Organic Acids in Aquaculture: A Bibliometric Analysis
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
3.1. General Analysis
3.2. Most Relevant Sources
3.3. Most Relevant Authors
3.4. Most Relevant Articles
3.5. Words
3.6. Most Relevant Countries
3.7. Most Relevant Institutions
3.8. Research Trends
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Organización de las Naciones Unidas par la Alimentación y la Agricultura. Uma produção Pesqueira e Aquícola Sem Precedentes Contribui Decisivamente Para a Segurança Alimentar Global [Unprecedented Fisheries and Aquaculture Production Makes a Decisive Contribution to Global Food Security]. 2022. Available online: https://www.fao.org/brasil/noticias/detail-events/es/c/1585153/ (accessed on 24 February 2025).
- Vianna, G.M.; Zeller, D.; Pauly, D. Fisheries and policy implications for human nutrition. Curr. Environ. Health Rep. 2020, 7, 161–169. [Google Scholar] [CrossRef]
- Diah, W.; Marsal, C.J.; Tamat, W.; Chowdhury, A.J.K. Contamination prevention in ASEAN aquaculture: A review of prospective challenges and mitigations. Desalination Water Treat. 2023, 315, 523–537. [Google Scholar] [CrossRef]
- Limbu, S.M.; Chen, L.Q.; Zhang, M.L.; Du, Z.Y. A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: A review. Rev. Aquac. 2021, 13, 1015–1059. [Google Scholar] [CrossRef]
- Rossi, B.; Esteban, M.A.; García-Beltran, J.M.; Giovagnoni, G.; Cuesta, A.; Piva, A.; Grilli, E. Antimicrobial power of organic acids and nature-identical compounds against two Vibrio spp.: An in vitro study. Microorganisms 2021, 9, 966. [Google Scholar] [CrossRef]
- Ng, W.K.; Koh, C.B. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev. Aquac. 2017, 9, 342–368. [Google Scholar] [CrossRef]
- Simjee, S.; Ippolito, G. European regulations on prevention use of antimicrobials from january 2022. Braz. J. Vet. Med. 2022, 44, e000822. [Google Scholar] [CrossRef]
- EC. Regulation (EU). 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. Off. J. Eur. Union 2019, 4, 43–167. [Google Scholar]
- EC. European Parliament and Council of the European Union. Regulation (EU) 2019/4 of the European Parliament and of the Council of 11 December 2018 on the manufacture, placing on the market, and use of medicated feed for animals, amending Regulation (EC) No 183/2005 of the European Parliament and of the Council and repealing Council Directive 90/167/EEC (Text with EEA relevance). Off. J. Eur. Union 2019, 4, 1–23. [Google Scholar]
- Chowdhury, M.A.K.; Song, H.; Liu, Y.; Bunod, J.-D.; Dong, X.-H. Effects of microencapsulated organic acid and their salts on growth performance, immunity, and disease resistance of Pacific White Shrimp Litopenaeus vannamei. Sustainability 2021, 13, 7791. [Google Scholar] [CrossRef]
- Mavraganis, T.; Constantina, C.; Kolygas, M.; Vidalis, K.; Nathanailides, C. Environmental issues of Aquaculture development. Egypt. J. Aquat. Biol. Fish. 2020, 24, 441–450. [Google Scholar] [CrossRef]
- Okon, E.M.; Okocha, R.C.; Taiwo, A.B.; Michael, F.B.; Bolanle, A.M. Dynamics of co-infection in fish: A review of pathogen-host interaction and clinical outcome. Fish Shellfish. Immunol. Rep. 2023, 4, 100096. [Google Scholar] [CrossRef] [PubMed]
- Done, H.Y.; Venkatesan, A.K.; Halden, R.U. Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? AAPS J. 2015, 17, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environ. Sci. Pollut. Res. 2022, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Wang, L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 738–786. [Google Scholar] [CrossRef]
- Pierozan, M.B.; Oliveira Filho, J.G.d.; Cappato, L.P.; Costa, A.C.; Egea, M.B. Essential Oils Against Spoilage in Fish and Seafood: Impact on Product Quality and Future Challenges. Foods 2024, 13, 3903. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Li, H.; Hu, T.; Jatt, A.-N.; Liu, Y. Antibacterial mechanism of lactobionic acid against Aeromonas salmonicida by transcriptomic analysis and its application in refrigerated grass carp. Food Control 2024, 158, 110255. [Google Scholar] [CrossRef]
- Monirul, I.; Yang, F.; Niaz, M.; Qixing, J.; Wenshui, X. Effectiveness of combined acetic acid and ascorbic acid spray on fresh silver carp (Hypophthalmichthys molitrix) fish to increase shelf-life at refrigerated temperature. Curr. Res. Nutr. Food Sci. J. 2019, 7, 415–426. [Google Scholar] [CrossRef]
- Choi, J.; Singh, A.K.; Chen, X.; Lv, J.; Kim, W.K. Application of organic acids and essential oils as alternatives to antibiotic growth promoters in broiler chickens. Animals 2022, 12, 2178. [Google Scholar] [CrossRef]
- Al-Hisnawi, A.; Rodiles, A.; Rawling, M.D.; Castex, M.; Waines, P.; Gioacchini, G.; Carnevali, O.; Merrifield, D.L. Dietary probiotic Pediococcus acidilactici MA18/5M modulates the intestinal microbiota and stimulates intestinal immunity in rainbow trout (Oncorhynchus mykiss). J. World Aquac. Soc. 2019, 50, 1133–1151. [Google Scholar] [CrossRef]
