The Effects of Radiation Therapy on the Ocular Apparatus: Implications for Management
Simple Summary
Abstract
1. Introduction
2. Methods
3. Structure of the Eye
4. The Use of Radiotherapy in the Treatment of Cancers of the Head and Neck
4.1. Tumors of the Central Nervous System
4.2. Tumors of the Head and Neck
4.3. Tumors of the Eye
5. Impact of Radiation Therapy on the Eye
5.1. Cornea
5.2. Lens
5.3. Lacrimal Glands
5.4. Optic Nerves
5.5. Retina
5.6. Pediatric Considerations
6. Strategies to Mitigate Ocular Radiotherapy Complications
7. Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baskar, R. Emerging Role of Radiation Induced Bystander Effects: Cell Communications and Carcinogenesis. Genome Integr. 2010, 1, 13. [Google Scholar] [CrossRef]
- Methodologies to Diagnose and Monitor Dry Eye Disease: Report of the Diagnostic Methodology Subcommittee of the International Dry Eye WorkShop (2007). Ocul. Surf. 2007, 5, 99–100. [CrossRef]
- Kennerdell, J.S.; Flores, N.E.; Hartsock, R.J. Low-Dose Radiotherapy for Lymphoid Lesions of the Orbit and Ocular Adnexa. Ophthal. Plast. Reconstr. Surg. 1999, 15, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Kels, B.D.; Grzybowski, A.; Grant-Kels, J.M. Human Ocular Anatomy. Clin. Dermatol. 2015, 33, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, M.S. Anatomy of Cornea and Ocular Surface. Indian J. Ophthalmol. 2018, 66, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Eghrari, A.O.; Riazuddin, S.A.; Gottsch, J.D. Overview of the Cornea: Structure, Function, and Development. Prog. Mol. Biol. Transl. Sci. 2015, 134, 7–23. [Google Scholar] [CrossRef]
- Zhang, W.; Kaser-Eichberger, A.; Fan, W.; Platzl, C.; Schrödl, F.; Heindl, L.M. The Structure and Function of the Human Choroid. Ann. Anat. Anat. Anz. 2024, 254, 152239. [Google Scholar] [CrossRef]
- Li, M.; Song, Y.; Zhao, Y.; Yan, X.; Zhang, H. Influence of Exercise on the Structure of the Anterior Chamber of the Eye. Acta Ophthalmol. 2018, 96, e247–e253. [Google Scholar] [CrossRef]
- Dvoriashyna, M.; Repetto, R.; Romano, M.R.; Tweedy, J.H. Aqueous Humour Flow in the Posterior Chamber of the Eye and Its Modifications Due to Pupillary Block and Iridotomy. Math. Med. Biol. J. IMA 2018, 35, 447–467. [Google Scholar] [CrossRef]
- Eyeball (Labeled) | Health Education Assets Library (HEAL). Available online: https://collections.lib.utah.edu/details?id=872571 (accessed on 15 February 2025).
- De Moraes, C.G. Anatomy of the Visual Pathways. J. Glaucoma 2013, 22 (Suppl. 5), S2–S7. [Google Scholar] [CrossRef]
- Kidd, D. The Optic Chiasm. Clin. Anat. 2014, 27, 1149–1158. [Google Scholar] [CrossRef]
- Vemula, S.; Muvavarirwa, T.; Doornbos, F.; Whitman, M.C. Neuromuscular Junction Development Differs Between Extraocular and Skeletal Muscles and Between Different Extraocular Muscles. Investig. Ophthalmol. Vis. Sci. 2024, 65, 28. [Google Scholar] [CrossRef]
- Knaus, K.R.; Hipsley, A.; Blemker, S.S. The Action of Ciliary Muscle Contraction on Accommodation of the Lens Explored with a 3D Model. Biomech. Model. Mechanobiol. 2021, 20, 879–894. [Google Scholar] [CrossRef] [PubMed]
- OpenStax AnatPhys Fig.14.14—Extraocular Muscles—English Labels | AnatomyTOOL. Available online: https://anatomytool.org/content/openstax-anatphys-fig1414-extraocular-muscles-english-labels (accessed on 15 February 2025).
- Pe’er, J. Pathology of Eyelid Tumors. Indian J. Ophthalmol. 2016, 64, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, J.; Tan, D.T.H.; Beuerman, R.W. The Eyelid Margin: A Transitional Zone for 2 Epithelial Phenotypes. Arch. Ophthalmol. 2007, 125, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Baro, J.A.; Levinson, E. Apparent Motion Can Be Perceived between Patterns with Dissimilar Spatial Frequencies. Vis. Res. 1988, 28, 1311–1313. [Google Scholar] [CrossRef]
- Benitez-Del-Castillo, J.M. How to Promote and Preserve Eyelid Health. Clin. Ophthalmol. 2012, 6, 1689–1698. [Google Scholar] [CrossRef]
- Clayton, J.A. Dry Eye. N. Engl. J. Med. 2018, 378, 2212–2223. [Google Scholar] [CrossRef]
- Örge, F.H.; Boente, C.S. The Lacrimal System. Pediatr. Clin. N. Am. 2014, 61, 529–539. [Google Scholar] [CrossRef]
- Tóth-Molnár, E.; Ding, C. New Insight into Lacrimal Gland Function: Role of the Duct Epithelium in Tear Secretion. Ocul. Surf. 2020, 18, 595–603. [Google Scholar] [CrossRef]
- Withers, H.R. Biological Aspects of Conformal Therapy. Acta Oncol. 2000, 39, 569–577. [Google Scholar] [CrossRef]
- Travis, E.L. Organizational Response of Normal Tissues to Irradiation. Semin. Radiat. Oncol. 2001, 11, 184–196. [Google Scholar] [CrossRef]
