SCC significantly reduced hepatic MDA by 39% and preserved tissue architecture, while ASC alone or combined with SCC exacerbated inflammation and depleted hepatic GSH by 71% and 78%, respectively, relative to BaCl2-exposed controls. Collectively, these results highlight a differential, organ-specific response to BaCl2-induced oxidative stress and the therapeutic potential of SCC and ASC. SCC emerged as a safer and more effective agent, particularly in hepatic protection, while both antioxidants demonstrated neuroprotective effects when used individually or in combination. Full article
Show Figures

Graphical abstract

31 pages, 419 KiB  
Review
Neoadjuvant Treatment for Locally Advanced Rectal Cancer: Current Status and Future Directions
by Masayoshi Iwamoto, Kazuki Ueda and Junichiro Kawamura
Cancers 2025, 17(15), 2540; https://doi.org/10.3390/cancers17152540 - 31 Jul 2025
Viewed by 767
Abstract
Locally advanced rectal cancer (LARC) remains a major clinical challenge due to its high risk of local recurrence and distant metastasis. Although total mesorectal excision (TME) has been established as the gold standard surgical approach, high recurrence rates associated with surgery alone have [...] Read more.
Locally advanced rectal cancer (LARC) remains a major clinical challenge due to its high risk of local recurrence and distant metastasis. Although total mesorectal excision (TME) has been established as the gold standard surgical approach, high recurrence rates associated with surgery alone have driven the development of multimodal preoperative strategies, such as radiotherapy and chemoradiotherapy. More recently, total neoadjuvant therapy (TNT)—which integrates systemic chemotherapy and radiotherapy prior to surgery—and non-operative management (NOM) for patients who achieve a clinical complete response (cCR) have further expanded treatment options. These advances aim not only to improve oncologic outcomes but also to enhance quality of life (QOL) by reducing long-term morbidity and preserving organ function. However, several unresolved issues persist, including the optimal sequencing of therapies, precise risk stratification, accurate evaluation of treatment response, and effective surveillance protocols for NOM. The advent of molecular biomarkers, next-generation sequencing, and artificial intelligence (AI) presents new opportunities for individualized treatment and more accurate prognostication. This narrative review provides a comprehensive overview of the current status of preoperative treatment for LARC, critically examines emerging strategies and their supporting evidence, and discusses future directions to optimize both oncological and patient-centered outcomes. By integrating clinical, molecular, and technological advances, the management of rectal cancer is moving toward truly personalized medicine. Full article
(This article belongs to the Special Issue Multidisciplinary Management of Rectal Cancer)
17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 409
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

16 pages, 1658 KiB  
Article
Environmentally Friendly Chelation for Enhanced Algal Biomass Deashing
by Agyare Asante, George Daramola, Ryan W. Davis and Sandeep Kumar
Phycology 2025, 5(3), 32; https://doi.org/10.3390/phycology5030032 - 23 Jul 2025
Viewed by 357
Abstract
High ash content in algal biomass limits its suitability for biofuel production by reducing combustion efficiency and increasing fouling. This study presents a green deashing strategy using nitrilotriacetic acid (NTA) and deionized (DI) water to purify Scenedesmus algae, which was selected for its [...] Read more.
High ash content in algal biomass limits its suitability for biofuel production by reducing combustion efficiency and increasing fouling. This study presents a green deashing strategy using nitrilotriacetic acid (NTA) and deionized (DI) water to purify Scenedesmus algae, which was selected for its high ash removal potential. The optimized sequential treatment (DI, NTA chelation, and DI+NTA treatment at 90–130 °C) achieved up to 83.07% ash removal, reducing ash content from 15.2% to 3.8%. Elevated temperatures enhanced the removal of calcium, magnesium, and potassium, while heavy metals like lead and copper were reduced below detection limits. CHN analysis confirmed minimal loss of organic content, preserving biochemical integrity. Unlike traditional acid leaching, this method is eco-friendly after three cycles. The approach offers a scalable, sustainable solution to improve algal biomass quality for thermochemical conversion and supports circular bioeconomy goals. Full article
Show Figures