- Van Doan, H.; Hoseinifar, S.H.; Naraballobh, W.; Paolucci, M.; Wongmaneeprateep, S.; Charoenwattanasak, S.; Dawood, M.A.; Abdel-Tawwab, M. Dietary inclusion of watermelon rind powder and Lactobacillus plantarum: Effects on Nile tilapia’s growth, skin mucus and serum immunities, and disease resistance. Fish Shellfish Immunol. 2021, 116, 107–114. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Moghaddam, A.A.; Ghelichpour, M.; Pagheh, E.; Haghpanah, A.; Gharavi, B.; Mansouri, B.; Arghideh, M. Dietary glycine supplementation modulates antioxidant and immune responses of beluga, Huso huso, juveniles. Aquac. Rep. 2022, 23, 101026. [Google Scholar] [CrossRef]
- Fabay, R.V.; Serrano, A.E., Jr.; Alejos, M.S.; Fabay, J.V. Effects of dietary acidification and acid source on fish growth and feed efficiency. World Acad. Sci. J. 2022, 4, 21. [Google Scholar] [CrossRef]
- das Neves, S.C.V.; da Silva, S.M.B.C.; Costa, G.K.A.; Correia, E.S.; Santos, A.L.; da Silva, L.C.R.; Bicudo, Á.J.A. Dietary Supplementation with Fumaric Acid Improves Growth Performance in Nile Tilapia Juveniles. Animals 2022, 12, 8. [Google Scholar] [CrossRef]
- Sudhakaran, G.; Guru, A.; Haridevamuthu, B.; Murugan, R.; Arshad, A.; Arockiaraj, J. Molecular properties of postbiotics and their role in controlling aquaculture diseases. Aquac. Res. 2022, 53, 3257–3273. [Google Scholar] [CrossRef]
- Om, H.; Chand, U.; Kushawaha, P.K. Postbiotics: An alternative and innovative intervention for the therapy of inflammatory bowel disease. Microbiol. Res. 2024, 279, 127550. [Google Scholar]
- Rasidi, R.; Pamungkas, W.; Handajani, H.; Puspaningsih, D.; Taqwa, F.H.; Hartami, P. Sustaining Aquaculture: Organic Acid as Feed Additives in Aquaculture. In Sustainable Feed Ingredients and Additives for Aquaculture Farming: Perspectives from Africa and Asia; Springer: Berlin/Heidelberg, Germany, 2024; pp. 481–500. [Google Scholar]
- Tugnoli, B.; Giovagnoni, G.; Piva, A.; Grilli, E. From acidifiers to intestinal health enhancers: How organic acids can improve growth efficiency of pigs. Animals 2020, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- da Silva, V.G.; Favero, L.M.; Mainardi, R.M.; Ferrari, N.A.; Chideroli, R.T.; Di Santis, G.W.; de Souza, F.P.; da Costa, A.R.; Gonçalves, D.D.; Nuez-Ortin, W.G. Effect of an organic acid blend in Nile tilapia growth performance, immunity, gut microbiota, and resistance to challenge against francisellosis. Res. Vet. Sci. 2023, 159, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Tawwab, M.; Khattaby, A.-R.A.; Monier, M.N. Dietary acidifiers blend enhanced the production of Nile tilapia (Oreochromis niloticus), striped mullet (Mugil cephalus), and African catfish (Clarias gariepinus) polycultured in earthen ponds. Aquac. Int. 2019, 27, 369–379. [Google Scholar] [CrossRef]
- Katya, K.; Park, G.; Bharadwaj, A.S.; Browdy, C.L.; Vazquez-Anon, M.; Bai, S.C. Organic acids blend as dietary antibiotic replacer in marine fish olive flounder, Paralichthys olivaceus. Aquac. Res. 2018, 49, 2861–2868. [Google Scholar] [CrossRef]
- Pierozan, M.B.; Alves, J.d.S.; Horn, L.D.; Santos, P.A.d.; Silva, M.A.P.d.; Egea, M.B.; Minafra, C.; Cappato, L.P.; Costa, A.C. Inactivation of Salmonella Typhimurium, Escherichia coli, and Staphylococcus aureus in Tilapia Fillets (Oreochromis Niloticus) with Lactic and Peracetic Acid through Fogging and Immersion. Foods 2024, 13, 1520. [Google Scholar] [CrossRef]
- Ntzimani, A.; Semenoglou, I.; Dermesonlouoglou, E.; Tsironi, T.; Taoukis, P. Surface Decontamination and Shelf-Life Extension of Gilthead Sea Bream by Alternative Washing Treatments. Sustainability 2022, 14, 5887. [Google Scholar] [CrossRef]
- Zhang, H.; Chao, B.; Gao, X.; Cao, X.; Li, X. Effect of starch-derived organic acids on the removal of polycyclic aromatic hydrocarbons in an aquaculture-sediment microbial fuel cell. J. Environ. Manag. 2022, 311, 114783. [Google Scholar] [CrossRef] [PubMed]
- de Camargo, L.S.; Barbosa, R.R. Bibliometria, cienciometria e um possível caminho para a construção de indicadores e mapas da produção científica. PontodeAcesso 2018, 12, 109–125. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: Uma ferramenta R paraanálise de mapeamento científico. J. Informática 2017, 11, 959–975. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. Available online: https://www.R-project.org/ (accessed on 6 May 2025).
- FAO. Food and Agriculture Organization. The State of World Fisheries and Aquaculture 2022. In Towards Blue Transformation; FAO: Rome, Italy, 2022; Volume 3, 266p. [Google Scholar]
- EUR-Lex. Commission Implementing Regulation (EU) 2022/415 of 11 March 2022 concerning the authorisation of malic acid, citric acid produced by Aspergillus niger DSM 25794 or CGMCC 4513/CGMCC 5751 or CICC 40347/CGMCC 5343, sorbic acid and potassium sorbate, acetic acid, sodium diacetate and calcium acetate, propionic acid, sodium propionate, calcium propionate and ammonium propionate, formic acid, sodium formate, calcium formate and ammonium formate, and lactic acid produced by Bacillus coagulans (LMG S-26145 or DSM 23965), or Bacillus smithii (LMG S-27890) or Bacillus subtilis (LMG S-27889) and calcium lactate as feed additives for all animal species. OJ L 2022, 85, 6–27. Available online: https://data.europa.eu/eli/reg_impl/2022/415/oj (accessed on 19 June 2025).