- Cui, Y.; Pan, Y.; Li, Z.; Wu, Q.; Zou, J.; Han, D.; Yin, Y.; Ma, C. Dosimetric Analysis and Biological Evaluation between Proton Radiotherapy and Photon Radiotherapy for the Long Target of Total Esophageal Squamous Cell Carcinoma. Front. Oncol. 2022, 12, 954187. [Google Scholar] [CrossRef]
- Källman, P.; Agren, A.; Brahme, A. Tumour and Normal Tissue Responses to Fractionated Non-Uniform Dose Delivery. Int. J. Radiat. Biol. 1992, 62, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.D.; Alexander, E.; Hunt, W.E.; MacCarty, C.S.; Mahaley, M.S.; Mealey, J.; Norrell, H.A.; Owens, G.; Ransohoff, J.; Wilson, C.B.; et al. Evaluation of BCNU and/or Radiotherapy in the Treatment of Anaplastic Gliomas. A Cooperative Clinical Trial. J. Neurosurg. 1978, 49, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.D.; Green, S.B.; Byar, D.P.; Alexander, E.; Batzdorf, U.; Brooks, W.H.; Hunt, W.E.; MacCarty, C.S.; Mahaley, M.S.; Mealey, J.; et al. Randomized Comparisons of Radiotherapy and Nitrosoureas for the Treatment of Malignant Glioma after Surgery. N. Engl. J. Med. 1980, 303, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.D.; Strike, T.A.; Sheline, G.E. An Analysis of Dose-Effect Relationship in the Radiotherapy of Malignant Gliomas. Int. J. Radiat. Oncol. Biol. Phys. 1979, 5, 1725–1731. [Google Scholar] [CrossRef]
- Kristiansen, K.; Hagen, S.; Kollevold, T.; Torvik, A.; Holme, I.; Nesbakken, R.; Hatlevoll, R.; Lindgren, M.; Brun, A.; Lindgren, S.; et al. Combined Modality Therapy of Operated Astrocytomas Grade III and IV. Confirmation of the Value of Postoperative Irradiation and Lack of Potentiation of Bleomycin on Survival Time: A Prospective Multicenter Trial of the Scandinavian Glioblastoma Study Group. Cancer 1981, 47, 649–652. [Google Scholar] [CrossRef]
- Andersen, A.P. Postoperative Irradiation of Glioblastomas. Results in a Randomized Series. Acta Radiol. Oncol. Radiat. Phys. Biol. 1978, 17, 475–484. [Google Scholar] [CrossRef]
- Shapiro, W.R.; Young, D.F. Treatment of Malignant Glioma. A Controlled Study of Chemotherapy and Irradiation. Arch. Neurol. 1976, 33, 494–500. [Google Scholar] [CrossRef]
- Sandberg-Wollheim, M.; Malmström, P.; Strömblad, L.G.; Anderson, H.; Borgström, S.; Brun, A.; Cronqvist, S.; Hougaard, K.; Salford, L.G. A Randomized Study of Chemotherapy with Procarbazine, Vincristine, and Lomustine with and without Radiation Therapy for Astrocytoma Grades 3 and/or 4. Cancer 1991, 68, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Lazarev, S.; Sindhu, K.K. Vorasidenib: A New Hope or a False Promise for Patients with Low-Grade Glioma? Nat. Rev. Clin. Oncol. 2024, 21, 835–836. [Google Scholar] [CrossRef] [PubMed]
- Shaw, E.G.; Berkey, B.; Coons, S.W.; Bullard, D.; Brachman, D.; Buckner, J.C.; Stelzer, K.J.; Barger, G.R.; Brown, P.D.; Gilbert, M.R.; et al. Recurrence Following Neurosurgeon-Determined Gross-Total Resection of Adult Supratentorial Low-Grade Glioma: Results of a Prospective Clinical Trial. J. Neurosurg. 2008, 109, 835–841. [Google Scholar] [CrossRef] [PubMed]
- van den Bent, M.J.; Afra, D.; de Witte, O.; Ben Hassel, M.; Schraub, S.; Hoang-Xuan, K.; Malmström, P.-O.; Collette, L.; Piérart, M.; Mirimanoff, R.; et al. Long-Term Efficacy of Early versus Delayed Radiotherapy for Low-Grade Astrocytoma and Oligodendroglioma in Adults: The EORTC 22845 Randomised Trial. Lancet 2005, 366, 985–990. [Google Scholar] [CrossRef]
- Shaw, E.; Arusell, R.; Scheithauer, B.; O’Fallon, J.; O’Neill, B.; Dinapoli, R.; Nelson, D.; Earle, J.; Jones, C.; Cascino, T.; et al. Prospective Randomized Trial of Low- versus High-Dose Radiation Therapy in Adults with Supratentorial Low-Grade Glioma: Initial Report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group Study. J. Clin. Oncol. 2002, 20, 2267–2276. [Google Scholar] [CrossRef]
- Karim, A.B.; Maat, B.; Hatlevoll, R.; Menten, J.; Rutten, E.H.; Thomas, D.G.; Mascarenhas, F.; Horiot, J.C.; Parvinen, L.M.; van Reijn, M.; et al. A Randomized Trial on Dose-Response in Radiation Therapy of Low-Grade Cerebral Glioma: European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Int. J. Radiat. Oncol. Biol. Phys. 1996, 36, 549–556. [Google Scholar] [CrossRef]
- Lazarev, S.; Sindhu, K.K. The INDIGO Illusion: The Evidence Still Supports Chemoradiation Therapy in Patients with Low-Grade Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2025, 122, 222. [Google Scholar] [CrossRef]