Graphical abstract

18 pages, 493 KiB  
Review
Nerve at Risk: A Narrative Review of Surgical Nerve Injuries in Urological Practice
by Gaia Colalillo, Simona Ippoliti, Vincenzo M. Altieri, Pietro Saldutto, Riccardo Galli and Anastasios D. Asimakopoulos
Surgeries 2025, 6(3), 58; https://doi.org/10.3390/surgeries6030058 - 18 Jul 2025
Viewed by 458
Abstract
Background: Iatrogenic nerve injuries (NIs) are an under-recognized complication of urological surgery. Though less common than vascular or organ damage, they may cause lasting sensory and motor deficits, significantly affecting patients’ quality of life. With increasing complexity in pelvic procedures, a consolidated understanding [...] Read more.
Background: Iatrogenic nerve injuries (NIs) are an under-recognized complication of urological surgery. Though less common than vascular or organ damage, they may cause lasting sensory and motor deficits, significantly affecting patients’ quality of life. With increasing complexity in pelvic procedures, a consolidated understanding of nerve injuries is essential. Purpose: This review aims to synthesize current knowledge regarding peripheral and autonomic NIs in urological surgery, highlighting mechanisms of injury, associated procedures, preventative strategies, and treatment options. Scope: Focused on common urological interventions such as radical prostatectomy, cystectomy, pelvic lymphadenectomy, and reconstructive techniques, the review explores injuries from positional compression, traction, and intraoperative transection to their surgical management. Key Findings: The review categorizes nerve injuries into crush and transection types and details intraoperative signs and repair techniques. Skeletonization of nerves, avoidance of energy devices near neural structures, and prompt end-to-end anastomosis using 7-0 polypropylene are central to management. Adoption of novel sutureless nerve coaptation devices have also been described with promising outcomes. Early repair offers a better prognosis. New intraoperative technologies like NeuroSAFE during robotic-assisted procedures may enhance nerve preservation. Conclusion: Iatrogenic NIs, although rare, are clinically significant and often preventable. Prompt intraoperative recognition and repair are critical. Further research is warranted to develop standardized preventative protocols and enhance intraoperative nerve monitoring. A multidisciplinary approach, extended across surgical specialties, could improve outcomes and guide timely treatment of nerve injuries. Full article
Show Figures

Figure 1

15 pages, 1629 KiB  
Article
Exploring the Proteomic Landscape of Cochlear Implant Trauma: An iTRAQ-Based Quantitative Analysis Utilizing an Ex Vivo Model
by Jake Langlie, Rahul Mittal, David H. Elisha, Jaimee Cooper, Hannah Marwede, Julian Purrinos, Maria-Pia Tuset, Keelin McKenna, Max Zalta, Jeenu Mittal and Adrien A. Eshraghi
J. Clin. Med. 2025, 14(14), 5115; https://doi.org/10.3390/jcm14145115 - 18 Jul 2025
Viewed by 391
Abstract
Background: Cochlear implantation is widely used to provide auditory rehabilitation to individuals with severe-to-profound sensorineural hearing loss. However, electrode insertion during cochlear implantation leads to inner ear trauma, damage to sensory structures, and consequently, loss of residual hearing. There is very limited information [...] Read more.
Background: Cochlear implantation is widely used to provide auditory rehabilitation to individuals with severe-to-profound sensorineural hearing loss. However, electrode insertion during cochlear implantation leads to inner ear trauma, damage to sensory structures, and consequently, loss of residual hearing. There is very limited information regarding the target proteins involved in electrode insertion trauma (EIT) following cochlear implantation. Methods: The aim of our study was to identify target proteins and host molecular pathways involved in cochlear damage following EIT utilizing the iTRAQ™ (isobaric tags for relative and absolute quantification) technique using our ex vivo model. The organ of Corti (OC) explants were dissected from postnatal day 3 rats and subjected to EIT or left untreated (control). The proteins were extracted, labelled, and subjected to ultra-high performance liquid chromatography–tandem mass spectrometry. Results: We identified distinct molecular pathways involved in EIT-induced cochlear damage. Confocal microscopy confirmed the expression of these identified proteins in OC explants subjected to EIT. By separating the apical, middle, and basal cochlear turns, we deciphered a topographic array of host molecular pathways that extend from the base to the apex of the cochlea, which are activated post-trauma following cochlear implantation. Conclusions: The identification of target proteins involved in cochlear damage will provide novel therapeutic targets for the development of effective treatment modalities for the preservation of residual hearing in implanted individuals. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