- Gouvêa, A.L.; de Ávila, C.H.; Ladislau, D.O.; de Lima, G.M.; Ribeiro, G.H.M.; Vaz, J.A.; Tomaz, L.B.P.; Soares, M.D.; de Moura Netto, N.; Costa, P.R. Índice H dos pesquisadores brasileiros: Um olhar comparativo entre as bases de dados WoS, Scopus e Google Scholar. Res. Soc. Dev. 2022, 11, e13711527832. [Google Scholar] [CrossRef]
- Romano, N.; Koh, C.-B.; Ng, W.-K. Dietary microencapsulated organic acids blend enhances growth, phosphorus utilization, immune response, hepatopancreatic integrity and resistance against Vibrio harveyi in white shrimp, Litopenaeus vannamei. Aquaculture 2015, 435, 228–236. [Google Scholar] [CrossRef]
- Ng, W.-K.; Koh, C.-B.; Teoh, C.-Y.; Romano, N. Farm-raised tiger shrimp, Penaeus monodon, fed commercial feeds with added organic acids showed enhanced nutrient utilization, immune response and resistance to Vibrio harveyi challenge. Aquaculture 2015, 449, 69–77. [Google Scholar] [CrossRef]
- Davies, S.-J.; Guroy, D.; Hassaan, M.S.; El-Ajnaf, S.; El-Haroun, E. Evaluation of co-fermented apple-pomace, molasses and formic acid generated sardine based fish silages as fishmeal substitutes in diets for juvenile European sea bass (Dicentrachus labrax) production. Aquaculture 2020, 521, 735087. [Google Scholar] [CrossRef]
- Liu, D.; Pedersen, L.-F.; Straus, D.L.; Kloas, W.; Meinelt, T. Alternative prophylaxis/disinfection in aquaculture-adaptable stress induced by peracetic acid at low concentration and its application strategy in RAS. Aquaculture 2017, 474, 82–85. [Google Scholar] [CrossRef]
- Libanori, M.; Santos, G.; Pereira, S.; Lopes, G.; Owatari, M.; Soligo, T.; Yamashita, E.; Pereira, U.; Martins, M.; Mouriño, J. Dietary supplementation with benzoic organic acid improves the growth performance and survival of Nile tilapia (Oreochromis niloticus) after challenge with Streptococcus agalactiae (Group B). Aquaculture 2021, 545, 737204. [Google Scholar] [CrossRef]
- dos Santos, R.R.; Xavier, R.G.C.; de Oliveira, T.F.; Leite, R.C.; Figueiredo, H.C.P.; Leal, C.A.G. Occurrence, genetic diversity, and control of Salmonella enterica in native Brazilian farmed fish. Aquaculture 2019, 501, 304–312. [Google Scholar] [CrossRef]
- Ohtani, M.; Villumsen, K.R.; Forberg, T.; Lauritsen, A.H.; Tinsley, J.; Bojesen, A.M. Assessing effects of dietary supplements on resistance against Yersinia ruckeri infection in rainbow trout (Oncorhynchus mykiss) using different infection models. Aquaculture 2020, 519, 734744. [Google Scholar] [CrossRef]
- Suehs, B.A.; Yamamoto, F.Y.; Asiri, F.; Gatlin III, D.M. Poly-β-hydroxybutyrate has limited effects on growth and immune responses of juvenile hybrid striped bass Morone chrysops × M. saxatilis, and red drum Sciaenops ocellatus based on in vivo and in vitro approaches. Aquaculture 2023, 570, 739429. [Google Scholar] [CrossRef]
- Naya-Català, F.; Torrecillas, S.; Piazzon, M.C.; Sarih, S.; Calduch-Giner, J.; Fontanillas, R.; Hostins, B.; Sitja-Bobadilla, A.; Acosta, F.; Pérez-Sánchez, J. Can the genetic background modulate the effects of feed additives? Answers from gut microbiome and transcriptome interactions in farmed gilthead sea bream (Sparus aurata) fed with a mix of phytogenics, organic acids or probiotics. Aquaculture 2024, 586, 740770. [Google Scholar] [CrossRef]
- Koh, C.B.; Romano, N.; Zahrah, A.S.; Ng, W.K. Effects of a dietary organic acids blend and oxytetracycline on the growth, nutrient utilization and total cultivable gut microbiota of the red hybrid tilapia, O reochromis sp., and resistance to S treptococcus agalactiae. Aquac. Res. 2016, 47, 357–369. [Google Scholar] [CrossRef]
- Marchand, P.A.; Phan, T.M.; Straus, D.L.; Farmer, B.D.; Stüber, A.; Meinelt, T. Reduction of in vitro growth in Flavobacterium Columnare and Saprolegnia parasitica by products Containing Peracetic acid. Aquac. Res. 2012, 43, 1861–1866. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, S.; Liu, Y.; Yang, P.; Ai, Q.; Zhang, W.; Xu, W.; Zhang, Y.; Zhang, Y.; Mai, K. Dietary citric acid supplementation alleviates soybean meal-induced intestinal oxidative damage and micro-ecological imbalance in juvenile turbot, Scophthalmus maximus L. Aquac. Res. 2018, 49, 3804–3816. [Google Scholar]
- Yilmaz, S.; Sova, M.; Ergün, S. Antimicrobial activity of trans-cinnamic acid and commonly used antibiotics against important fish pathogens and nonpathogenic isolates. J. Appl. Microbiol. 2018, 125, 1714–1727. [Google Scholar] [CrossRef]
- Marques, F. Os limites do índice-h. Bol. Técnico Do PPEC 2013, 2, 35–39. [Google Scholar]
- Engqvist, L.; Frommen, J.G. The h-index and self-citations. Proc. Natl. Acad. Sci. USA 2008, 99, 11270–11274. [Google Scholar] [CrossRef]
- Kelly, C.D.; Jennions, M.D. The h index and career assessment by numbers. Trends Ecol. Evol. 2006, 21, 167–170. [Google Scholar] [CrossRef]
- Hitchcock, S. The Effect of Open Access and Downloads (‘hits’) on Citation Impact: A Bibliography of Studies; University of Southampton: Southampton, UK, 2004. [Google Scholar]
- Alderman, D.; Hastings, T. Antibiotic use in aquaculture: Development of antibiotic resistance–potential for consumer health risks. Int. J. Food Sci. Technol. 1998, 33, 139–155. [Google Scholar] [CrossRef]
- Castanon, J. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef] [PubMed]
- Strong, M.F. ECO’92: Critical challenges and global solutions. J. Int. Aff. 1991, 44, 287–300. [Google Scholar]
- Carvalho Filho, J. Os Eventos Que Esquentaram a Aqüicultura Brasileira. Available online: https://panoramadaaquicultura.com.br/os-eventos-que-esquentaram-a-aquicultura-brasileira/ (accessed on 1 April 2025).