- Goldbrunner, R.; Stavrinou, P.; Jenkinson, M.D.; Sahm, F.; Mawrin, C.; Weber, D.C.; Preusser, M.; Minniti, G.; Lund-Johansen, M.; Lefranc, F.; et al. EANO Guideline on the Diagnosis and Management of Meningiomas. Neuro-Oncology 2021, 23, 1821–1834. [Google Scholar] [CrossRef]
- Patibandla, M.R.; Lee, C.-C.; Tata, A.; Addagada, G.C.; Sheehan, J.P. Stereotactic Radiosurgery for WHO Grade I Posterior Fossa Meningiomas: Long-Term Outcomes with Volumetric Evaluation. J. Neurosurg. 2018, 129, 1249–1259. [Google Scholar] [CrossRef]
- Cohen-Inbar, O.; Tata, A.; Moosa, S.; Lee, C.-C.; Sheehan, J.P. Stereotactic Radiosurgery in the Treatment of Parasellar Meningiomas: Long-Term Volumetric Evaluation. J. Neurosurg. 2018, 128, 362–372. [Google Scholar] [CrossRef]
- Rogers, C.L.; Won, M.; Vogelbaum, M.A.; Perry, A.; Ashby, L.S.; Modi, J.M.; Alleman, A.M.; Galvin, J.; Fogh, S.E.; Youssef, E.; et al. High-Risk Meningioma: Initial Outcomes From NRG Oncology/RTOG 0539. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 790–799. [Google Scholar] [CrossRef]
- Rogers, L.; Zhang, P.; Vogelbaum, M.A.; Perry, A.; Ashby, L.S.; Modi, J.M.; Alleman, A.M.; Galvin, J.; Brachman, D.; Jenrette, J.M.; et al. Intermediate-Risk Meningioma: Initial Outcomes from NRG Oncology RTOG 0539. J. Neurosurg. 2018, 129, 35–47. [Google Scholar] [CrossRef]
- Patchell, R.A.; Tibbs, P.A.; Walsh, J.W.; Dempsey, R.J.; Maruyama, Y.; Kryscio, R.J.; Markesbery, W.R.; Macdonald, J.S.; Young, B. A Randomized Trial of Surgery in the Treatment of Single Metastases to the Brain. N. Engl. J. Med. 1990, 322, 494–500. [Google Scholar] [CrossRef]
- Patchell, R.A.; Tibbs, P.A.; Regine, W.F.; Dempsey, R.J.; Mohiuddin, M.; Kryscio, R.J.; Markesbery, W.R.; Foon, K.A.; Young, B. Postoperative Radiotherapy in the Treatment of Single Metastases to the Brain: A Randomized Trial. JAMA 1998, 280, 1485–1489. [Google Scholar] [CrossRef]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D.; et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients With Brain Metastases: Phase III Trial NRG Oncology CC001. J. Clin. Oncol. 2020, 38, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, H.; Shirato, H.; Tago, M.; Nakagawa, K.; Toyoda, T.; Hatano, K.; Kenjyo, M.; Oya, N.; Hirota, S.; Shioura, H.; et al. Stereotactic Radiosurgery plus Whole-Brain Radiation Therapy vs. Stereotactic Radiosurgery Alone for Treatment of Brain Metastases: A Randomized Controlled Trial. JAMA 2006, 295, 2483–2491. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.L.; Wefel, J.S.; Hess, K.R.; Allen, P.K.; Lang, F.F.; Kornguth, D.G.; Arbuckle, R.B.; Swint, J.M.; Shiu, A.S.; Maor, M.H.; et al. Neurocognition in Patients with Brain Metastases Treated with Radiosurgery or Radiosurgery plus Whole-Brain Irradiation: A Randomised Controlled Trial. Lancet Oncol. 2009, 10, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Asfaw, Z.K.; Young, T.; Brown, C.; Dehdia, M.; Huo, L.; Sindhu, K.K.; Lazarev, S.; Samstein, R.; Green, S.; Germano, I.M. Transforming Brain Tumor Care: The Global Impact of Radiosurgery in Multidisciplinary Treatment Over Two Decades. Cancer Med. 2025, 14, e70673. [Google Scholar] [CrossRef]
- Smith-Salzberg, B.; Hsieh, K.; Cherry, D.; Bloom, J.R.; Yu, C.; Nehlsen, A.D.; Salgado, L.R.; Sindhu, K.K. The Effects of Radiation Therapy on the Brain: Implications for Management. Chin. Clin. Oncol. 2025, 14, 32. [Google Scholar] [CrossRef]
- Sindhu, K.K.; Nehlsen, A.D.; Bakst, R.L. Promoting Exercise in Patients with Cancers of the Head and Neck during COVID-19 and Beyond. BMJ Open Sport Exerc. Med. 2021, 7, e001024. [Google Scholar] [CrossRef]
- Nehlsen, A.D.; Sindhu, K.K.; Jones, B.M.; Lehrer, E.J.; Rowley, J.P.; Bakst, R.L. Moving beyond Definitive Therapy: Increasing Physical Activity in Survivors of Cancers of the Head and Neck. Curr. Oncol. 2022, 29, 1213–1222. [Google Scholar] [CrossRef]
- Bloom, J.R.; Rodriguez-Russo, C.; Hsieh, K.; Dickstein, D.R.; Sheu, R.-D.; Jain, M.; Moshier, E.; Liu, J.; Gupta, V.; Kirke, D.N.; et al. Head and Neck Cancer Patient Population, Management, and Oncologic Outcomes from the COVID-19 Pandemic. Curr. Oncol. 2024, 31, 436–446. [Google Scholar] [CrossRef]
- Weiss, O.; Runnels, J.; Dickstein, D.R.; Hsieh, K.; Jacobs, L.; Shah, A.; Arons, D.; Reed, S.; Sindhu, K.K.; Bakst, R.; et al. PTSD in Patients Who Undergo Head and Neck Cancer Treatment: A Systematic Review. Curr. Oncol. 2025, 32, 134. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.Y.; Zhu, J.; Fedewa, S. Temporal Trends in Oropharyngeal Cancer Treatment and Survival: 1998–2009. Laryngoscope 2014, 124, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Linton, O.R.; Moore, M.G.; Brigance, J.S.; Gordon, C.A.; Summerlin, D.-J.; McDonald, M.W. Prognostic Significance of Basaloid Squamous Cell Carcinoma in Head and Neck Cancer. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 1306–1311. [Google Scholar] [CrossRef]
