Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (254)

Search Parameters:
Keywords = oral toxicity assays

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 6455 KiB  
Article
IBCar: Potent Orally Bioavailable Methyl N-[5-(3′-Iodobenzoyl)-1H-Benzimidazol-2-yl]Carbamate for Breast Cancer Therapy
by Janina Baranowska-Kortylewicz and Ying Yan
Cancers 2025, 17(15), 2526; https://doi.org/10.3390/cancers17152526 - 30 Jul 2025
Viewed by 294
Abstract
Objectives: To investigate the efficacy and underlying mechanisms of IBCar’s biological activity in breast cancer models, both in cell culture and in mice, and to compare its effects on cancer versus normal cells. Methods: The cytotoxicity of IBCar was evaluated using [...] Read more.
Objectives: To investigate the efficacy and underlying mechanisms of IBCar’s biological activity in breast cancer models, both in cell culture and in mice, and to compare its effects on cancer versus normal cells. Methods: The cytotoxicity of IBCar was evaluated using the MTS assay to assess metabolic activity and the clonogenic assay to determine reproductive integrity. The impact of IBCar on microtubule integrity, mitochondrial function, and multiple signaling pathways was analyzed using Western blotting, microarray analysis, and live cell imaging. The therapeutic effectiveness of orally administered IBCar was assessed in a transgenic mouse model of Luminal B breast cancer and in mice implanted with subcutaneous triple-negative breast cancer xenografts. Results: IBCar demonstrated potent cytotoxicity across a diverse panel of breast cancer cell lines, including those with mutant or wild-type TP53, and cell lines with short and long doubling times. Comparative analysis revealed distinct responses between normal and cancer cells, including differences in IBCar’s effects on the mitochondrial membrane potential, endoplasmic reticulum stress and activation of cell death pathways. In breast cancer cells, IBCar was cytotoxic at nanomolar concentrations, caused irreversible microtubule depolymerization leading to sustained mitochondrial dysfunction, endoplasmic reticulum stress, and induced apoptosis. In normal cells, protective mechanisms included reversible microtubule depolymerization and activation of pro-survival signaling via the caspase-8 and riptosome pathways. The therapeutic potential of IBCar was confirmed in mouse models of Luminal B and triple negative BC, where it exhibited strong antitumor activity without detectable toxicity. Conclusions: These findings collectively support IBCar as a promising, effective, and safe therapeutic candidate for breast cancer treatment. Full article
Show Figures

Figure 1

21 pages, 4846 KiB  
Article
Bioactive Chalcone-Loaded Mesoporous Silica KIT-6 Nanocarrier: A Promising Strategy for Inflammation and Pain Management in Zebrafish
by Maria Kueirislene Amâncio Ferreira, Francisco Rogenio Silva Mendes, Emmanuel Silva Marinho, Roberto Lima de Albuquerque, Jesyka Macedo Guedes, Izabell Maria Martins Teixeira, Ramon Róseo Paula Pessoa Bezerra de Menezes, Vinicius Patricio Santos Caldeira, Anne Gabriella Dias Santos, Marisa Jádna Silva Frederico, Antônio César Honorato Barreto, Inês Domingues, Tigressa Helena Soares Rodrigues, Jane Eire Silva Alencar de Menezes and Hélcio Silva dos Santos
Pharmaceutics 2025, 17(8), 981; https://doi.org/10.3390/pharmaceutics17080981 - 30 Jul 2025
Viewed by 550
Abstract
Background/Objectives: The incorporation of bioactive molecules into mesoporous carriers is a promising strategy to improve stability, solubility, and therapeutic efficacy. In this study, we report for the first time the encapsulation of the synthetic chalcone 4-Cl into KIT-6 mesoporous silica and evaluate [...] Read more.
Background/Objectives: The incorporation of bioactive molecules into mesoporous carriers is a promising strategy to improve stability, solubility, and therapeutic efficacy. In this study, we report for the first time the encapsulation of the synthetic chalcone 4-Cl into KIT-6 mesoporous silica and evaluate its cytotoxicity, toxicological profile, and pharmacological activities (antinociceptive, anti-inflammatory, and anxiolytic) using an in vivo zebrafish (Danio rerio) model. Methods: Zebrafish were orally dosed with 4-Cl, 4-Cl/KIT-6, or KIT-6 (4, 20, 40 mg/kg) and mortality was recorded for 96 h. For analgesia, zebrafish pretreated with 4-Cl, 4-Cl/KIT-6, KIT-6, or morphine received a tail stimulus (0.1% formalin). Locomotor activity (quadrant crossings) was monitored for 30 min to assess analgesia (neurogenic: 0–5 min; inflammatory: 15–30 min). For inflammation, abdominal edema and weight gain were assessed 4 h after intraperitoneal carrageenan (1.5%). Zebrafish (n = 6/group) received 4-Cl, 4-Cl/KIT-6, or KIT-6 (4, 20, 40 mg/kg, p.o.). Controls received ibuprofen (100 mg/kg, p.o.) or 3% DMSO. Weight was measured hourly for 4 h post-carrageenan (difference between baseline and hourly weights). Results: Physicochemical characterizations confirmed successful encapsulation without compromising the ordered structure of KIT-6, as evidenced by a significant reduction in surface area and pore volume, indicating efficient drug incorporation. In vivo assays demonstrated that the 4-Cl/KIT-6 formulation maintained the pharmacological activities of the free chalcone, reduced toxicity, and, notably, revealed a significant anxiolytic effect for the first time. Conclusions: These findings highlight KIT-6 as a promising platform for chalcone delivery systems and provide a solid basis for future preclinical investigations. Full article
Show Figures