- Hosch, G.; Ferraro, G.; Failler, P. The 1995 FAO Code of Conduct for Responsible Fisheries: Adopting, implementing or scoring results? Mar. Policy 2011, 35, 189–200. [Google Scholar] [CrossRef]
- Ng, W.-K.; Koh, C.-B.; Sudesh, K.; Siti-Zahrah, A. Effects of dietary organic acids on growth, nutrient digestibility and gut microflora of red hybrid tilapia, Oreochromis sp., and subsequent survival during a challenge test with Streptococcus agalactiae. Aquac. Res. 2009, 40, 1490–1500. [Google Scholar] [CrossRef]
- Reda, R.M.; Mahmoud, R.; Selim, K.M.; El-Araby, I.E. Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 2016, 50, 255–262. [Google Scholar] [CrossRef]
- López-Caballero, M.E.; Martínez-Alvarez, O.; Gómez-Guillén, M.d.C.; Montero, P. Quality of thawed deepwater pink shrimp (Parapenaeus longirostris) treated with melanosis-inhibiting formulations during chilled storage. Int. J. Food Sci. Technol. 2007, 42, 1029–1038. [Google Scholar] [CrossRef]
- Rimoldi, S.; Gliozheni, E.; Ascione, C.; Gini, E.; Terova, G. Effect of a specific composition of short-and medium-chain fatty acid 1-Monoglycerides on growth performances and gut microbiota of gilthead sea bream (Sparus aurata). PeerJ 2018, 6, e5355. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Chen, S.; Liu, G.; Yang, Q. Quality enhancement in the Japanese sea bass (Lateolabrax japonicas) fillets stored at 4 C by chitosan coating incorporated with citric acid or licorice extract. Food Chem. 2014, 162, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, B.C.; Heiberg, R.; Eie, T.; Møretrø, T.; Maugesten, T.; Carlehøg, M.; Langsrud, S. A novel packaging method with a dissolving CO2 headspace combined with organic acids prolongs the shelf life of fresh salmon. Int. J. Food Microbiol. 2009, 133, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Khoshhava, M.B.; Abedian Kenari, A.; Mirzakhani, M.K. The effects of concurrent of citric acid and soybean-based diets on growth performance, body composition, haemobiochemical indices, digestibility and fatty acid profile in juvenile rainbow trout, Oncorhynchus mykiss. Aquac. Nutr. 2021, 27, 1671–1682. [Google Scholar] [CrossRef]
- Hussain, M.; Hussain, S.M.; Ahmad, N.; Jalees, M.M.; Ismat, N.; Riaz, D.; Arsalan, M.Z.-u.-H.; Faisal, M. Citric Acid as a Feed Supplement: Effect on Labeo rohita Fingerlings to Promote Nutrient Digestibility, Growth and Hematological Indices. Pak. J. Zool. 2024, 1–9. [Google Scholar] [CrossRef]
- Yildiz, H.Y.; Yilmaz, B.H. Dietary citric acid decreased the theront number of Cryptocaryon irritans (Ciliata) in seawater-adapted tilapia (Oreochromis niloticus). J. Fish Dis. 2024, 47, e13881. [Google Scholar] [CrossRef]
- Dai, D.; Qiu, K.; Zhang, H.-j.; Wu, S.-g.; Han, Y.-m.; Wu, Y.-y.; Qi, G.-h.; Wang, J. Organic acids as alternatives for antibiotic growth promoters alter the intestinal structure and microbiota and improve the growth performance in broilers. Front. Microbiol. 2021, 11, 618144. [Google Scholar] [CrossRef]
- Yue, G.H.; Tay, Y.X.; Wong, J.; Shen, Y.; Xia, J. Aquaculture species diversification in China. Aquac. Fish. 2024, 9, 206–217. [Google Scholar] [CrossRef]
- Vidal, M.d.F. Piscicultura: V. 7 n. 252 (2022). Cad. Setorial ETENE 2024, 7. Available online: https://www.bnb.gov.br/revista/cse/article/view/2761 (accessed on 6 May 2025).
- Dusdal, J.; Powell, J.J. Benefits, motivations, and challenges of international collaborative research: A sociology of science case study. Sci. Public Policy 2021, 48, 235–245. [Google Scholar] [CrossRef]
- Lau, C.C.; Mohd Nor, S.A.; Mok, W.J.; Yeong, Y.S.; Danish-Daniel, M. Advancing aquaculture in Malaysia: Molecular tools and omics technologies for sustainability and innovation. Crit. Insights Aquac. 2025, 1, 2471649. [Google Scholar] [CrossRef]
- Zheng, Y.; Guo, X. Publishing in and about English: Challenges and opportunities of Chinese multilingual scholars’ language practices in academic publishing. Lang. Policy 2019, 18, 107–130. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, Q.; Ma, G.; Wang, X.; Sui, L. Effect of dietary PHB dose and feeding duration on enzyme activities and gut microbial diversity in juvenile Chinese mitten crab (Eriocheir sinensis). J. Fish. Sci. China 2016, 23, 138–145. [Google Scholar]
- Martello, L.S. Zootecnia de Precisão (ZP): Conceitos, aplicações e desafios. Anais 2017. Available online: https://proceedings.science/zootec/trabalhos/zootecnia-de-precisao-zp-conceitos-aplicacoes-e-desafios (accessed on 6 May 2025).
- Adesogan, A.T.; Havelaar, A.H.; McKune, S.L.; Eilittä, M.; Dahl, G.E. Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters. Glob. Food Secur. 2020, 25, 100325. [Google Scholar] [CrossRef]
- Akiyama, K.; Hirazawa, N.; Hatanaka, A. Coadministration of citric acid allows oxytetracycline dose reduction in yellowtail Seriola quinqueradiata infected with Vibrio anguillarum. Dis. Aquat. Org. 2020, 140, 25–29. [Google Scholar] [CrossRef]
- Özyurt, G.; Özyurt, C.E.; Aksun, E.T.; Özkütük, A.S. Nutritive value and safety aspects of acidified mantis shrimp during ambient storage. Ege J. Fish. Aquat. Sci. (EgeJFAS)/Su Ürünleri Derg. 2019, 36. Available online: https://www.researchgate.net/publication/335872213_Nutritive_value_and_safety_aspects_of_acidified_mantis_shrimp_during_ambient_storage (accessed on 6 May 2025).