- Sher, D.J.; Adelstein, D.J.; Bajaj, G.K.; Brizel, D.M.; Cohen, E.E.W.; Halthore, A.; Harrison, L.B.; Lu, C.; Moeller, B.J.; Quon, H.; et al. Radiation Therapy for Oropharyngeal Squamous Cell Carcinoma: Executive Summary of an ASTRO Evidence-Based Clinical Practice Guideline. Pract. Radiat. Oncol. 2017, 7, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Withers, H.R.; Peters, L.J.; Taylor, J.M.; Owen, J.B.; Morrison, W.H.; Schultheiss, T.E.; Keane, T.; O’Sullivan, B.; van Dyk, J.; Gupta, N. Local Control of Carcinoma of the Tonsil by Radiation Therapy: An Analysis of Patterns of Fractionation in Nine Institutions. Int. J. Radiat. Oncol. Biol. Phys. 1995, 33, 549–562. [Google Scholar] [CrossRef]
- Beitler, J.J.; Zhang, Q.; Fu, K.K.; Trotti, A.; Spencer, S.A.; Jones, C.U.; Garden, A.S.; Shenouda, G.; Harris, J.; Ang, K.K. Final Results of Local-Regional Control and Late Toxicity of RTOG 9003: A Randomized Trial of Altered Fractionation Radiation for Locally Advanced Head and Neck Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 13–20. [Google Scholar] [CrossRef]
- Horiot, J.C.; Bontemps, P.; van den Bogaert, W.; Le Fur, R.; van den Weijngaert, D.; Bolla, M.; Bernier, J.; Lusinchi, A.; Stuschke, M.; Lopez-Torrecilla, J.; et al. Accelerated Fractionation (AF) Compared to Conventional Fractionation (CF) Improves Loco-Regional Control in the Radiotherapy of Advanced Head and Neck Cancers: Results of the EORTC 22851 Randomized Trial. Radiother. Oncol. 1997, 44, 111–121. [Google Scholar] [CrossRef]
- Collaborative Ocular Melanoma Study Group. The COMS Randomized Trial of Iodine 125 Brachytherapy for Choroidal Melanoma: V. Twelve-Year Mortality Rates and Prognostic Factors: COMS Report No. 28. Arch. Ophthalmol. Chic. Ill 1960 2006, 124, 1684–1693. [Google Scholar] [CrossRef]
- Kim, T.W.; Choi, E.; Park, J.; Shin, D.; Jung, S.K.; Seok, S.; Cho, K.H.; Kim, J.-Y.; Kim, D.Y.; Kim, T.H.; et al. Clinical Outcomes of Proton Beam Therapy for Choroidal Melanoma at a Single Institute in Korea. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2018, 50, 335–344. [Google Scholar] [CrossRef]
- Akagunduz, O.O.; Yilmaz, S.G.; Tavlayan, E.; Baris, M.E.; Afrashi, F.; Esassolak, M. Radiation-Induced Ocular Surface Disorders and Retinopathy: Ocular Structures and Radiation Dose-Volume Effect. Cancer Res. Treat. 2022, 54, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Barabino, S.; Raghavan, A.; Loeffler, J.; Dana, R. Radiotherapy-Induced Ocular Surface Disease. Cornea 2005, 24, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Jeganathan, V.S.E.; Wirth, A.; MacManus, M.P. Ocular Risks from Orbital and Periorbital Radiation Therapy: A Critical Review. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.T.; Deutsch, G.P.; Cree, I.A.; Liu, C.S.C. Permanent Corneal Limbal Stem Cell Dysfunction Following Radiotherapy for Orbital Lymphoma. Eye 2000, 14, 905–907. [Google Scholar] [CrossRef]
- Lee, H.J.; Stacey, A.; Klesert, T.R.; Wells, C.; Skalet, A.H.; Bloch, C.; Fung, A.; Bowen, S.R.; Wong, T.P.; Shibata, D.; et al. Corneal Substructure Dosimetry Predicts Corneal Toxicity in Patients With Uveal Melanoma Treated With Proton Beam Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 374–382. [Google Scholar] [CrossRef]
- Ingraham, H.J.; Perry, H.D.; Donnenfeld, E.D.; Epstein, A.B. Glued-on, Rigid Gas-Permeable Contact Lens for Severe Radiation-Induced Keratitis. Am. J. Ophthalmol. 1992, 113, 538–540. [Google Scholar] [CrossRef]
- Azuara-Blanco, A.; Pillai, C.T.; Dua, H.S. Amniotic Membrane Transplantation for Ocular Surface Reconstruction. Br. J. Ophthalmol. 1999, 83, 399–402. [Google Scholar] [CrossRef]
- Schnitzler, E.; Spörl, E.; Seiler, T. Irradiation of cornea with ultraviolet light and riboflavin administration as a new treatment for erosive corneal processes, preliminary results in four patients. Klin. Monatsbl. Augenheilkd. 2000, 217, 190–193. [Google Scholar] [CrossRef]
- Ainsbury, E.A.; Barnard, S.; Bright, S.; Dalke, C.; Jarrin, M.; Kunze, S.; Tanner, R.; Dynlacht, J.R.; Quinlan, R.A.; Graw, J.; et al. Ionizing Radiation Induced Cataracts: Recent Biological and Mechanistic Developments and Perspectives for Future Research. Mutat. Res. Rev. Mutat. Res. 2016, 770, 238–261. [Google Scholar] [CrossRef]