Figure 1

24 pages, 2279 KiB  
Article
Insights into the Structural Patterns in Human Glioblastoma Cell Line SF268 Activity and ADMET Prediction of Curcumin Derivatives
by Lorena Coronado, Johant Lakey-Beitia, Marisin Pecchio, Michelle G. Ng, Ricardo Correa, Gerardo Samudio-Ríos, Jessica Cruz-Mora, Arelys L. Fuentes, K. S. Jagannatha Rao and Carmenza Spadafora
Pharmaceutics 2025, 17(8), 968; https://doi.org/10.3390/pharmaceutics17080968 - 25 Jul 2025
Viewed by 403
Abstract
Background/Objectives: Curcumin is a promising therapy for glioblastoma but is limited by poor water solubility, rapid metabolism, and low blood–brain barrier penetration. This study aimed to evaluate curcumin and six curcumin derivatives with improved activity against a glioblastoma cell line and favorable [...] Read more.
Background/Objectives: Curcumin is a promising therapy for glioblastoma but is limited by poor water solubility, rapid metabolism, and low blood–brain barrier penetration. This study aimed to evaluate curcumin and six curcumin derivatives with improved activity against a glioblastoma cell line and favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Methods: Twenty-one curcumin derivatives were assessed and subjected to in vitro MTT cytotoxicity assays in SF268 glioblastoma and Vero cells. On the basis of the cytotoxicity results, six derivatives with the most favorable characteristics were selected for additional mechanistic studies, which included microtubule depolymerization, mitochondrial membrane potential (ΔΨm), and BAX activation assays. ADMET properties were determined in silico. Results: Compounds 24, 6, and 11 demonstrated better activity (IC50: 0.59–3.97 µg/mL and SI: 3–20) than curcumin (IC50: 6.3 µg/mL; SI: 2.5). Lead derivatives destabilized microtubules, induced ΔΨm collapse, and activated BAX. In silico ADMET prediction analysis revealed that compounds 4 and 6 were the most promising for oral administration from a biopharmaceutical and pharmacokinetic point of view. Conclusions: Strategic modifications were made to one or both hydroxyl groups of the aromatic rings of curcumin to increase its physicochemical stability and activity against glioblastoma cell line SF268. Compound 4, bearing fully protected aromatic domains, was identified as a prime candidate for in vivo validation and formulation development. Full article
Show Figures

Graphical abstract

13 pages, 966 KiB  
Article
Comparative Toxicity and P450-Mediated Detoxification of Flonicamid in Lygus lineolaris and Lygus hesperus
by Yuzhe Du, Shane Scheibener, Yu-Cheng Zhu, Calvin Pierce, Omaththage P. Perera and Maribel Portilla
Insects 2025, 16(8), 757; https://doi.org/10.3390/insects16080757 - 23 Jul 2025
Viewed by 298
Abstract
The tarnished plant bug, Lygus lineolaris (TPB), (Palisot de Beauvois), and the western tarnished plant bug (WTPB), Lygus hesperus, Knight, are major agricultural pests that cause significant damage to a wide range of crops in the southeastern and southwestern United States. Flonicamid [...] Read more.
The tarnished plant bug, Lygus lineolaris (TPB), (Palisot de Beauvois), and the western tarnished plant bug (WTPB), Lygus hesperus, Knight, are major agricultural pests that cause significant damage to a wide range of crops in the southeastern and southwestern United States. Flonicamid (commercial name: Carbine 50WG) is generally effective against various sap-feeding pests, including both L. hesperus and L. lineolaris. This study evaluated the toxicity of flonicamid on third-instar nymphs and adults of both Lygus species under laboratory conditions. Two bioassay methods were used: spray application to assess both contact and oral toxicity, and dipping to evaluate oral toxicity. Results showed that L. hesperus was significantly more susceptible to flonicamid than L. lineolaris across both bioassay methods. While no significant differences in toxicity were observed between spray and dipping assays, third-instar nymphs exhibited significantly higher sensitivity than adults in both species. The addition of piperonyl butoxide (PBO), a known inhibitor of cytochrome P450-monooxygenases (P450s), significantly enhanced the toxicity of flonicamid, suggesting that P450 enzyme plays a critical role in its detoxification. Sublethal exposure to flonicamid also induced increased P450 activity in both species. These findings provide valuable insights into the differences in susceptibility between L. lineolaris and L. hesperus to flonicamid and indicate that P450-mediated detoxification is critical for flonicamid metabolism. Such insights are valuable for early resistance monitoring and optimizing flonicamid application in integrated pest management programs. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