34 pages, 2865 KiB  
Review
Organic Acids in Aquaculture: A Bibliometric Analysis
by Gidelia Araujo Ferreira de Melo, Adriano Carvalho Costa, Matheus Barp Pierozan, Alene Santos Souza, Lessandro do Carmo Lima, Vitória de Vasconcelos Kretschmer, Leandro Pereira Cappato, Elias Marques de Oliveira, Rafael Vilhena Reis Neto, Joel Jorge Nuvunga, Jean Marc Nacife and Mariana Buranelo Egea
Foods 2025, 14(14), 2512; https://doi.org/10.3390/foods14142512 - 17 Jul 2025
Viewed by 649
Abstract
Fish production faces various challenges throughout its cycle, from rearing to consumption. Organic acids have emerged as an effective fish feed and meat treatment solution. They promote health and well-being, control pathogens, improve digestion, and contribute to food preservation. This study was therefore [...] Read more.
Fish production faces various challenges throughout its cycle, from rearing to consumption. Organic acids have emerged as an effective fish feed and meat treatment solution. They promote health and well-being, control pathogens, improve digestion, and contribute to food preservation. This study was therefore carried out to evaluate the evolution of publications on the use of organic acids in aquaculture over time, identifying the leading journals, authors, countries, and relevant organizations associated with the publications and determining the keywords most used in publications and research trends on this type of accommodation using bibliometric analysis. For this analysis, the Web of Science (WoS) and Scopus databases were used, with the keywords and Boolean operators “organic acid*” AND (“pathogens” OR “microorganism*” OR “bacteria” OR “fungi”) AND (“fish” OR “fry” OR “pisciculture”). Ninety-six articles were found in 44 journals, with the participation of 426 authors and 188 institutions, from 1995 to 2024. The most crucial publication source with the highest impact factor was the journal Aquaculture, with 14 articles, 2 of which were written by the most relevant author, Koh C., who received the highest number of citations and had the highest impact factor among the 426 authors. China had the most scientific production, with 26 publications on organic acids in aquaculture. However, Malaysia was the country that published the most cited documents, a total of 386. The most relevant affiliation was the University of Sains Malaysia, which participated in the publication of eight articles. The 10 most frequent keywords were fish, organic acids, citric acid, article, bacteria, growth, microorganisms, Oncorhynchus mykiss, animals, and digestibility. The results indicate increased publications on the benefits of using organic acids in aquaculture, highlighting their effectiveness as antibacterial agents and promoters of zootechnical development. However, gaps still require more in-depth research into the ideal dosages, mechanisms of action, and long-term impacts of these compounds. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 1645 KiB  
Article
Total Lesion Glycolysis (TLG) on 18F-FDG PET/CT as a Potential Predictor of Pathological Complete Response in Locally Advanced Rectal Cancer After Total Neoadjuvant Therapy: A Retrospective Study
by Handan Tokmak, Nurhan Demir and Hazal Cansu Çulpan
Diagnostics 2025, 15(14), 1800; https://doi.org/10.3390/diagnostics15141800 - 16 Jul 2025
Viewed by 414
Abstract
Background: The accurate prediction of pathological complete response (pCR) following total neoadjuvant therapy (TNT) is crucial for optimising treatment protocols in locally advanced rectal cancer (LARC). Although conventional imaging techniques such as MRI show limitations in assessing treatment response, metabolic imaging utilising 18F-fluorodeoxyglucose [...] Read more.
Background: The accurate prediction of pathological complete response (pCR) following total neoadjuvant therapy (TNT) is crucial for optimising treatment protocols in locally advanced rectal cancer (LARC). Although conventional imaging techniques such as MRI show limitations in assessing treatment response, metabolic imaging utilising 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET-CT) provides distinctive information by quantifying tumour glycolytic activity. This study investigates the predictive value of sequential 18F-FDG PET-CT parameters, focusing on Total Lesion Glycolysis (TLG), in predicting pCR after TNT. Methods: We conducted a retrospective analysis of 33 LARC patients (T3–4/N0–1) treated with TNT (neoadjuvant-chemoradiation followed by consolidation FOLFOX chemotherapy). Sequential PET-CT scans were performed at baseline, interim (after 4 cycles of FOLFOX), and post-TNT. Metabolic parameters, including maximum standardised uptake value (SUVmax) and TLG, were measured. Receiver operating characteristic (ROC) analysis assessed the predictive performance of these parameters for pCR. Results: The pCR rate was 21.2% (7/33). Post-TNT TLG ≤ 10 demonstrated excellent predictive accuracy for pCR (AUC 0.887, 92.3% sensitivity, 85.7% specificity, and 96.0% PPV), outperforming SUVmax (AUC 0.843). Interim TLG ≤ 10 also showed a strong predictive value (AUC 0.824, 100% sensitivity, and 71.4% specificity). Conclusions: TLG may serve as a reliable metabolic biomarker for predicting pathologic complete response (pCR) after total neoadjuvant therapy (TNT) in locally advanced rectal cancer (LARC). Its inclusion in clinical decision-making could improve patient selection for organ preservation strategies, thereby reducing the need for unnecessary surgeries in the future. However, given that the study is based on a small retrospective design, the findings should be interpreted with caution and used alongside other decision-making tools until more comprehensive data are collected from larger studies. Full article
(This article belongs to the Special Issue Applications of PET/CT in Clinical Diagnostics)
Show Figures