- Ludwig, P.E.; Jessu, R.; Czyz, C.N. Physiology, Eye. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Nizami, A.A.; Gurnani, B.; Gulani, A.C. Cataract. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Broughton, J.; Cantone, M.C.; Ginjaume, M.; Shah, B.; Czarwinski, R. Implications of the Implementation of the Revised Dose Limit to the Lens of the Eye: The Viewof IRPA Professionals. Ann. ICRP 2015, 44, 138–143. [Google Scholar] [CrossRef]
- Thome, C.; Chambers, D.B.; Hooker, A.M.; Thompson, J.W.; Boreham, D.R. Deterministic Effects to the Lens of the Eye Following Ionizing Radiation Exposure: Is There Evidence to Support a Reduction in Threshold Dose? Health Phys. 2018, 114, 328–343. [Google Scholar] [CrossRef]
- Uwineza, A.; Cummins, I.; Jarrin, M.; Kalligeraki, A.A.; Barnard, S.; Mol, M.; Degani, G.; Altomare, A.A.; Aldini, G.; Schreurs, A.; et al. Identification and Quantification of Ionising Radiation-Induced Oxysterol Formation in Membranes of Lens Fibre Cells. Adv. Redox Res. 2023, 7, 100057. [Google Scholar] [CrossRef]
- Radyuk, S.N.; Orr, W.C. The Multifaceted Impact of Peroxiredoxins on Aging and Disease. Antioxid. Redox Signal. 2018, 29, 1293–1311. [Google Scholar] [CrossRef]
- Allen, R.G. Oxidative Stress and Superoxide Dismutase in Development, Aging and Gene Regulation. Age 1998, 21, 47–76. [Google Scholar] [CrossRef]
- Constine, L.S.; Marks, L.B.; Milano, M.T.; Ronckers, C.M.; Jackson, A.; Hudson, M.M.; Marcus, K.J.; Hodgson, D.C.; Hua, C.-H.; Howell, R.M.; et al. A User’s Guide and Summary of Pediatric Normal Tissue Effects in the Clinic (PENTEC): Radiation Dose-Volume Response for Adverse Effects After Childhood Cancer Therapy and Future Directions. Int. J. Radiat. Oncol. 2024, 119, 321–337. [Google Scholar] [CrossRef] [PubMed]
- Bhandare, N.; Moiseenko, V.; Song, W.Y.; Morris, C.G.; Bhatti, M.T.; Mendenhall, W.M. Severe Dry Eye Syndrome After Radiotherapy for Head-and-Neck Tumors. Int. J. Radiat. Oncol. 2012, 82, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Nuzzi, R.; Trossarello, M.; Bartoncini, S.; Marolo, P.; Franco, P.; Mantovani, C.; Ricardi, U. Ocular Complications After Radiation Therapy: An Observational Study. Clin. Ophthalmol. 2020, 14, 3153–3166. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Tobillo, R.; Mavroidis, P.; Pappafotis, R.; Pearlstein, K.A.; Moon, D.H.; Mahbooba, Z.M.; Deal, A.M.; Holmes, J.A.; Sheets, N.C.; et al. Prospective Assessment of Patient-Reported Dry Eye Syndrome After Whole Brain Radiation. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 765–772. [Google Scholar] [CrossRef]
- Soni, M.; Walia, S.; Jain, P. Dry Eye Disease in Head and Neck Cancer Patients Undergoing Radiotherapy. Indian J. Ophthalmol. 2023, 71, 1556–1560. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, W.-S.; Jung, J.H.; Jeong, B.K.; Woo, S.H.; Kim, J.H.; Kim, S.J. Alpha-Lipoic Acid Ameliorates Radiation-Induced Lacrimal Gland Injury through NFAT5-Dependent Signaling. Int. J. Mol. Sci. 2019, 20, 5691. [Google Scholar] [CrossRef]
- Eid, R.A.; Al-Shraim, M.; Al-Falki, Y.; Al-Emam, A.; Alsabaani, N.A.; Radad, K. Radiation-Induced Damage to Lacrimal Glands: An Ultrastructural Study in Sprague Dawley Rats. Ultrastruct. Pathol. 2018, 42, 358–364. [Google Scholar] [CrossRef]
- Marks, L.B.; Yorke, E.D.; Jackson, A.; Ten Haken, R.K.; Constine, L.S.; Eisbruch, A.; Bentzen, S.M.; Nam, J.; Deasy, J.O. Use of Normal Tissue Complication Probability Models in the Clinic. Int. J. Radiat. Oncol. 2010, 76, S10–S19. [Google Scholar] [CrossRef] [PubMed]
- Bhandare, N.; Monroe, A.T.; Morris, C.G.; Bhatti, M.T.; Mendenhall, W.M. Does Altered Fractionation Influence the Risk of Radiation-Induced Optic Neuropathy? Int. J. Radiat. Oncol. 2005, 62, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Doroslovački, P.; Tamhankar, M.A.; Liu, G.T.; Shindler, K.S.; Ying, G.-S.; Alonso-Basanta, M. Factors Associated with Occurrence of Radiation-Induced Optic Neuropathy at “Safe” Radiation Dosage. Semin. Ophthalmol. 2018, 33, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Kinaci-Tas, B.; Alderliesten, T.; Verbraak, F.D.; Rasch, C.R.N. Radiation-Induced Retinopathy and Optic Neuropathy after Radiation Therapy for Brain, Head, and Neck Tumors: A Systematic Review. Cancers 2023, 15, 1999. [Google Scholar] [CrossRef]
- Li, P.C.; Liebsch, N.J.; Niemierko, A.; Giantsoudi, D.; Lessell, S.; Fullerton, B.C.; Adams, J.; Shih, H.A. Radiation Tolerance of the Optic Pathway in Patients Treated with Proton and Photon Radiotherapy. Radiother. Oncol. 2019, 131, 112–119. [Google Scholar] [CrossRef]