34 pages, 6295 KiB  
Article
ROS/Enzyme Dual-Responsive Drug Delivery System for Targeted Colorectal Cancer Therapy: Synergistic Chemotherapy, Anti-Inflammatory, and Gut Microbiota Modulation
by Xin Zhang, Ruonan Lian, Bingbing Fan, Lei Meng, Pengxia Zhang, Yu Zhang and Weitong Sun
Pharmaceutics 2025, 17(7), 940; https://doi.org/10.3390/pharmaceutics17070940 - 21 Jul 2025
Viewed by 434
Abstract
Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, driven by chronic inflammation, gut microbiota dysbiosis, and complex tumor microenvironment interactions. Current therapies are limited by systemic toxicity and poor tumor accumulation. This study aimed to develop a ROS/enzyme dual-responsive oral [...] Read more.
Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, driven by chronic inflammation, gut microbiota dysbiosis, and complex tumor microenvironment interactions. Current therapies are limited by systemic toxicity and poor tumor accumulation. This study aimed to develop a ROS/enzyme dual-responsive oral drug delivery system, KGM-CUR/PSM microspheres, to achieve precise drug release in CRC and enhance tumor-specific drug accumulation, which leverages high ROS levels in CRC and the β-mannanase overexpression in colorectal tissues. Methods: In this study, we synthesized a ROS-responsive prodrug polymer (PSM) by conjugating polyethylene glycol monomethyl ether (mPEG) and mesalazine (MSL) via a thioether bond. CUR was then encapsulated into PSM using thin-film hydration to form tumor microenvironment-responsive micelles (CUR/PSM). Subsequently, konjac glucomannan (KGM) was employed to fabricate KGM-CUR/PSM microspheres, enabling targeted delivery for colorectal cancer therapy. The ROS/enzyme dual-response properties were confirmed through in vitro drug release studies. Cytotoxicity, cellular uptake, and cell migration were assessed in SW480 cells. In vivo efficacy was evaluated in AOM/DSS-induced CRC mice, monitoring tumor growth, inflammatory markers (TNF-α, IL-1β, IL-6, MPO), and gut microbiota composition. Results: In vitro drug release studies demonstrated that KGM-CUR/PSM microspheres exhibited ROS/enzyme-responsive release profiles. CUR/PSM micelles demonstrated significant anti-CRC efficacy in cytotoxicity assays, cellular uptake studies, and cell migration assays. In AOM/DSS-induced CRC mice, KGM-CUR/PSM microspheres significantly improved survival and inhibited CRC tumor growth, and effectively reduced the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) and myeloperoxidase (MPO). Histopathological and microbiological analyses revealed near-normal colon architecture and microbial diversity in the KGM-CUR/PSM group, confirming the system’s ability to disrupt the “inflammation-microbiota-tumor” axis. Conclusions: The KGM-CUR/PSM microspheres demonstrated a synergistic enhancement of anti-tumor efficacy by inducing apoptosis, alleviating inflammation, and modulating the intestinal microbiota, which offers a promising stimuli-responsive drug delivery system for future clinical treatment of CRC. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