- Chen, L.; Li, X.; Lou, X.; Shu, W.; Hai, Y.; Wen, X.; Yang, H. NMR-based metabolomics reveals the antibacterial effect of electrolysed water combined with citric acid on Aeromonas spp. in barramundi (Lates calcarifer) fillets. Food Res. Int. 2022, 162, 112046. [Google Scholar] [CrossRef]
- Jamis, J.O.; Tumbokon, B.L.M.; Caigoy, J.C.C.; Bunda, M.G.B.; Serrano, A.J. Effects of vinegars and sodium acetate on the growth performance of Pacific white shrimp, Penaeus vannamei. Isr. J. Aquac. Bamidgeh 2018, 70. Available online: https://www.researchgate.net/publication/344372009_Effects_of_Vinegars_and_Sodium_Acetate_on_the_Growth_Performance_of_Pacific_White_Shrimp_Penaeus_vannamei (accessed on 6 May 2025). [CrossRef]
- Zare, R.; Abedian Kenari, A.; Yazdani Sadati, M. Influence of dietary acetic acid, protexin (probiotic), and their combination on growth performance, intestinal microbiota, digestive enzymes, immunological parameters, and fatty acids composition in Siberian sturgeon (Acipenser baerii, Brandt, 1869). Aquac. Int. 2021, 29, 891–910. [Google Scholar] [CrossRef]
- Heir, E.; Liland, K.H.; Carlehög, M.; Holck, A.L. Reduction and inhibition of Listeria monocytogenes in cold-smoked salmon by Verdad N6, a buffered vinegar fermentate, and UV-C treatments. Int. J. Food Microbiol. 2019, 291, 48–58. [Google Scholar] [CrossRef]
- Mirghaed, A.T.; Mirzargar, S.S.; Ghelichpour, M.; Moghaddam, A.A.; El-Haroun, E.; Hoseini, S.M. Effects of dietary lactic acid supplementation on growth performance, hemato-immunological parameters, and calcium and phosphorus status of common carp, Cyprinus carpio. Aquac. Rep. 2023, 29, 101499. [Google Scholar] [CrossRef]
- Matani Bour, H.; Esmaeili, N.; Abedian Kenari, A. Growth performance, muscle and liver composition, blood traits, digestibility and gut bacteria of beluga (Huso huso) juvenile fed different levels of soybean meal and lactic acid. Aquac. Nutr. 2018, 24, 1361–1368. [Google Scholar] [CrossRef]
- Yehia, H.M.; Alkhuriji, A.F.; Al-Masoud, A.H.; Tsiraki, M.; Mosilhey, S.H. The quality of handling and extended the shelf life and preservation of lagoon mullets fish (Mugil cephalus). Food Sci. Technol. 2022, 42, e53722. [Google Scholar] [CrossRef]
- Kim, C.; Hearnsberger, J.; Eun, J. Gram-negative bacteria in refrigerated catfish fillets treated with lactic culture and lactic acid. J. Food Prot. 1995, 58, 639–643. [Google Scholar] [CrossRef]
- Gogus, U.; Bozoglu, F.; Yurdugul, S. Comparative effects of lactic acid, nisin, coating combined and alone applications on some postmortem quality criteria of refrigerated Sardina pilchardus. J. Food Qual. 2006, 29, 658–671. [Google Scholar] [CrossRef]
- Arcales, J.A.A. Quality Changes of Chilled Green Mussel (Perna Viridis) Pre-Treated with Organic Acids and Sodium Tripolyphosphate. Curr. Res. Nutr. Food Sci. J. 2019, 7, 894–904. [Google Scholar] [CrossRef]
- Smyth, C.; Brunton, N.P.; Fogarty, C.; Bolton, D.J. The effect of organic acid, trisodium phosphate and essential oil component immersion treatments on the microbiology of Cod (Gadus morhua) during chilled storage. Foods 2018, 7, 200. [Google Scholar] [CrossRef]
- García-Soto, B.; Aubourg, S.P.; Calo-Mata, P.; Barros-Velázquez, J. Extension of the shelf life of chilled hake (Merluccius merluccius) by a novel icing medium containing natural organic acids. Food Control 2013, 34, 356–363. [Google Scholar] [CrossRef]
- Özdemir, F.; Arslan, S. Susceptibility of Staphylococcus aureus Isolated from Different Raw Meat Products to Disinfectants. Eur. J. Biol. 2024, 83, 10–18. [Google Scholar] [CrossRef]
- Sanjuás-Rey, M.; Gallardo, J.M.; Barros-Velázquez, J.; Aubourg, S.P. Microbial activity inhibition in chilled mackerel (Scomber scombrus) by employment of an organic acid-icing system. J. Food Sci. 2012, 77, M264–M269. [Google Scholar] [CrossRef]
- Rey, M.S.; García-Soto, B.; Fuertes-Gamundi, J.R.; Aubourg, S.; Barros-Velázquez, J. Effect of a natural organic acid-icing system on the microbiological quality of commercially relevant chilled fish species. LWT-Food Sci. Technol. 2012, 46, 217–223. [Google Scholar] [CrossRef]
- Pedrós-Garrido, S.; Clemente, I.; Calanche, J.; Condón-Abanto, S.; Beltrán, J.; Lyng, J.; Brunton, N.; Bolton, D.; Whyte, P. Antimicrobial activity of natural compounds against listeria spp. and their effects on sensory attributes in salmon (Salmo salar) and cod (Gadus morhua). Food Control 2020, 107, 106768. [Google Scholar] [CrossRef]
- López-Caballero, M.E.; Martínez-Álvarez, Ó.; Gómez-Guillén, M.C.; Montero, P. Quality of Norway lobster (Nephrops norwegicus) treated with a 4-hexylresorcinol-based formulation. Eur. Food Res. Technol. 2006, 222, 425–431. [Google Scholar] [CrossRef]
- Ferronato, G.; Prandini, A. Dietary supplementation of inorganic, organic, and fatty acids in pig: A review. Animals 2020, 10, 1740. [Google Scholar] [CrossRef] [PubMed]