Figure 1

18 pages, 24780 KiB  
Article
Performance of Polystyrene-Impregnated and CCA-Preserved Tropical Woods Against Subterranean Termites in PNG Field and Treatment-Induced Color Change
by Yusuf Sudo Hadi, Cossey Yosi, Paul Marai, Mahdi Mubarok, Imam Busyra Abdillah, Rohmah Pari, Gustan Pari, Abdus Syukur, Lukmanul Hakim Zaini, Dede Hermawan and Jingjing Liao
Polymers 2025, 17(14), 1945; https://doi.org/10.3390/polym17141945 - 16 Jul 2025
Viewed by 326
Abstract
Logs supplied in Papua New Guinea and Indonesia are predominantly sourced from fast-growing tree species of plantation forests. The timber primarily consists of sapwood, which is highly susceptible to biodeterioration. At a training center, CCA (chromated copper arsenate) is still used for wood [...] Read more.
Logs supplied in Papua New Guinea and Indonesia are predominantly sourced from fast-growing tree species of plantation forests. The timber primarily consists of sapwood, which is highly susceptible to biodeterioration. At a training center, CCA (chromated copper arsenate) is still used for wood preservation, while in the wood industry, ACQ (alkaline copper quaternary) is commonly applied to enhance the service life of timber. In the future, polystyrene impregnation or other non-biocidal treatments could potentially serve this purpose. This study aimed to determine the discoloration and resistance of polystyrene-impregnated and CCA-preserved woods. Wood samples, Anisoptera thurifera and Octomeles sumatrana from Papua New Guinea, and Anthocephalus cadamba and Falcataria moluccana from Indonesia, were used. The wood samples were treated with polystyrene impregnation, CCA preservation, or left untreated, then exposed at the PNG Forest Research Institute site for four months. After treatment, the color change in polystyrene-impregnated wood was minor, whereas CCA-preserved wood exhibited a noticeably different color compared to untreated wood. The average polymer loading for polystyrene-impregnated wood reached 147%, while the average CCA retention was 8.4 kg/m3. Densities of untreated-, polystyrene-, and CCA-wood were 0.42, 0.64, and 0.45 g/cm3, respectively, and moisture contents were 15.8%, 9.4%, and 13.4%, respectively. CCA preservation proved highly effective in preventing termite attacks; however, CCA is hazardous to living organisms, including humans. Polystyrene impregnation also significantly improved wood resistance to subterranean termites, as indicated by lower weight loss and a higher protection level compared to untreated wood. Additionally, polystyrene treatment is nonhazardous and safe for living organisms, making it a promising option for enhancing wood resistance to termite attacks in the future as an alternative to the biocides currently in use. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop