Exploring the Proteomic Landscape of Cochlear Implant Trauma: An iTRAQ-Based Quantitative Analysis Utilizing an Ex Vivo Model
Abstract
1. Introduction
2. Methods
2.1. Organ of Corti (OC) Dissections
2.2. Proteomic Analysis
2.2.1. Protein Extraction and Quality Control
2.2.2. Trypsin Digestion and iTRAQ™ Labeling
2.2.3. Protein Identification and Quantification
2.3. Confocal Microscopy
2.4. Statistical Analysis
3. Results
3.1. Gradient Loss of Sensory Cells from Apical to Basal Cochlear Turn in Response to EIT
3.2. Identification of Target Proteins Involved in EIT-Induced Sensory Cell Damage
3.3. Confocal Microscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eshraghi, A.A.; Nazarian, R.; Telischi, F.F.; Rajguru, S.M.; Truy, E.; Gupta, C. The cochlear implant: Historical aspects and future prospects. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012, 295, 1967–1980. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, A.C.H.; Echegoyen, A.; Goffi-Gomez, M.V.S.; Tsuji, R.K.; Bento, R.F. Outcomes of late implantation in Usher syndrome patients. Int. Arch. Otorhinolaryngol. 2017, 21, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P.; Yang, J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2015, 1852, 406–420. [Google Scholar] [CrossRef] [PubMed]
- Eshraghi, A.A.; Polineni, S.P.; Davies, C.; Shahal, D.; Mittal, J.; Al-Zaghal, Z.; Sinha, R.; Jindal, U.; Mittal, R. Genotype-phenotype correlation for predicting cochlear implant outcome: Current challenges and opportunities. Front. Genet. 2020, 11, 678. [Google Scholar] [CrossRef] [PubMed]
- Nichani, J.; Bruce, I.A.; Mawman, D.; Khwaja, S.; Ramsden, R.; Green, K. Cochlear implantation in patients deafened by ototoxic drugs. Cochlear Implant. Int. 2013, 14, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Lubner, R.J.; Knoll, R.M.; Trakimas, D.R.; Bartholomew, R.A.; Lee, D.J.; Walters, B.; Nadol, J.B., Jr.; Remenschneider, A.K.; Kozin, E.D. Long-term cochlear implantation outcomes in patients following head injury. Laryngoscope Investig. Otolaryngol. 2020, 5, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Dazert, S.; Thomas, J.P.; Loth, A.; Zahnert, T.; Stöver, T. Cochlear implantation: Diagnosis, indications, and auditory rehabilitation results. Dtsch. Ärzteblatt Int. 2020, 117, 690. [Google Scholar] [CrossRef] [PubMed]
- Völter, C.; Götze, L.; Dazert, S.; Falkenstein, M.; Thomas, J.P. Can cochlear implantation improve neurocognition in the aging population? Clin. Interv. Aging 2018, 13, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Santa Maria, P.L.; Domville-Lewis, C.; Sucher, C.M.; Chester-Browne, R.; Atlas, M.D. Hearing preservation surgery for cochlear implantation—Hearing and quality of life after 2 years. Otol. Neurotol. 2013, 34, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Gantz, B.J.; Turner, C.; Gfeller, K.E.; Lowder, M.W. Preservation of hearing in cochlear implant surgery: Advantages of combined electrical and acoustical speech processing. Laryngoscope 2005, 115, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.W.; Reiss, L.A.; Gantz, B.J. Combined acoustic and electric hearing: Preserving residual acoustic hearing. Hear. Res. 2008, 242, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Bruce, I.; Schaefer, S.; Kluk, K.; Nichani, J.; Odriscoll, M.; Rajai, A.; Sladen, M. ‘Real-life’ benefit of hearing preservation cochlear implantation in the paediatric population: A single-site case-control study. BMJ Open 2023, 13, e067248. [Google Scholar] [CrossRef] [PubMed]
- Prenzler, N.; Salcher, R.; Büchner, A.; Warnecke, A.; Kley, D.; Batsoulis, C.; Vormelcher, S.; Mitterberger-Vogt, M.; Morettini, S.; Schilp, S.; et al. Cochlear implantation with a dexamethasone-eluting electrode array: First-in-human safety and performance results. Hear. Res. 2025, 461, 109255. [Google Scholar] [CrossRef] [PubMed]
- Kant, E.; Jwair, S.; Thomeer, H. Hearing preservation in cochlear implant recipients: A cross-sectional cohort study. Clin. Otolaryngol. 2022, 47, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Tarabichi, O.; Jensen, M.; Hansen, M.R. Advances in hearing preservation in cochlear implant surgery. Curr. Opin. Otolaryngol. Head Neck Surg. 2021, 29, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Van de Heyning, P.H.; Dazert, S.; Gavilan, J.; Lassaletta, L.; Lorens, A.; Rajan, G.P.; Skarzynski, H.; Skarzynski, P.H.; Tavora-Vieira, D.; Topsakal, V.; et al. Systematic Literature Review of Hearing Preservation Rates in Cochlear Implantation Associated With Medium- and Longer-Length Flexible Lateral Wall Electrode Arrays. Front. Surg. 2022, 9, 893839. [Google Scholar] [CrossRef] [PubMed]
- Eshraghi, A.A.; Ahmed, J.; Krysiak, E.; Ila, K.; Ashman, P.; Telischi, F.F.; Angeli, S.; Prentiss, S.; Martinez, D.; Valendia, S. Clinical, surgical, and electrical factors impacting residual hearing in cochlear implant surgery. Acta Otolaryngol. 2017, 137, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Bruce, I.A.; Todt, I. Hearing Preservation Cochlear Implant Surgery. Adv. Oto-Rhino-Laryngol. 2018, 81, 66–73. [Google Scholar] [CrossRef]
- Eshraghi, A.A. Prevention of cochlear implant electrode damage. Curr. Opin. Otolaryngol. Head Neck Surg. 2006, 14, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Eshraghi, A.A.; Yang, N.W.; Balkany, T.J. Comparative study of cochlear damage with three perimodiolar electrode designs. Laryngoscope 2003, 113, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Hoskison, E.; Mitchell, S.; Coulson, C. Systematic review: Radiological and histological evidence of cochlear implant insertion trauma in adult patients. Cochlear Implant. Int. 2017, 18, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, P.P.; Malgrange, B.; Lallemend, F.; Staecker, H.; Moonen, G.; Van De Water, T.R. Mechanisms of cell death in the injured auditory system: Otoprotective strategies. Audiol. Neurotol. 2002, 7, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; Mittal, R.; Shahal, D.; Sinha, P.; Bulut, E.; Mittal, J.; Eshraghi, A.A. Evaluating the Efficacy of taurodeoxycholic acid in providing otoprotection using an in vitro model of electrode insertion trauma. Front. Mol. Neurosci. 2020, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Dorman, M.F.; Spahr, A.J.; Loiselle, L.; Zhang, T.; Cook, S.; Brown, C.; Yost, W. Localization and speech understanding by a patient with bilateral cochlear implants and bilateral hearing preservation. Ear Hear. 2013, 34, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wang, J.; François, F.; Uziel, A.; Puel, J.-L.; Venail, F. Molecular and cellular mechanisms of loss of residual hearing after cochlear implantation. Ann. Otol. Rhinol. Laryngol. 2013, 122, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Eshraghi, A.A.; Hoosien, G.; Ramsay, S.; Dinh, C.T.; Bas, E.; Balkany, T.J.; Van De Water, T.R. Inhibition of the JNK signal cascade conserves hearing against electrode insertion trauma-induced loss. Cochlear Implant. Int. 2010, 11, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Bas, E.; Gupta, C.; Van De Water, T.R. A novel organ of corti explant model for the study of cochlear implantation trauma. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012, 295, 1944–1956. [Google Scholar] [CrossRef] [PubMed]
- Urbiola-Salvador, V.; Miroszewska, D.; Jabłońska, A.; Qureshi, T.; Chen, Z. Proteomics approaches to characterize the immune responses in cancer. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119266. [Google Scholar] [CrossRef] [PubMed]
- Gobena, S.; Admassu, B.; Kinde, M.Z.; Gessese, A.T. Proteomics and Its Current Application in Biomedical Area: Concise Review. Sci. World J. 2024, 2024, 4454744. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, K.; Kamemoto, K.; Kawaguchi, Y.; Fushimi, K.; Wong, S.Y.; Ikegami, N.; Sakamaki-Sunaga, M.; Hayashi, N. Proteomics of appetite-regulating system influenced by menstrual cycle and intensive exercise in female athletes: A pilot study. Sci. Rep. 2024, 14, 4188. [Google Scholar] [CrossRef] [PubMed]
- Tyers, M.; Mann, M. From genomics to proteomics. Nature 2003, 422, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wen, Z.; Shi, Y.; Bao, J.; Ma, S.; Liang, J. Research progress in the application of proteomics technology in brain injury. Biomed. Chromatogr. 2024, 38, e5785. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jin, S.; Tian, W.; Shi, D.; Chen, Y.; Cui, L.; Zheng, J. Proteomics of Serum Samples for the Exploration of the Pathological Mechanism of Obstetric Antiphospholipid Syndrome. J. Proteome Res. 2024, 23, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Fraering, J.; Salnot, V.; Gautier, E.F.; Ezinmegnon, S.; Argy, N.; Peoc’h, K.; Manceau, H.; Alao, J.; Guillonneau, F.; Migot-Nabias, F.; et al. Infected erythrocytes and plasma proteomics reveal a specific protein signature of severe malaria. EMBO Mol. Med. 2024, 16, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Li, F.; Zhang, K.; Liu, Z.; Tian, Y.; Zhu, T. Proteomics Analysis of Knee Subchondral Bone Identifies Differentially Expressed Proteins Associated with Osteoarthritis. J. Proteome Res. 2024, 23, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Piarulli, F.; Banfi, C.; Ragazzi, E.; Gianazza, E.; Munno, M.; Carollo, M.; Traldi, P.; Lapolla, A.; Sartore, G. Multiplexed MRM-based proteomics for identification of circulating proteins as biomarkers of cardiovascular damage progression associated with diabetes mellitus. Cardiovasc. Diabetol. 2024, 23, 36. [Google Scholar] [CrossRef] [PubMed]
- Shadforth, I.P.; Dunkley, T.P.; Lilley, K.S.; Bessant, C. i-Tracker: For quantitative proteomics using iTRAQ™. BMC Genom. 2005, 6, 145. [Google Scholar] [CrossRef] [PubMed]
- He, J.-J.; Ma, J.; Wang, J.-L.; Zhang, F.-K.; Li, J.-X.; Zhai, B.-T.; Elsheikha, H.M.; Zhu, X.-Q. iTRAQ-based Quantitative Proteomics Analysis Identifies Host Pathways Modulated during Toxoplasma gondii Infection in Swine. Microorganisms 2020, 8, 518. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Zhang, X.; Wang, Z.; Wang, X.; Zou, C. Unveiling molecular mechanisms of pepper resistance to Phytophthora capsici through grafting using iTRAQ-based proteomic analysis. Sci. Rep. 2024, 14, 4789. [Google Scholar] [CrossRef] [PubMed]
- Sa, Z.Y.; Xu, J.S.; Pan, X.H.; Zheng, S.X.; Huang, Q.R.; Wan, L.; Zhu, X.X.; Lan, C.L.; Ye, X.R. Effects of electroacupuncture on rats with cognitive impairment: An iTRAQ-based proteomics analysis. J. Integr. Med. 2023, 21, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; He, Y.; Xin, Y.; Jiang, J.; Tian, M.; Tan, J.; Deng, S.; Gong, Y. Identification of biomarkers and therapeutic targets related to Sepsis-associated encephalopathy in rats by quantitative proteomics. BMC Genom. 2023, 24, 4. [Google Scholar] [CrossRef] [PubMed]
- Che, Y.; Ren, J.; Zhao, H.; Yang, Y.; Chen, Z. Orosomucoid 2 as a biomarker of carotid artery atherosclerosis plaque vulnerability through its generation of reactive oxygen species and lipid accumulation in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2024, 705, 149736. [Google Scholar] [CrossRef] [PubMed]
- Qianman, B.; Jiasharete, T.; Badalihan, A.; Mamately, A.; Yeerbo, N.; Bahesutihan, Y.; Wupuer, A.; Aisaiding, A.; Wuerliebieke, J.; Jialihasi, A.; et al. iTRAQ-Based Proteomic Analysis of Spontaneous Achilles Tendon Rupture. J. Proteome Res. 2025, 24, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Dong, S.; Wu, Z.; Dong, Y.; Chen, Q.; Wang, H.; Liu, C.; Yang, D. Identify of blood glucose metabolism regulation pathways and related proteins in the db/db mouse model through iTRAQ quantitative mass spectrometry. Acta Diabetol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, A.; Phylactides, M.; Katsantoni, E.; Vougas, K.; Garbis, S.D.; Fanis, P.; Sitarou, M.; Thein, S.L.; Kleanthous, M. Proteomic Studies for the Investigation of γ-Globin Induction by Decitabine in Human Primary Erythroid Progenitor Cultures. J. Clin. Med. 2020, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.L.; Huang, Y.N.; Marchese, J.N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 2004, 3, 1154–1169. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Sun, Z.; Li, B.; Zhao, H.; Wang, Y.; Yao, G.; Li, X.; Bian, X.; Li, T.C.; Vankelecom, H.; et al. iTRAQ-based Proteomic Analysis Unveils ACSL4 as a Novel Potential Regulator of Human Endometrial Receptivity. Endocrinology 2023, 164, bqad012. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Sheng, L.; Zhou, T.; Yan, L.; Loveless, R.; Li, H.; Teng, Y.; Cai, Y. Loss of Ufl1/Ufbp1 in hepatocytes promotes liver pathological damage and carcinogenesis through activating mTOR signaling. J. Exp. Clin. Cancer Res. 2023, 42, 110. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Qian, J.; Zhang, Y.; Wang, H.; Cui, J.; Yang, Y. Analysis of differential membrane proteins related to matrix stiffness-mediated metformin resistance in hepatocellular carcinoma cells. Proteome Sci. 2023, 21, 14. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Deng, S.; Zheng, M.; Hu, K. iTRAQ plasma proteomics analysis for candidate biomarkers of type 2 incipient diabetic nephropathy. Clin. Proteom. 2019, 16, 33. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Niu, X.; Zhu, L.; Qi, R.; He, L. iTRAQ quantitative proteomic analysis differentially expressed proteins and signal pathways in henoch-schönlein purpura nephritis. Am. J. Transl. Res. 2020, 12, 7908–7922. [Google Scholar] [PubMed]
- Jin, J.; Gong, J.; Zhao, L.; Li, Y.; Wang, Y.; He, Q. iTRAQ-based comparative proteomics analysis reveals specific urinary biomarkers for various kidney diseases. Biomark. Med. 2020, 14, 839–854. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Kuhlmey, M.; Kim, A.H. Electroacoustic Stimulation. Otolaryngol. Clin. N. Am. 2019, 52, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Trzeciecka, A.; Pattabiraman, P.; Piqueras, M.C.; Toris, C.; Bhattacharya, S.K. Quantitative Proteomic Analysis of Human Aqueous Humor Using iTRAQ 4plex Labeling. Methods Mol. Biol. 2018, 1695, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Picciotti, P.M.; Di Cesare, T.; Rodolico, D.; Di Nardo, W.; Galli, J. Clinical and Instrumental Evaluation of Vestibular Function Before and After Cochlear Implantation in Adults. Audiol. Res. 2025, 15, 71. [Google Scholar] [CrossRef] [PubMed]
- Karpeta, N.; Karltorp, E.; Verrecchia, L.; Duan, M. Long-Term Follow-Up of Vestibular Function in Cochlear-Implanted Teenagers and Young Adults. Audiol. Res. 2025, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, J.T.; Wu, P.Z.; Kaur, C.; Gantz, B.J.; Hansen, M.R.; Quesnel, A.M.; Liberman, M.C. Delayed hearing loss after cochlear implantation: Re-evaluating the role of hair cell degeneration. Hear. Res. 2024, 447, 109024. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.T.; Chari, D.A.; Ishiyama, G.; Lopez, I.; Quesnel, A.M.; Ishiyama, A.; Nadol, J.B.; Hansen, M.R. Cochlear implants: Causes, effects and mitigation strategies for the foreign body response and inflammation. Hear. Res. 2022, 422, 108536. [Google Scholar] [CrossRef] [PubMed]
- Quesnel, A.M.; Nakajima, H.H.; Rosowski, J.J.; Hansen, M.R.; Gantz, B.J.; Nadol, J.B., Jr. Delayed loss of hearing after hearing preservation cochlear implantation: Human temporal bone pathology and implications for etiology. Hear. Res. 2016, 333, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Hardingham, G.E.; Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat. Rev. Neurosci. 2010, 11, 682–696. [Google Scholar] [CrossRef] [PubMed]
- Croft, M.; Duan, W.; Choi, H.; Eun, S.-Y.; Madireddi, S.; Mehta, A. TNF superfamily in inflammatory disease: Translating basic insights. Trends Immunol. 2012, 33, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Morino, H.; Ito, H.; Izumi, Y.; Kato, H.; Watanabe, Y.; Kinoshita, Y.; Kamada, M.; Nodera, H.; Suzuki, H. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 2010, 465, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Xiong, J.; Jiang, L.; Wang, X.; Zhang, K.; Yu, H. Molecular mechanisms involved in regulating protein activity and biological function of MST3. Cell Div. 2023, 18, 8. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Tian, M.; Lin, W.; Wang, X.; Wang, X. Protein kinase serine/threonine kinase 24 positively regulates interleukin 17-induced inflammation by promoting IKK complex activation. Front. Immunol. 2018, 9, 921. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.G.; Zheng, Y.M.; Xu, M.H.; Gao, C.; Xu, W.X.; Chen, J.B.; Wang, S.W.; Yang, G.H.; Zhao, L.T.; Yuan, L.; et al. The MASTL/YBX1/PAK4 axis regulated by stress-activated STK24 triggers lenvatinib resistance and tumor progression in hepatocellular carcinoma. Hepatology 2025. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Wang, D.; Sun, W.; Cao, X. Serine/threonine-protein kinase STK24 induces tumorigenesis by regulating the STAT3/VEGFA signaling pathway. J. Biol. Chem. 2023, 299, 102961. [Google Scholar] [CrossRef] [PubMed]
- Berger, E.; Brandes, G.; Kaiser, O.; Reifenrath, J.; Lenarz, T.; Wissel, K.; Durisin, M. Induction of cell death by sodium hexachloroplatinate (IV) in the HEI-OC1 cell line, primary rat spiral ganglion cells and rat organ of Corti explants. PLoS ONE 2024, 19, e0307973. [Google Scholar] [CrossRef] [PubMed]
Gene | Basal Turn | Middle Turn | Apical Turn | Protein Name |
---|---|---|---|---|
Actn4 | 3.436 | 1.08 | 1.853 | Alpha-actinin-4 |
Stk24 | 3.122 | 5.643 | 1.393 | Serine/threonine-protein kinase 24 |
Ctnnb1 | 2.999 | 1.767 | 0.841 | Catenin beta-1 |
Rbm10 | 2.468 | 1.218 | 2.112 | RNA-binding protein 10 |
Cacna1a | 2.339 | 1.607 | 0.933 | Voltage-dependent P/Q-type calcium channel subunit alpha-1A |
Pcsk9 | 2.242 | 0.763 | 2.34 | Proprotein convertase subtilisin/kexin type 9 |
Grik2 | 2.112 | 1.105 | 1.867 | Glutamate receptor ionotropic, kainate 2 |
Jmjd6 | 2.109 | 1.391 | 1.667 | Bifunctional arginine demethylase and lysyl-hydroxylase JMJD6 |
Tnfrsf | 1.936 | 2.108 | 0.722 | Tumor necrosis factor receptor superfamily member 8 |
Grin1 | 1.782 | 2.681 | 0.914 | Glutamate receptor ionotropic, NMDA 1 |
Tp63 | 1.712 | 1.662 | 0.709 | Tumor protein 63 |
Slk | 1.67 | 0.985 | 0.852 | STE20-like serine/threonine-protein kinase |
Optn | 1.653 | 1.995 | 0.876 | Optineurin |
Bmp2 | 1.628 | 1.727 | 0.76 | Bone morphogenetic protein 2 |
Slc9a1 | 1.49 | 1.388 | 0.708 | Sodium/hydrogen exchanger 1 |
Pkn2 | 1.478 | 1.582 | 0.853 | Serine/threonine-protein kinase N2 |
Ercc3 | 1.445 | 0.52 | 1.056 | General transcription and DNA repair factor IIH helicase subunit XPB |
Oma1 | 1.36 | 1.402 | 0.997 | Metalloendopeptidase OMA1, mitochondrial |
Cast | 1.153 | 1.116 | 1.4315 | Calpastatin |
Flcn | 1.145 | 1.08 | 0.991 | Folliculin |
Atp6v0c | 0.778 | 0.527 | 2.7 | V-type proton ATPase 16 kDa proteolipid subunit |
Ifng | 0.459 | 1.647 | 5.096 | Interferon gamma |
Aktip | 0.269 | 5.29 | 7.586 | AKT-interacting protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langlie, J.; Mittal, R.; Elisha, D.H.; Cooper, J.; Marwede, H.; Purrinos, J.; Tuset, M.-P.; McKenna, K.; Zalta, M.; Mittal, J.; et al. Exploring the Proteomic Landscape of Cochlear Implant Trauma: An iTRAQ-Based Quantitative Analysis Utilizing an Ex Vivo Model. J. Clin. Med. 2025, 14, 5115. https://doi.org/10.3390/jcm14145115
Langlie J, Mittal R, Elisha DH, Cooper J, Marwede H, Purrinos J, Tuset M-P, McKenna K, Zalta M, Mittal J, et al. Exploring the Proteomic Landscape of Cochlear Implant Trauma: An iTRAQ-Based Quantitative Analysis Utilizing an Ex Vivo Model. Journal of Clinical Medicine. 2025; 14(14):5115. https://doi.org/10.3390/jcm14145115
Chicago/Turabian StyleLanglie, Jake, Rahul Mittal, David H. Elisha, Jaimee Cooper, Hannah Marwede, Julian Purrinos, Maria-Pia Tuset, Keelin McKenna, Max Zalta, Jeenu Mittal, and et al. 2025. "Exploring the Proteomic Landscape of Cochlear Implant Trauma: An iTRAQ-Based Quantitative Analysis Utilizing an Ex Vivo Model" Journal of Clinical Medicine 14, no. 14: 5115. https://doi.org/10.3390/jcm14145115
APA StyleLanglie, J., Mittal, R., Elisha, D. H., Cooper, J., Marwede, H., Purrinos, J., Tuset, M.-P., McKenna, K., Zalta, M., Mittal, J., & Eshraghi, A. A. (2025). Exploring the Proteomic Landscape of Cochlear Implant Trauma: An iTRAQ-Based Quantitative Analysis Utilizing an Ex Vivo Model. Journal of Clinical Medicine, 14(14), 5115. https://doi.org/10.3390/jcm14145115