- Nowak, P.; Zaworska-Zakrzewska, A.; Frankiewicz, A.; Kasprowicz-Potocka, M. The effects and mechanisms of acids on the health of piglets and weaners—A review. Ann. Anim. Sci. 2021, 21, 433–455. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.F.; El Basuini, M.F.; Sadek, M.F.; Elokaby, M.A.; El-Dakar, A.Y.; Metwally, M.M.; Shehab, A.; Mabrok, M.; Abdel Rahman, A.N. Unchanged water stress induces growth retardation, histopathological alterations, and antioxidant-immune disruptions in Oreochromis niloticus: The promising role of dietary organic acids. Aquac. Int. 2024, 32, 6031–6052. [Google Scholar] [CrossRef]
- Tran-Ngoc, K.T.; Huynh, S.T.; Sendão, J.; Nguyen, T.H.; Roem, A.J.; Verreth, J.A.; Schrama, J.W. Environmental conditions alter the effect of organic acid salts on digestibility and intestinal morphology in Nile tilapia (Oreochromis niloticus). Aquac. Nutr. 2019, 25, 134–144. [Google Scholar] [CrossRef]
- Neves, N.O.D.S.; De Dea Lindner, J.; Stockhausen, L.; Delziovo, F.R.; Bender, M.; Serzedello, L.; Cipriani, L.A.; Ha, N.; Skoronski, E.; Gisbert, E. Fermentation of plant-based feeds with Lactobacillus acidophilus improves the survival and Intestinal health of juvenile Nile tilapia (Oreochromis niloticus) reared in a Biofloc System. Animals 2024, 14, 332. [Google Scholar] [CrossRef]
- De Souza e Silva, W.; Ferreira, A.L.; do Carmo Neves, L.; Ferreira, N.S.; Palheta, G.D.A.; Takata, R.; Luz, R.K. Effects of stocking density on survival, growth and stress resistance of juvenile tambaqui (Colossoma macropomum) reared in a recirculating aquaculture system (RAS). Aquac. Int. 2021, 29, 609–621. [Google Scholar] [CrossRef]
- Bhujel, R.C.; Perera, A.D.; Tacconi, A.; Gonçalves, R.A. Effect of Biotronic® Top Liquid Supplementation on the Growth Performance and Disease Resistance of Nile Tilapia (Oreochromis niloticus L.). Aquac. Stud. 2022, 23. Available online: https://www.researchgate.net/publication/360911557_Effect_of_Biotronic_R_Top_Liquid_Supplementation_on_the_Growth_Performance_and_Disease_Resistance_of_Nile_Tilapia_Oreochromis_niloticus_L (accessed on 6 May 2025). [CrossRef]
- Menanteau-Ledouble, S.; Krauss, I.; Goncalves, R.A.; Weber, B.; Santos, G.A.; El-Matbouli, M. Antimicrobial effect of the Biotronic® Top3 supplement and efficacy in protecting rainbow trout (Oncorhynchus mykiss) from infection by Aeromonas salmonicida subsp. salmonicida. Res. Vet. Sci. 2017, 114, 95–100. [Google Scholar] [CrossRef]
- Brum, A.; Magnotti, C.; Tsuzuki, M.Y.; Sousa, E.M.d.O.; Mouriño, J.L.P.; Martins, M.L.; Lopes, R.G.; Derner, R.B.; Owatari, M.S. Pivotal Roles of Fish Nutrition and Feeding: Recent Advances and Future Outlook for Brazilian Fish Farming. Fishes 2025, 10, 47. [Google Scholar] [CrossRef]
- Yavilioğlu, A.T.; YILMAZ, S. Antimicrobial Effects of Organic Acids Against Fish Pathogen Yersinia Ruckeri. Aquat. Anim. Rep. (AQAR) 2024, 2, 31–35. [Google Scholar]
- Kumar, P.; Jain, K.; Sardar, P.; Sahu, N.; Gupta, S. Dietary supplementation of acidifier: Effect on growth performance and haemato-biochemical parameters in the diet of Cirrhinus mrigala juvenile. Aquac. Int. 2017, 25, 2101–2116. [Google Scholar] [CrossRef]
- Huyben, D.; Chiasson, M.; Lumsden, J.S.; Pham, P.H.; Chowdhury, M.A.K. Dietary microencapsulated blend of organic acids and plant essential oils affects intestinal morphology and microbiome of rainbow trout (Oncorhynchus mykiss). Microorganisms 2021, 9, 2063. [Google Scholar] [CrossRef]
- Mohtashemipour, H.; Mohammadian, T.; Mesbah, M.; Rezaie, A.; Tabandeh, M.; Mozanzadeh, M.T. Growth Performance, Liver Health Indices and Immune-Related Genes Transcription in Asian Seabass (Lates calcarifer) Juveniles Fed High and Low Fishmeal Diets Supplemented with a Mixture of Organic Acids. Ann. Anim. Sci. 2024, 24, 867–880. [Google Scholar] [CrossRef]
- Pelusio, N.F.; Rossi, B.; Parma, L.; Volpe, E.; Ciulli, S.; Piva, A.; D’Amico, F.; Scicchitano, D.; Candela, M.; Gatta, P.P. Effects of increasing dietary level of organic acids and nature-identical compounds on growth, intestinal cytokine gene expression and gut microbiota of rainbow trout (Oncorhynchus mykiss) reared at normal and high temperature. Fish Shellfish Immunol. 2020, 107, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Busti, S.; Rossi, B.; Volpe, E.; Ciulli, S.; Piva, A.; D’Amico, F.; Soverini, M.; Candela, M.; Gatta, P.P.; Bonaldo, A. Effects of dietary organic acids and nature identical compounds on growth, immune parameters and gut microbiota of European sea bass. Sci. Rep. 2020, 10, 21321. [Google Scholar] [CrossRef] [PubMed]
- Omosowone, O.O.; Adebayo, A.N. Efficacy of Terminalia catappa leaf as an alternative to synthetic antibiotics in the diet of Oreochromis niloticus challenged with Salmonella typhi. Asian J Fish Aquat Res 2022, 16, 34–42. [Google Scholar] [CrossRef]