23 pages, 9320 KiB  
Article
Evaluation of the Cytotoxicity, Genotoxicity and Acute Oral Toxicity of Thymus longicaulis subsp. chaubardii (Rchb.f.) Jalas
by Ayfer Beceren, Ayse Nur Hazar-Yavuz, Ozlem Bingol Ozakpinar, Duygu Taskin, Ismail Senkardes, Turgut Taskin, Ozlem Tugçe Cilingir-Kaya, Ahmad Kado, Elif Caliskan Salihi and Hatice Kubra Elcioglu
Pharmaceuticals 2025, 18(7), 1037; https://doi.org/10.3390/ph18071037 - 12 Jul 2025
Viewed by 418
Abstract
Background/Objectives: Thymus longicaulis subsp. chaubardii (TL) (Rchb.f.) Jalas is widely used in traditional Turkish medicine for respiratory, digestive and uro-genital disorders. The aim of this study was to determine its phytochemical profile and to evaluate its cytotoxic, genotoxic and acute oral toxicity [...] Read more.
Background/Objectives: Thymus longicaulis subsp. chaubardii (TL) (Rchb.f.) Jalas is widely used in traditional Turkish medicine for respiratory, digestive and uro-genital disorders. The aim of this study was to determine its phytochemical profile and to evaluate its cytotoxic, genotoxic and acute oral toxicity effects. Methods: The phenolic composition of the methanolic extract was determined by HPLC-DAD. Cytotoxicity and genotoxicity were evaluated in NIH3T3 cells using MTT, comet and micronucleus assays. Acute toxicity was evaluated in rats at doses of 300 and 2000 mg/kg body weight according to the OECD Guideline 420. Results: Rosmarinic acid (87.37 ± 5.39 µg/mg) was the major phenolic compound. TL extract showed >90% cell viability at 50–200 µg/mL, indicating no cytotoxicity. Comet assay revealed a slight increase in DNA damage at 100–200 µg/mL (p < 0.001), though significantly lower than the H2O2 group (p < 0.001). No significant (p > 0.05) effect was observed in the micronucleus assay between the treated groups. In rats, TL extract caused no mortality or behavioral changes over 14 days. No significant differences were observed in body or organ weights. Hematologically, platelet count increased (p < 0.001) and eosinophils decreased (p < 0.01 and p < 0.001). Biochemical tests showed lower ALT and AST levels (p < 0.01 and p < 0.05, respectively) and significantly decreased triglycerides in the high-dose group (p < 0.001). Histopathological examination showed no organ damage. Conclusions: The results of this study indicate that TL methanol extract is non-toxic up to 2000 mg/kg and exhibits no significant cytotoxic or genotoxic effects. These findings support its safe use and traditional medicinal value. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

13 pages, 4295 KiB  
Article
Chelerythrine Inhibits TGF-β-Induced Epithelial–Mesenchymal Transition in A549 Cells via RRM2
by Jinlong Liu, Mengran Xu, Liu Han, Yuxuan Rao, Haoming Han, Haoran Zheng, Jinying Wu and Xin Sun
Pharmaceuticals 2025, 18(7), 1036; https://doi.org/10.3390/ph18071036 - 12 Jul 2025
Viewed by 390
Abstract
Background: The mechanisms underlying the metastasis of non-small-cell lung cancer (NSCLC) have long been a focal point of medical research. The anti-tumor effects of chelerythrine (CHE) have been confirmed; however, its ability to inhibit tumor metastasis and the underlying mechanisms remain unknown. The [...] Read more.
Background: The mechanisms underlying the metastasis of non-small-cell lung cancer (NSCLC) have long been a focal point of medical research. The anti-tumor effects of chelerythrine (CHE) have been confirmed; however, its ability to inhibit tumor metastasis and the underlying mechanisms remain unknown. The aim of this study was to investigate the inhibitory effects and molecular mechanisms of CHE on transforming growth factor-beta (TGF-β)-induced epithelial–mesenchymal transition (EMT). Methods: Wound healing and Transwell assays were employed to evaluate TGF-β-induced migration in A549 cells and the inhibitory effects of CHE. Ribonucleotide reductase subunit M2 (RRM2) expression levels were detected via Western blot and immunofluorescence staining. Western blot and RT-qPCR were used to examine the expression levels of EMT-related markers. Animal experiments were conducted to analyze the role of RRM2 in the CHE inhibition of TGF-β-induced lung cancer metastasis. Results: This study found that TGF-β treatment enhanced the metastasis of A549 cells, while CHE inhibited the expression of TGF-β-induced EMT-related transcription factors by RRM2, thereby suppressing tumor cell migration (p < 0.05). Furthermore, the oral administration of CHE inhibited the metastasis of A549 cells to the lungs from the tail vein in mice, consistent with in vitro findings. Despite the high doses of CHE used, there was no evidence of toxicity. Conclusions: Our data reveal the mechanism of the anti-metastatic effects of CHE on TGF-β-induced EMT and indicate that CHE can be used as an effective anti-tumor treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