- Yu, C.W.; Joarder, I.; Micieli, J.A. Treatment and Prophylaxis of Radiation Optic Neuropathy: A Systematic Review and Meta-Analysis. Eur. J. Ophthalmol. 2022, 32, 3129–3141. [Google Scholar] [CrossRef]
- Yang, J.; Li, Q.; Han, D.; Liao, C.; Wang, P.; Gao, J.; Xu, Z.; Liu, Y. Radiation-Induced Impairment of Optic Nerve Axonal Transport in Tree Shrews and Rats Monitored by Longitudinal Manganese-Enhanced MRI. NeuroToxicology 2020, 77, 145–154. [Google Scholar] [CrossRef]
- Tamplin, M.R.; Wang, J.-K.; Binkley, E.M.; Garvin, M.K.; Hyer, D.E.; Buatti, J.M.; Boldt, H.C.; Grumbach, I.M.; Kardon, R.H. Radiation Effects on Retinal Layers Revealed by OCT, OCT-A, and Perimetry as a Function of Dose and Time from Treatment. Sci. Rep. 2024, 14, 3380. [Google Scholar] [CrossRef]
- Lebon, C.; Malaise, D.; Rimbert, N.; Billet, M.; Ramasamy, G.; Villaret, J.; Pouzoulet, F.; Matet, A.; Behar-Cohen, F. Role of Inflammation in a Rat Model of Radiation Retinopathy. J. Neuroinflamm. 2024, 21, 162. [Google Scholar] [CrossRef] [PubMed]
- Zemba, M.; Dumitrescu, O.-M.; Gheorghe, A.G.; Radu, M.; Ionescu, M.A.; Vatafu, A.; Dinu, V. Ocular Complications of Radiotherapy in Uveal Melanoma. Cancers 2023, 15, 333. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.J.; Kry, S.F.; Buchsbaum, J.C.; Milano, M.T.; Inskip, P.D.; Ulin, K.; Francis, J.H.; Wilson, M.W.; Whelan, K.F.; Mayo, C.S.; et al. Retinopathy, Optic Neuropathy, and Cataract in Childhood Cancer Survivors Treated With Radiation Therapy: A PENTEC Comprehensive Review. Int. J. Radiat. Oncol. Biol. Phys. 2024, 119, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, P.R.; Austin, D.J.; Rosenthal, A.R. Treatment of Radiation Retinopathy. Br. J. Ophthalmol. 1981, 65, 623–625. [Google Scholar] [CrossRef]
- Shields, C.L.; Demirci, H.; Marr, B.P.; Mashayekhi, A.; Dai, V.V.; Materin, M.A.; Shields, J.A. Intravitreal Triamcinolone Acetonide for Acute Radiation Papillopathy. Retina 2006, 26, 537–544. [Google Scholar] [CrossRef]
- Gall, N.; Leiba, H.; Handzel, R.; Pe’er, J. Severe Radiation Retinopathy and Optic Neuropathy after Brachytherapy for Choroidal Melanoma, Treated by Hyperbaric Oxygen. Eye 2007, 21, 1010–1012. [Google Scholar] [CrossRef]
- Gupta, P.; Meisenberg, B.; Amin, P.; Pomeranz, H.D. Radiation Retinopathy: The Role of Pentoxifylline. Retina 2001, 21, 545–547. [Google Scholar] [CrossRef]
- Reichstein, D. Current Treatments and Preventive Strategies for Radiation Retinopathy. Curr. Opin. Ophthalmol. 2015, 26, 157–166. [Google Scholar] [CrossRef]
- van Leeuwen, C.M.; Oei, A.L.; Crezee, J.; Bel, A.; Franken, N.A.P.; Stalpers, L.J.A.; Kok, H.P. The Alfa and Beta of Tumours: A Review of Parameters of the Linear-Quadratic Model, Derived from Clinical Radiotherapy Studies. Radiat. Oncol. 2018, 13, 96. [Google Scholar] [CrossRef]
- Francolini, G.; Detti, B.; Ingrosso, G.; Desideri, I.; Becherini, C.; Carta, G.; Pezzulla, D.; Caramia, G.; Dominici, L.; Maragna, V.; et al. Stereotactic Body Radiation Therapy (SBRT) on Renal Cell Carcinoma, an Overview of Technical Aspects, Biological Rationale and Current Literature. Crit. Rev. Oncol. Hematol. 2018, 131, 24–29. [Google Scholar] [CrossRef]
- Vernimmen, F.J.A.I.; and Slabbert, J.P. Assessment of the α/ß Ratios for Arteriovenous Malformations, Meningiomas, Acoustic Neuromas, and the Optic Chiasma. Int. J. Radiat. Biol. 2010, 86, 486–498. [Google Scholar] [CrossRef] [PubMed]
- Quashie, E.E.; Li, X.A.; Prior, P.; Awan, M.; Schultz, C.; Tai, A. Obtaining Organ-Specific Radiobiological Parameters from Clinical Data for Radiation Therapy Planning of Head and Neck Cancers. Phys. Med. Biol. 2023, 68, 245015. [Google Scholar] [CrossRef] [PubMed]
- Lucido, J.J.; Veres, A.J.; Kehret, S.M.; Angeli, J.A.; Highet, R.D.; Foote, R.L.; Lester, S.C.; Deufel, C.L. Development of Transparent Eye Shields for Total Skin Electron Beam Radiotherapy. J. Appl. Clin. Med. Phys. 2022, 23, e13722. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-K.; Park, S.; Hwang, T.; Cheong, K.-H.; Han, T.; Kim, H.; Lee, M.-Y.; Kim, K.J.; Oh, D.H.; Bae, H. Application of a Dummy Eye Shield for Electron Treatment Planning. J. Radiat. Res. 2013, 54, 174–181. [Google Scholar] [CrossRef]
- Jones, G.W.; Kacinski, B.M.; Wilson, L.D.; Willemze, R.; Spittle, M.; Hohenberg, G.; Handl-Zeller, L.; Trautinger, F.; Knobler, R. Total Skin Electron Radiation in the Management of Mycosis Fungoides: Consensus of the European Organization for Research and Treatment of Cancer (EORTC) Cutaneous Lymphoma Project Group. J. Am. Acad. Dermatol. 2002, 47, 364–370. [Google Scholar] [CrossRef]
- Baker, C.R.; Luhana, F.; Thomas, S.J. Absorbed Dose behind Eye Shields during Kilovoltage Photon Radiotherapy. Br. J. Radiol. 2002, 75, 685–688. [Google Scholar] [CrossRef]
- Shiu, A.S.; Tung, S.S.; Gastorf, R.J.; Hogstrom, K.R.; Morrison, W.H.; Peters, L.J. Dosimetric Evaluation of Lead and Tungsten Eye Shields in Electron Beam Treatment. Int. J. Radiat. Oncol. Biol. Phys. 1996, 35, 599–604. [Google Scholar] [CrossRef]
- Gerbi, B.J.; Antolak, J.A.; Deibel, F.C.; Followill, D.S.; Herman, M.G.; Higgins, P.D.; Huq, M.S.; Mihailidis, D.N.; Yorke, E.D.; Hogstrom, K.R.; et al. Recommendations for Clinical Electron Beam Dosimetry: Supplement to the Recommendations of Task Group 25. Med. Phys. 2009, 36, 3239–3279. [Google Scholar] [CrossRef]
- Bisello, S.; Cilla, S.; Benini, A.; Cardano, R.; Nguyen, N.P.; Deodato, F.; Macchia, G.; Buwenge, M.; Cammelli, S.; Wondemagegnehu, T.; et al. Dose-Volume Constraints fOr oRganS At Risk In Radiotherapy (CORSAIR): An “All-in-One” Multicenter-Multidisciplinary Practical Summary. Curr. Oncol. 2022, 29, 7021–7050. [Google Scholar] [CrossRef]
- Taylor, A.; Powell, M.E.B. Intensity-Modulated Radiotherapy--What Is It. Cancer Imaging 2004, 4, 68–73. [Google Scholar] [CrossRef]
- Zabel, A.; Thilmann, C.; Zuna, I.; Schlegel, W.; Wannenmacher, M.; Debus, J. Comparison of Forward Planned Conformal Radiation Therapy and Inverse Planned Intensity Modulated Radiation Therapy for Esthesioneuroblastoma. Br. J. Radiol. 2002, 75, 356–361. [Google Scholar] [CrossRef]
- Ciernik, I.F.; Wösle, M.; Krause, L.; Krayenbuehl, J. Optimizing Radiosurgery with Photons for Ocular Melanoma. Phys. Imaging Radiat. Oncol. 2018, 6, 83–88. [Google Scholar] [CrossRef]
- Timmerman, R.D.; Herman, J.; Cho, L.C. Emergence of Stereotactic Body Radiation Therapy and Its Impact on Current and Future Clinical Practice. J. Clin. Oncol. 2014, 32, 2847–2854. [Google Scholar] [CrossRef] [PubMed]
- Citrin, D.E. Recent Developments in Radiotherapy. N. Engl. J. Med. 2017, 377, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, K.K.; Shi, C.; Moss, N.; Lin, H.; Zhang, J.; Hu, L.; Sharma, S.; Bakst, R.L.; Chhabra, A.; Simone, C.B.; et al. The Effects of Pencil Beam Scanning Proton Beam Therapy on a HeartMate 3 Left Ventricular Assist Device: Implications for Patient Safety. ASAIO J. 2022, 68, e145–e147. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, E.J.; Prabhu, A.V.; Sindhu, K.K.; Lazarev, S.; Ruiz-Garcia, H.; Peterson, J.L.; Beltran, C.; Furutani, K.; Schlesinger, D.; Sheehan, J.P.; et al. Proton and Heavy Particle Intracranial Radiosurgery. Biomedicines 2021, 9, 31. [Google Scholar] [CrossRef]
- Levin, W.P.; Kooy, H.; Loeffler, J.S.; DeLaney, T.F. Proton Beam Therapy. Br. J. Cancer 2005, 93, 849–854. [Google Scholar] [CrossRef]
- Hartsell, W.F.; Kapur, R.; Hartsell, S.O.; Sweeney, P.; Lopes, C.; Duggal, A.; Cohen, J.; Chang, J.; Polasani, R.S.; Dunn, M.; et al. Feasibility of Proton Beam Therapy for Ocular Melanoma Using a Novel 3D Treatment Planning Technique. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 353–359. [Google Scholar] [CrossRef]
- Mobit, P.; Yang, C.C.; Nittala, M.R.; He, R.; Ahmed, H.Z.; Shultz, G.; Lin, A.; Vijayakumar, S. Eye Plaque Brachytherapy for Choroidal Malignant Melanoma: A Case Report on the Use of Innovative Technology to Expand Access, Improve Practice, and Enhance Outcomes. Cureus 2024, 16, e54572. [Google Scholar] [CrossRef]
- Vogel, J.; Carmona, R.; Ainsley, C.G.; Lustig, R.A. The Promise of Proton Therapy for Central Nervous System Malignancies. Neurosurgery 2019, 84, 1000–1010. [Google Scholar] [CrossRef]
- Hsieh, K.; Hotca, A.E.; Dickstein, D.R.; Lehrer, E.J.; Hsieh, C.; Gupta, V.; Sindhu, K.K.; Liu, J.T.; Reed, S.H.; Chhabra, A.; et al. Adjuvant Reirradiation With Proton Therapy in Head and Neck Squamous Cell Carcinoma. Adv. Radiat. Oncol. 2024, 9, 101418. [Google Scholar] [CrossRef]
- Nuyts, S.; Bollen, H.; Ng, S.P.; Corry, J.; Eisbruch, A.; Mendenhall, W.M.; Smee, R.; Strojan, P.; Ng, W.T.; Ferlito, A. Proton Therapy for Squamous Cell Carcinoma of the Head and Neck: Early Clinical Experience and Current Challenges. Cancers 2022, 14, 2587. [Google Scholar] [CrossRef]
- Hotca, A.; Sindhu, K.K.; Lehrer, E.J.; Hartsell, W.F.; Vargas, C.; Tsai, H.K.; Chang, J.H.; Apisarnthanarax, S.; Nichols, R.C.; Chhabra, A.M.; et al. Reirradiation With Proton Therapy for Recurrent Malignancies of the Esophagus and Gastroesophageal Junction: Results of the Proton Collaborative Group Multi-Institutional Prospective Registry Trial. Adv. Radiat. Oncol. 2024, 9, 101459. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.; Grosshans, D. Proton Therapy—Present and Future. Adv. Drug Deliv. Rev. 2017, 109, 26–44. [Google Scholar] [CrossRef] [PubMed]