- Addam, K.G.S.; Pereira, S.A.; Jesus, G.F.A.; Cardoso, L.; Syracuse, N.; Lopes, G.R.; Lehmann, N.B.; da Silva, B.C.; de Sá, L.S.; Chaves, F.C.M. Dietary organic acids blend alone or in combination with an essential oil on the survival, growth, gut/liver structure and de hemato-immunological in Nile tilapia Oreochromis niloticus. Aquac. Res. 2019, 50, 2960–2971. [Google Scholar] [CrossRef]
- Raslan, W.S.; Shehab, A.; Matter, A.F.; Youssuf, H.A.; Farid, O.A.; Sabek, A.; Magdy, Y.; Kadah, A. Impact of essential oil and probiotics supplementation on growth performance, serum biomarkers, antioxidants status, bioenergetics and histomorphometry of intestine of Nile tilapia fingerlings challenged with Aeromonas veronii. BMC Vet. Res. 2025, 21, 6. [Google Scholar] [CrossRef]
- Moosavi-Nasab, M.; Mirzapour-Kouhdasht, A.; Oliyaei, N. Application of essential oils for shelf-life extension of seafood products. In Essential Oils-Oils of Nature; IntechOpen: London, UK, 2019. [Google Scholar]
- Rathod, N.B.; Nirmal, N.P.; Pagarkar, A.; Özogul, F.; Rocha, J.M. Antimicrobial impacts of microbial metabolites on the preservation of fish and fishery products: A review with current knowledge. Microorganisms 2022, 10, 773. [Google Scholar] [CrossRef]
- Morrissey, M.T.; Sylvia, G. Intrinsic and extrinsic factors affecting efficient utilization of marine resources. In Developments in Food Science; Elsevier: Amsterdam, The Netherlands, 2004; Volume 42, pp. 37–43. [Google Scholar]
- Skåra, T.; Rosnes, J.; Leadley, C. Microbial decontamination of seafood. In Microbial Decontamination in the Food Industry; Elsevier: Amsterdam, The Netherlands, 2012; pp. 96–124. [Google Scholar]
- Nkosi, S.R. Molecular Identification and Characterization of Selected Food-Borne Pathogens in Imported Dried Fish Sold in Informal Markets Around Gauteng Province in South Africa; North-West University (South Africa): Potchefstroom, South Africa, 2022. [Google Scholar]
- Vázquez-Sánchez, D.; Galvão, J.A.; Oetterer, M. Contamination sources, biofilm-forming ability and biocide resistance of Staphylococcus aureus in tilapia-processing facilities. Food Sci. Technol. Int. 2018, 24, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.A.; Zhang, G.; Decker, E.A. Biological implications of lipid oxidation products. J. Am. Oil Chem. Soc. 2017, 94, 339–351. [Google Scholar] [CrossRef]
- Georgantelis, D.; Ambrosiadis, I.; Katikou, P.; Blekas, G.; Georgakis, S.A. Effect of rosemary extract, chitosan and α-tocopherol on microbiological parameters and lipid oxidation of fresh pork sausages stored at 4 C. Meat Sci. 2007, 76, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Šojić, B.; Ikonić, P.; Pavlić, B.; Zeković, Z.; Tomović, V.; Kocić-Tanackov, S.; Džinić, N.; Škaljac, S.; Ivić, M.; Jokanović, M. The effect of essential oil from sage (Salvia officinalis L.) herbal dust (food industry by-product) on the microbiological stability of fresh pork sausages. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2024; p. 012055. [Google Scholar]
- Hai, Y.; Zhou, D.; Lam, Y.L.N.; Li, X.; Chen, G.; Bi, J.; Lou, X.; Chen, L.; Yang, H. Nanoemulsified clove essential oils-based edible coating controls Pseudomonas spp.-causing spoilage of tilapia (Oreochromis niloticus) fillets: Working mechanism and bacteria metabolic responses. Food Res. Int. 2022, 159, 111594. [Google Scholar] [CrossRef]
- McDermott, A.; Whyte, P.; Brunton, N.; Lyng, J.; Fagan, J.; Bolton, D. The effect of organic acid and sodium chloride dips on the shelf-life of refrigerated Irish brown crab (Cancer pagurus) meat. Lwt 2018, 98, 141–147. [Google Scholar] [CrossRef]
- Xu, H.; Yan, S.; Gerhard, E.; Xie, D.; Liu, X.; Zhang, B.; Shi, D.; Ameer, G.A.; Yang, J. Citric acid: A nexus between cellular mechanisms and biomaterial innovations. Adv. Mater. 2024, 36, 2402871. [Google Scholar] [CrossRef]
- Lund, M.; Ray, C. Control of Maillard reactions in foods: Strategies and chemical mechanisms. J. Agric. Food Chem. 2017, 65, 4537–4552. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials, E.; Aids, P.; Silano, V.; Barat Baviera, J.M.; Bolognesi, C.; Brüschweiler, B.J.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; et al. Evaluation of the safety and efficacy of the organic acids lactic and acetic acids to reduce microbiological surface contamination on pork carcasses and pork cuts. Efsa J. 2018, 16, e05482. [Google Scholar] [CrossRef]
- USDA (United States Department of Agriculture). Safe and Suitable Ingredients Used in the Production of Meat, Poultry and Egg Products—Revision 56. FSIS DIRECTIVE 7120.1—Safe and Suitable Ingredients used in the Production of Meat, Poultry, and Egg Products. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/2021-02/7120.1_table_2.pdf (accessed on 6 May 2025).