27 pages, 3139 KiB  
Article
Distinctive Effects of Fullerene C60 and Fullerenol C60(OH)24 Nanoparticles on Histological, Molecular and Behavioral Hallmarks of Alzheimer’s Disease in APPswe/PS1E9 Mice
by Sholpan Askarova, Kseniia Sitdikova, Aliya Kassenova, Kirill Chaprov, Evgeniy Svirin, Andrey Tsoy, Johannes de Munter, Anna Gorlova, Aleksandr Litavrin, Aleksei Deikin, Andrey Nedorubov, Nurbol Appazov, Allan Kalueff, Anton Chernopiatko and Tatyana Strekalova
Antioxidants 2025, 14(7), 834; https://doi.org/10.3390/antiox14070834 - 8 Jul 2025
Viewed by 672
Abstract
Fullerenes and fullerenols exhibit antioxidant and anti-inflammatory properties, making them promising candidates for Alzheimer’s disease (AD) therapy. Unlike conventional anti-inflammatory drugs, these compounds have multitargeted effects, including their ability to inhibit amyloid fibril formation. However, few studies have explored their efficacy in high-validity [...] Read more.
Fullerenes and fullerenols exhibit antioxidant and anti-inflammatory properties, making them promising candidates for Alzheimer’s disease (AD) therapy. Unlike conventional anti-inflammatory drugs, these compounds have multitargeted effects, including their ability to inhibit amyloid fibril formation. However, few studies have explored their efficacy in high-validity AD models. Female APPswe/PS1E9 (APP/PS1) mice and their wild-type (WT) littermates were orally administered with fullerene C60 (0.1 mg/kg/day) or fullerenol C60(OH)24 (0.15 mg/kg/day) for 10 months starting at 2 months of age. Behavioral assessments were performed at 12 months of age. Amyloid plaque density and size were analyzed in the brain regions using Congo red staining. The expression of genes related to inflammation and plasticity was examined, and an in vitro assay was used to test the toxicity of fullerenol and its effect on amyloid β peptide 42 (Aβ42)-induced reactive oxygen species (ROS) production. Fullerenol reduced the maximum plaque size in the cortex and hippocampus, decreased the small plaque density in the hippocampus and thalamus, and prevented an increase in glial fibrillary acidic protein (GFAP) positive cell density in the mutants. Both treatments improved cognitive and emotional behaviors and reduced Il1β and increased Sirt1 expression. In vitro, fullerenol was non-toxic across a range of concentrations and reduced Aβ42-induced ROS production in brain endothelial cells and astrocytes. Long-term administration of fullerene or fullerenol improved behavioral and molecular markers of AD in APP/PS1 mice, with fullerenol showing additional benefits in reducing amyloid burden. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

15 pages, 6589 KiB  
Article
Preclinical Evaluation of Fenbendazole for Controlling Gyrodactylus kobayashii (Monogenea, Gyrodactylidae) in Goldfish: Dose Optimization and Safety Assessment
by Jing Dong, Jiangtao Li, Yongtao Liu, Qiuhong Yang, Ning Xu, Xiaohui Ai and Shun Zhou
Animals 2025, 15(12), 1811; https://doi.org/10.3390/ani15121811 - 19 Jun 2025
Viewed by 451
Abstract
This preclinical study investigated the efficacy and safety of fenbendazole, a broad-spectrum benzimidazole anthelmintic, for the treatment of Gyrodactylus kobayashii in goldfish (Carassius auratus). In vivo bath treatments demonstrated potent, dose-dependent anthelmintic efficacy, achieving 98.58% efficacy at a concentration of 0.02 [...] Read more.
This preclinical study investigated the efficacy and safety of fenbendazole, a broad-spectrum benzimidazole anthelmintic, for the treatment of Gyrodactylus kobayashii in goldfish (Carassius auratus). In vivo bath treatments demonstrated potent, dose-dependent anthelmintic efficacy, achieving 98.58% efficacy at a concentration of 0.02 mg/L and a 48 h EC50 of 0.006 mg/L. A short-duration (6 h) bath at 0.06 mg/L, followed by an 18 h recovery period in dechlorinated water, resulted in complete parasite elimination. However, acute toxicity assay indicated a relatively narrow safety margin for prolonged bath treatments, with a 96 h LC50 of 0.039 mg/L, highlighting the need for caution when employing extended bath treatments. Oral administration of fenbendazole at 20 mg/kg body weight for three consecutive days resulted in an efficacy of 83.35%, which increased to 96.28% by seven days post-treatment. Safety evaluations revealed this regimen induced transient oxidative stress and mild, reversible histopathological alterations in the liver and gills. Biochemical and histological markers indicated a recovery trend, approaching baseline levels by 15 days post-treatment. These findings suggested that oral fenbendazole is an effective and relatively safe anthelmintic treatment against G. kobayashii in goldfish. This study underscores the potential of drug repurposing as an effective strategy for developing novel anthelmintic agents in aquaculture. Full article
(This article belongs to the Special Issue Aquatic Animal Medicine and Pathology)
Show Figures

Figure 1

15 pages, 1027 KiB  
Article
Green Solutions for Agriculture: Topical and Oral Effect of Botanical Extracts in the Sustainable Management of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae)
by Isabella Maria Pompeu Monteiro Padial, Silvana Aparecida de Souza, Claudia Andrea Lima Cardoso, Juliana Rosa Carrijo Mauad, Anelise Samara Nazari Formagio and Rosilda Mara Mussury
Agronomy 2025, 15(6), 1464; https://doi.org/10.3390/agronomy15061464 - 16 Jun 2025
Viewed by 449
Abstract
The growing demand for sustainable phytosanitary products has renewed interest in botanical insecticides as viable pest control tools. Amid rising demand for sustainable crop protection, this study screens Cerrado plants traditionally used in medicine to pinpoint bioactive compounds that could replace synthetic pesticides. [...] Read more.
The growing demand for sustainable phytosanitary products has renewed interest in botanical insecticides as viable pest control tools. Amid rising demand for sustainable crop protection, this study screens Cerrado plants traditionally used in medicine to pinpoint bioactive compounds that could replace synthetic pesticides. These products have complex chemical compositions, with compounds acting synergistically through multiple mechanisms, including oral (ingestion of allelochemicals) and topical (contact of allelochemicals on epidermis) toxicity. This study evaluated the oral and topical toxicity of aqueous leaf extracts from Anemopaegma arvense (AEAa), Coussarea hydrangeifolia (AECh), Tapirira guianensis (AETg), and Duguetia furfuracea (AEDf) on Plutella xylostella. In the oral toxicity test, first-instar larvae were fed treated diets until pupation, with biological parameters monitored until adulthood. The extracts caused an average of 45% larval mortality, reduced pupal duration, and lowered egg production. In the topical toxicity test, only the extract from T. guianensis showed significant effect (p = 0.0171), causing 30% mortality in third-instar larvae. The other extracts showed no significant topical toxicity, and AECh showed no lethal or sublethal effects at all. Phytochemical screening was assessed by quantitative spectrophotometric assays, and semi-quantitative classical colorimetric tests. Major compound classes identified were tannins, flavonoids, triterpenoids, coumarins, and alkaloids. These findings highlight the potential of the evaluated plant extracts for pest control, particularly via ingestion, while also underscoring the need for further studies to better understand their efficacy and mechanisms of action. Full article
Show Figures

Figure 1

21 pages, 5545 KiB  
Article
Evaluation of the Antitumor and Antiproliferative Potential of Synthetic Peptides Derived from IsCT1, Associated with Cisplatin, in Squamous Cell Carcinoma of the Oral Cavity
by Laertty Garcia de Sousa Cabral, Cyntia Silva de Oliveira, Vani Xavier Oliveira, Ellen Paim de Abreu Paulo, Jean-Luc Poyet and Durvanei Augusto Maria
Molecules 2025, 30(12), 2594; https://doi.org/10.3390/molecules30122594 - 15 Jun 2025
Viewed by 770
Abstract
Head and neck squamous cell carcinoma (SCC), particularly in the oral cavity, is among the most prevalent and lethal forms of cancer globally. Current therapeutic strategies, predominantly involving cisplatin, face challenges like chemoresistance and toxicity to normal cells, justifying the exploration of new [...] Read more.
Head and neck squamous cell carcinoma (SCC), particularly in the oral cavity, is among the most prevalent and lethal forms of cancer globally. Current therapeutic strategies, predominantly involving cisplatin, face challenges like chemoresistance and toxicity to normal cells, justifying the exploration of new approaches. This study evaluates the antitumor, antiproliferative, and immunomodulatory potential of a synthetic peptide derived from IsCT1 (Isalo scorpion cytotoxic peptide), named AC-AFPK-IsCT1, in combination with cisplatin in oral squamous cell carcinoma cellular models. Tumor and normal cells were treated with varying concentrations of cisplatin and peptide, and the cytotoxicity was measured through an MTT assay, while apoptosis and cell cycle alterations were assessed via flow cytometry. Interestingly, the combination of AC-AFPK-IsCT1 with cisplatin exhibited higher specificity for tumor cells, significantly reducing IC50 values compared to cisplatin used as a single agent. Moreover, the combination treatment induced pronounced S-phase cell cycle arrest and enhanced apoptotic activity, evidenced by the upregulation of caspase-3, caspase-8, and p53, while maintaining low toxicity in normal fibroblast cells. The peptide also modulated the mitochondrial membrane potential, further contributing to the activation of intrinsic apoptotic pathways. The data suggest that AC-AFPK-IsCT1 potentiates the antitumor effects of cisplatin by engaging both intrinsic and extrinsic apoptotic pathways while preserving normal cell viability. These findings underscore the potential of combining cisplatin with AC-AFPK-IsCT1 as a promising therapeutic strategy for improving the efficacy of chemotherapy in SCC, reducing systemic toxicity, and overcoming chemoresistance. Full article
Show Figures

Figure 1

15 pages, 970 KiB  
Article
Potential Natural Blend Hydrosol TGLON Suppresses the Proliferation of Five Cancer Cell Lines and Also Ameliorates Idiopathic Pulmonary Fibrosis in a Mouse Model
by Wei-Hsiang Huang, Mei-Lin Chang, Ching-Che Lin, Chih-Peng Wang, Feng-Jie Tsai and Chih-Chien Lin
Pharmaceuticals 2025, 18(6), 872; https://doi.org/10.3390/ph18060872 - 11 Jun 2025
Viewed by 1499
Abstract
Background: Cancer and fibrotic diseases represent major global health challenges, underscoring the need for safe, multifunctional natural therapies. Although natural products possess notable anticancer properties, their clinical translation is often hindered by non-selective cytotoxicity toward normal cells. Moreover, their therapeutic potential against chronic [...] Read more.
Background: Cancer and fibrotic diseases represent major global health challenges, underscoring the need for safe, multifunctional natural therapies. Although natural products possess notable anticancer properties, their clinical translation is often hindered by non-selective cytotoxicity toward normal cells. Moreover, their therapeutic potential against chronic conditions such as idiopathic pulmonary fibrosis (IPF) remains insufficiently explored. This study aimed to evaluate the efficacy and safety of a natural hydrosol blend, The Greatest Love of Nature (TGLON), in inhibiting cancer cell proliferation and mitigating IPF. Methods: TGLON, composed of 12 steam-distilled plant hydrosols, was chemically characterized by gas chromatography–mass spectrometry (GC-MS). Its cytotoxicity was assessed using the MTT assay against five human cancer cell lines (A-549, HepG2, MCF-7, MKN-45, and MOLT-4) and normal human lung fibroblasts (MRC-5). In vivo safety and therapeutic efficacy were evaluated in Sprague Dawley rats and a bleomycin-induced IPF mouse model, following protocols approved by the Institutional Animal Care and Use Committee (IACUC). Results: TGLON maintained >90% viability in MRC-5 cells at an 80-fold dilution and significantly inhibited the proliferation of A-549 (41%), HepG2 (84%), MCF-7 (50%), MKN-45 (38%), and MOLT-4 (52%) cells. No signs of toxicity were observed in rats administered TGLON orally at 50% (v/v), 10 mL/kg. In mice, TGLON alleviated bleomycin-induced pulmonary inflammation and fibrosis. Conclusions: TGLON exhibited selective anticancer and anti-fibrotic activities under non-toxic conditions, supporting its potential as a bioactive agent for early-stage disease prevention and non-clinical health maintenance. Full article
(This article belongs to the Special Issue Advances in the Chemical-Biological Knowledge of Essential Oils)
Show Figures

Figure 1

11 pages, 1135 KiB  
Article
Pharmacokinetics and Ex Vivo Activity of 7-Methylxanthine, an Inhibitor of Monosodium Urate Crystallization
by Miguel D. Ferrer, Jaume Dietrich, Bernat Isern, Maria del Mar Pérez-Ferrer, Joan Albertí, Félix Grases and Antònia Costa-Bauzà
Biomedicines 2025, 13(6), 1411; https://doi.org/10.3390/biomedicines13061411 - 9 Jun 2025
Viewed by 532
Abstract
Background/Objectives: 7-Methylxanthine (7-MX) is a naturally occurring metabolite of caffeine and theobromine that can inhibit the crystallization of monosodium urate (MSU) and may be useful for the prevention or treatment of gout. However, the pharmacokinetics and ex vivo activity of 7-MX remain poorly [...] Read more.
Background/Objectives: 7-Methylxanthine (7-MX) is a naturally occurring metabolite of caffeine and theobromine that can inhibit the crystallization of monosodium urate (MSU) and may be useful for the prevention or treatment of gout. However, the pharmacokinetics and ex vivo activity of 7-MX remain poorly characterized. Methods: The present study assessed the pharmacokinetics of 7-MX in Sprague Dawley rats following a single oral dose (30 mg/kg), and the ex vivo inhibition of MSU crystallization by 7-MX in rat plasma after the repeated administration of oral 7-MX. Results: The pharmacokinetic analysis showed that 7-MX reached peak plasma concentration (Cmax ≈ 30 µM) at 30 min after administration (tmax), the terminal half-life was approximately 1.4 h, and there was no evidence of accumulation after repeated daily dosing. After repeated administration, the relationship between dose (30 or 60 mg/kg) and plasma concentration was proportional. In vitro and ex vivo crystallization assays demonstrated that 7-MX inhibited MSU crystallization in a concentration-dependent manner. The in vitro studies showed that 100 µM 7-MX inhibited up to 74% of MSU crystallization under supersaturated conditions (400 mg/L urate). The ex vivo experiments indicated that plasma from rats that received 30 or 60 mg/kg of 7-MX had 41.4% and 52.6% inhibition of crystallization, consistent with the measured plasma concentrations. Conclusions: These findings confirm that oral administration of 7-MX to rats led to a plasma level that was sufficient to decrease MSU crystallization in plasma, and there were no observable toxicities. These results support the potential of 7-MX as a safe oral treatment for gout, especially in combination with urate-lowering therapies, such as allopurinol. Further clinical investigations are warranted to confirm the therapeutic potential of 7-MX in humans. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnostics, and Therapeutics for Rheumatic Diseases)
Show Figures