- Sagoo, M.S.; Shields, C.L.; Emrich, J.; Mashayekhi, A.; Komarnicky, L.; Shields, J.A. Plaque Radiotherapy for Juxtapapillary Choroidal Melanoma: Treatment Complications and Visual Outcomes in 650 Consecutive Cases. JAMA Ophthalmol. 2014, 132, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Chiu-Tsao, S.-T.; Astrahan, M.A.; Finger, P.T.; Followill, D.S.; Meigooni, A.S.; Melhus, C.S.; Mourtada, F.; Napolitano, M.E.; Nath, R.; Rivard, M.J.; et al. Dosimetry of (125)I and (103)Pd COMS Eye Plaques for Intraocular Tumors: Report of Task Group 129 by the AAPM and ABS. Med. Phys. 2012, 39, 6161–6184. [Google Scholar] [CrossRef]
- Finger, P.T.; Chin, K.J.; Tena, L.B. A Five-Year Study of Slotted Eye Plaque Radiation Therapy for Choroidal Melanoma: Near, Touching, or Surrounding the Optic Nerve. Ophthalmology 2012, 119, 415–422. [Google Scholar] [CrossRef]
- Shields, C.L.; Shields, J.A.; Gündüz, K.; Freire, J.E.; Mercado, G. Radiation Therapy for Uveal Malignant Melanoma. Ophthalmic Surg. Lasers 1998, 29, 397–409. [Google Scholar] [CrossRef]
- Marcié, S.; Gerard, J.P.; Dejean, C.; Feuillade, J.; Gautier, M.; Montagné, L.; Fuentes, C.; Hannoun-Levi, J.M. The Inverse Square Law: A Basic Principle in Brachytherapy. Cancer/Radiothérapie 2022, 26, 1075–1077. [Google Scholar] [CrossRef]
- American Brachytherapy Society—Ophthalmic Oncology Task Force; ABS—OOTF Committee. The American Brachytherapy Society Consensus Guidelines for Plaque Brachytherapy of Uveal Melanoma and Retinoblastoma. Brachytherapy 2014, 13, 1–14. [Google Scholar] [CrossRef]
Title 1 | Author | Toxicity | Acuity | Dose |
---|---|---|---|---|
Cornea | Lee et al. | “Requiring Medical Intervention” | Chronic | 51.8 Gy |
Barabino et al. | Corneal Edema | Acute | 40–50 Gy | |
Barabino et al. | Corneal Ulceration | Acute | >60 Gy | |
Barabino et al. | Epithelial Lesion | Acute (Rarely Chronic) | 30–50 Gy | |
Lens | ICRP | Cataracts | Acute | 0.5 Gy |
Ainsbury et al. | Cataracts | Acute | 5 Gy | |
Ainsbury et al. | Cataracts | Chronic | >8 Gy | |
Lacrimal Glands | Nuzzi et al. | Dry Eye Syndrome | Acute and Chronic | >15 Gy |
Bhandare et al. | Dry Eye Syndrome | Chronic | 34 Gy | |
Optic Nerve | QUANTEC | Optic Neuropathy | Chronic | 55–60 Gy, |
<12 Gy (SRS Single Fraction) | ||||
Bhandare et al. | Optic Neuropathy | Chronic | <50 Gy | |
Retina | Kinaci-Tas et al. | Retinopathy | Chronic | >50 Gy |
Shen et al. | Retinopathy | Chronic | 40–62 Gy |
Method | Mitigation Provided | Advantages | Disadvantages |
---|---|---|---|
Shielding | Physical barrier for normal tissue | Size and material customizability | Backscatter, inappropriate shielding |
Dose Constraints | Decreasing dose to normal tissue | Limits risk of toxicity | N/A |
IMRT | Improved conformality | Increased organ-at-risk sparing | Increasing planning time |
Proton Beam Therapy | Unique depth-dose characteristic | Improved precision of beam | Cost, accessibility, relative lack of clinical trials |
Plaque Brachytherapy | Short therapeutic range | Customizable to patient anatomy | Surgical complications |
Fractionation | Dose delivery over multiple sessions | Minimize toxicity | Longer treatment duration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arturi, F.J.; Arons, D.; Murphy, N.J.; Yu, C.; Panse, D.; Cherry, D.R.; Hsieh, K.; Bloom, J.R.; Nehlsen, A.D.; Resende Salgado, L.; et al. The Effects of Radiation Therapy on the Ocular Apparatus: Implications for Management. Cancers 2025, 17, 2605. https://doi.org/10.3390/cancers17162605
Arturi FJ, Arons D, Murphy NJ, Yu C, Panse D, Cherry DR, Hsieh K, Bloom JR, Nehlsen AD, Resende Salgado L, et al. The Effects of Radiation Therapy on the Ocular Apparatus: Implications for Management. Cancers. 2025; 17(16):2605. https://doi.org/10.3390/cancers17162605
Chicago/Turabian StyleArturi, Frank J., Danielle Arons, Nicholas J. Murphy, Catherine Yu, Drishti Panse, Daniel R. Cherry, Kristin Hsieh, Julie R. Bloom, Anthony D. Nehlsen, Lucas Resende Salgado, and et al. 2025. "The Effects of Radiation Therapy on the Ocular Apparatus: Implications for Management" Cancers 17, no. 16: 2605. https://doi.org/10.3390/cancers17162605
APA StyleArturi, F. J., Arons, D., Murphy, N. J., Yu, C., Panse, D., Cherry, D. R., Hsieh, K., Bloom, J. R., Nehlsen, A. D., Resende Salgado, L., & Sindhu, K. K. (2025). The Effects of Radiation Therapy on the Ocular Apparatus: Implications for Management. Cancers, 17(16), 2605. https://doi.org/10.3390/cancers17162605