- Emon, D.D.; Islam, M.S.; Mazumder, M.A.R.; Aziz, M.G.; Rahman, M.S. Recent applications of microencapsulation techniques for delivery of functional ingredient in food products: A comprehensive review. Food Chem. Adv. 2025, 6, 100923. [Google Scholar] [CrossRef]
Main Information About the Data | Results |
---|---|
Timespan | 1995:2024 |
Sources (Journals, Books, etc.) | 44 |
Documents | 96 |
Annual Growth Rate % | 8.26 |
Document Average Age | 6.45 |
Average Citations Per Doc | 22.47 |
References | 2285 |
Document Contents | |
Keywords Plus (ID) | 737 |
Author’s Keywords (DE) | 317 |
Authors | |
Authors | 426 |
Authors of Single-Authored Docs | 1 |
Authors Collaboration | |
Single-Authored Docs | 1 |
Co-Authors Per Doc | 5.79 |
International Co-Authorships % | 14.58 |
Document Types | |
Article | 93 |
Article: Early Access | 1 |
Article: Proceedings Paper | 2 |
Element | H_Index | TC | NP | PY_Start |
---|---|---|---|---|
Aquaculture Research | 8 | 373 | 8 | 2009 |
Aquaculture | 7 | 291 | 14 | 2015 |
Journal of Food Protection | 5 | 90 | 5 | 1995 |
Aquaculture International | 4 | 57 | 4 | 2011 |
Aquaculture Reports | 3 | 15 | 3 | 2023 |
International Journal of Food Microbiology | 3 | 136 | 3 | 2009 |
Journal of Food Science | 3 | 53 | 3 | 2010 |
PeerJ | 3 | 146 | 3 | 2018 |
Animals | 2 | 16 | 3 | 2022 |
Aquaculture Nutrition | 2 | 74 | 3 | 2018 |
Element | H_Index | TC | NP | PY_Start |
---|---|---|---|---|
Koh C | 4 | 386 | 4 | 2009 |
Aubourg S | 3 | 81 | 3 | 2012 |
Martins M | 3 | 37 | 3 | 2019 |
Meinelt T | 3 | 67 | 3 | 2012 |
Ng W | 3 | 317 | 3 | 2009 |
Pereira S | 3 | 37 | 3 | 2019 |
Sahu N | 3 | 30 | 3 | 2006 |
Santos G | 3 | 34 | 3 | 2017 |
Yilmaz S | 3 | 130 | 3 | 2018 |
Abedian K A | 2 | 57 | 2 | 2018 |
No. Articles | No. Authors | Freq |
---|---|---|
1 | 309 | 0.72535211 |
2 | 105 | 0.24647887 |
3 | 11 | 0.0258216 |
4 | 1 | 0.00234742 |
Paper | DOI (Digital Object Identifier) | Reference |
---|---|---|
Ng W. K., 2009, Aquac Res | 10.1111/J.1365-2109.2009.02249.X | [64] |
Romano N., 2015, Aquaculture | 10.1016/J.Aquaculture.2014.09.037 | [42] |
Reda R. M., 2016, Fish Shellfish Immunol | 10.1016/J.Fsi.2016.01.040 | [65] |
Elvira Lopez-Caballero M., 2007, Int J Food Sci Technol | 10.1111/J.1365-2621.2006.01328.X | [66] |
Qiu X., 2014, Food Chem | 10.1016/J.Foodchem.2014.04.037 | [68] |
Rimoldi S., 2018, Peerj1 | 10.7717/Peerj.5355 | [67] |
Koh C. B., 2016, Aquac Res | 10.1111/Are.12492 | [51] |
Schirmer B. C., 2009, Int J Food Microbiol | 10.1016/J.Ijfoodmicro.2009.05.015 | [69] |
Yilmaz S., 2018, J Appl Microbiol | 10.1111/Jam.14097 | [54] |
Ng W. K., 2015, Aquaculture | 10.1016/J.Aquaculture.2015.02.006 | [43] |
Region | Frequency |
---|---|
China | 26 |
Iran | 25 |
USA | 21 |
Brazil | 20 |
Turkey | 20 |
Egypt | 18 |
Italy | 16 |
Spain | 12 |
Malaysia | 11 |
India | 10 |
Acid Types | Treatments | Species of Fish | Reference |
---|---|---|---|
Combination of OA | Addition to the diet | Tilapia (Oreochromis sp.) | [6,51] |
Citric | Addition to the diet | Yellow tail (Seriola quinqueradiata); Rodovalho (Scophthalmus maximus L.) | [53,82] |
Citric | Immersion | Shrimp mantis (Erugosquilla massavensis); Barramundi (Lates calcarifer); Robalo (Lateolabrax japonicas) | [68,83,84] |
Acetic | Addition to the diet | Pacific white shrimp (Penaeus vannamei); Siberian sturgeon (Acipenser baerii) | [85,86] |
Acetic | Storage | Smoked salmon (Salmo salar) | [87] |
Lactic | Addition to the diet | Common carp (Cyprinus carpio); Beluga sturgeon (Huso huso) | [88,89] |
Lactic | Immersion | Lagoon mullet (Mugil cephalus); Catfish (Pangasianodon) | [90,91] |
Lactic | Storage | Sardine (Sardina pilchardus); Lagoon mullet (Mugil cephalus) | [90,92] |
Lactic | Immersion of storage | Green mussel (Perna viridis); Codfish (Gadus morhua) | [93,94] |
Citric and lactic | Addition on ice | Cod (Merluccius merluccius) | [95] |
Acetic, citric, and lactic | Immersion | Fish meat | [96] |
Lactic, citric, and peracetic | Immersion | Golden (Sparus aurata) | [33] |
Citrus, ascorbic, and lactic | Addition on ice | Horse mackerel (Scomber scombrus); Cod (Merluccius merluccius) | [97,98] |
Ascorbic, citric, and lactic | In vitro | Salmon (Salmo salar); Codfish (Gadus morhua) | [99] |
Citrus, ascorbic, and acetic | Spraying | Norwegian lobster (Nephrops norwegicus) | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo Ferreira de Melo, G.; Carvalho Costa, A.; Barp Pierozan, M.; Santos Souza, A.; Lima, L.d.C.; de Vasconcelos Kretschmer, V.; Cappato, L.P.; Marques de Oliveira, E.; Neto, R.V.R.; Nuvunga, J.J.; et al. Organic Acids in Aquaculture: A Bibliometric Analysis. Foods 2025, 14, 2512. https://doi.org/10.3390/foods14142512
Araujo Ferreira de Melo G, Carvalho Costa A, Barp Pierozan M, Santos Souza A, Lima LdC, de Vasconcelos Kretschmer V, Cappato LP, Marques de Oliveira E, Neto RVR, Nuvunga JJ, et al. Organic Acids in Aquaculture: A Bibliometric Analysis. Foods. 2025; 14(14):2512. https://doi.org/10.3390/foods14142512
Chicago/Turabian StyleAraujo Ferreira de Melo, Gidelia, Adriano Carvalho Costa, Matheus Barp Pierozan, Alene Santos Souza, Lessandro do Carmo Lima, Vitória de Vasconcelos Kretschmer, Leandro Pereira Cappato, Elias Marques de Oliveira, Rafael Vilhena Reis Neto, Joel Jorge Nuvunga, and et al. 2025. "Organic Acids in Aquaculture: A Bibliometric Analysis" Foods 14, no. 14: 2512. https://doi.org/10.3390/foods14142512
APA StyleAraujo Ferreira de Melo, G., Carvalho Costa, A., Barp Pierozan, M., Santos Souza, A., Lima, L. d. C., de Vasconcelos Kretschmer, V., Cappato, L. P., Marques de Oliveira, E., Neto, R. V. R., Nuvunga, J. J., Nacife, J. M., & Egea, M. B. (2025). Organic Acids in Aquaculture: A Bibliometric Analysis. Foods, 14(14), 2512. https://doi.org/10.3390/foods14142512