Figure 1

26 pages, 5982 KiB  
Article
Diverse Sublethal Effects of a Common Fungicide Impact the Behavior and Physiology of Honey Bees
by Xufeng Zhang, Qian Cao, Feng Wang, Yinyin Du, Wen Zhao, Yuan Guo and Olav Rueppell
Insects 2025, 16(6), 603; https://doi.org/10.3390/insects16060603 - 8 Jun 2025
Viewed by 794
Abstract
Honey bees and other pollinators are key to functioning natural and managed ecosystems. However, their health is threatened by many factors, including pesticides. Spraying fungicides during flowering of fruit trees is widespread even though it directly exposes pollinators to these fungicides. Here, we [...] Read more.
Honey bees and other pollinators are key to functioning natural and managed ecosystems. However, their health is threatened by many factors, including pesticides. Spraying fungicides during flowering of fruit trees is widespread even though it directly exposes pollinators to these fungicides. Here, we report a series of experiments designed to understand how the combination of propiconazole and carbendazim, marketed in China as Chunmanchun®, affects honey bee health. With an acute oral toxicity of 23.8 μg a.i./bee over 24 h in the laboratory, we considered the acute mortality risk from normal Chunmanchun® applications as relatively low. However, our comprehensive studies revealed other diverse effects: Chunmanchun® reduced memory after classic conditioning by approximately 25% and altered the activity of protective enzymes and the composition of the honey bees’ gut microbiota. Specifically, the genus Lactobacillus was decreased by ~13%, and Bartonella and Snodgrassella were increased by ~10% and ~7.5%, respectively. The gut metabolome was also disrupted in diverse ways, possibly as a functional consequence of the microbiome changes. Thus, we demonstrated numerous sublethal effects of the combination of propiconazole and carbendazim, which adds to the growing evidence that agrochemicals and fungicides in particular can harm pollinator health in subtle ways that are not captured in simple mortality assays. Full article
(This article belongs to the Special Issue Biology and Conservation of Honey Bees)
Show Figures

Graphical abstract

19 pages, 15212 KiB  
Article
The Alkaloid Caulerpin Exhibits Potent and Selective Anti-Inflammatory Activity Through Interaction with the Glucocorticoid Receptor
by Jônatas Sousa Pires dos Santos, Dahara Keyse Carvalho Silva, Vanessa da Silva Oliveira, Sergio Santos Silva Junior, Edivaldo dos Santos Rodrigues, Claudia Valeria Campos de Souza, Sabrina Teixeira Martinez, Osvaldo Andrade Santos-Filho, Cássio Santana Meira and Milena Botelho Pereira Soares
Mar. Drugs 2025, 23(6), 232; https://doi.org/10.3390/md23060232 - 29 May 2025
Viewed by 753
Abstract
Inflammation plays a central role in various pathological conditions, necessitating the search for safer and more effective anti-inflammatory agents. This study investigates the anti-inflammatory activity of caulerpin, a bisindolic alkaloid isolated from Caulerpa racemosa. In vitro assays demonstrated that caulerpin significantly reduced [...] Read more.
Inflammation plays a central role in various pathological conditions, necessitating the search for safer and more effective anti-inflammatory agents. This study investigates the anti-inflammatory activity of caulerpin, a bisindolic alkaloid isolated from Caulerpa racemosa. In vitro assays demonstrated that caulerpin significantly reduced nitric oxide, TNF-α, IL-6, and IL-12 levels in macrophages stimulated with LPS + IFN-γ, without affecting cell viability. In silico toxicity predictions using Protox 3.0 reinforce a favorable safety profile of caulerpin. Molecular docking and molecular dynamics simulations revealed its high-affinity binding to the glucocorticoid receptor ligand-binding domain (GR-LBD), suggesting a mechanism of action similar to dexamethasone. The involvement of the glucocorticoid receptor was confirmed by the partial reversal of caulerpin’s effects upon RU486 treatment. In vivo, caulerpin exhibited a favorable safety profile, with no signs of acute toxicity at an oral dose of 100 mg/kg. Moreover, in a mouse model of endotoxic shock, caulerpin administration significantly improved survival rates in a dose-dependent manner, providing complete protection at 4 mg/kg. These findings highlight caulerpin as a promising candidate for the development of novel anti-inflammatory therapies. Further studies are warranted to explore its pharmacokinetics, optimize its structure, and evaluate its efficacy in chronic inflammatory diseases. Full article
(This article belongs to the Special Issue Immunomodulatory Activities of Marine Products)
Show Figures

Figure 1

Back to TopTop