Evaluation of the Cytotoxicity, Genotoxicity and Acute Oral Toxicity of Thymus longicaulis subsp. chaubardii (Rchb.f.) Jalas
Abstract
1. Introduction
2. Results
2.1. Phenolic Compounds
2.2. Cytotoxicity
2.3. Genotoxicity
2.3.1. Comet Assay Findings
2.3.2. Micronucleus Test
2.4. Acute Toxicity Study
2.4.1. Sighting Study
2.4.2. Main Study
2.4.3. Physical Observation and Mortality
2.4.4. Acute Effect on Body Weight, Food and Water Consumption
2.4.5. Hematological Parameters of Acute Toxicity
2.4.6. Effects of Plant Extracts on Biochemical Markers
2.4.7. Gross Necropsy
2.4.8. Histological Analyses
3. Discussion
4. Materials and Methods
4.1. Data Collection and Identification of Plant Sample
4.2. Preparation of Plant Extracts
4.3. Analysis of Phenolic Compounds
4.4. Cytotoxicity Assay
4.5. In Vitro Genotoxicity Evaluation
4.5.1. Comet Assay
4.5.2. MN Test
4.6. Animals and Experimental Design
4.7. Acute Toxicity
- TL I: TL extract was administered intragastrically at 300 mg/kg BW.
- TL II: TL extract was administered intragastrically at 2000 mg/kg BW.
4.8. Hematological and Biochemical Analyses
4.9. Observation of Organs and Histological Examination
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
%BAS | Percentage of basophils |
%EOS | Percentage of eosinophils |
%IMG | Percentage of immature granulocytes |
%LYM | Percentage of lymphocytes |
%MON | Percentage of monocytes |
%NEU | Percentage of neutrophils |
ALP | Alkaline phosphatase |
ALT | Alanine transaminase |
ANOVA | One-way analysis of variance |
AST | Aspartate aminotransferase |
BASs | Basophils |
BHA | Butylated hydroxyanisole |
BHT | Butylated hydroxytoluene |
BUN | Blood urea nitrogen |
BW | Body weight |
CK | Creatine kinase |
DEHAMER | Experimental Animal Implementation and Research Center |
EOSs | Eosinophils |
GHS | Globally Harmonized System of Classification and Labelling of Chemicals |
HCT | Hematocrit |
HGB | Hemoglobin |
HPLC | High-performance liquid chromatography |
HPLC-DAD | High-performance liquid chromatography with diode-array detection |
IMGs | Immature granulocytes |
LDH | Lactate dehydrogenase |
LYM | Lymphocyte |
MCH | Mean corpuscular hemoglobin |
MCHC | Mean corpuscular hemoglobin concentration |
MCV | Mean corpuscular volume |
MONs | Monocytes |
MPV | Mean platelet volume |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide |
NEUs | Neutrophils |
NIH3T3 | Mouse embryonic fibroblast cells |
OECD | Organization for Economic Co-operation and Development |
PCT | Procalcitonin |
PDW | Platelet distribution width |
PLCC | Platelet larger cell count |
PLCR | Platelet larger cell ratio |
PLTs | Platelets |
RBCs | Red blood cells |
RDV-CV | Coefficient of variation in red cell distribution width |
SD | Standard deviation |
TL | T. longicaulis subsp. chaubardii |
UA | Uric acid |
WBCs | White blood cells |
References
- Wahab, B.A.A.; Alamri, Z.Z.; Jabbar, A.A.J.; Ibrahim, I.A.A.; Almaimani, R.A.; Almasmoum, H.A.; Ghaith, M.M.; Farrash, W.F.; Almutawif, Y.A.; Ageeli, K.A.; et al. Phytochemistry, antioxidant, anticancer, and acute toxicity of traditional medicinal food Biarum bovei (Kardeh). BMC Complement. Med. Ther. 2023, 23, 283. [Google Scholar] [CrossRef] [PubMed]
- Kpemissi, M.; Metowogo, K.; Melila, M.; Veerapur, V.P.; Negru, M.; Taulescu, M.; Potârniche, A.V.; Suhas, D.S.; Puneeth, T.A.; Vijayakumar, S.; et al. Acute and subchronic oral toxicity assessments of Combretum micranthum (Combretaceae) in Wistar rats. Toxicol. Rep. 2020, 7, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Kale, O.E.; Awodele, O.; Akindele, A.J. Subacute and subchronic oral toxicity assessments of Acridocarpus smeathmannii (DC.) Guill. & Perr. root in Wistar rats. Toxicol. Rep. 2019, 6, 161–175. [Google Scholar]
- El Kabbaoui, M.; Chda, A.; El-Akhal, J.; Azdad, O.; Mejrhit, N.; Aarab, L.; Bencheikh, R.; Tazi, A. Acute and sub-chronic toxicity studies of the aqueous extract from leaves of Cistus ladaniferus L. in mice and rats. J. Ethnopharmacol. 2017, 209, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Dapkevicius, A.; van Beek, T.A.; Lelyveld, G.P.; van Veldhuizen, A.; de Groot, A.; Linssen, J.P.; Venskutonis, R. Isolation and structure elucidation of radical scavengers from Thymus vulgaris leaves. J. Nat. Prod. 2002, 65, 892–896. [Google Scholar] [CrossRef]
- Edmondson, J.R.; Mill, R.R.; Tan, K. Flora of Turkey and the East Aegean Islands; Davis, P.H., Ed.; Edinburgh University Press: Edinburgh, UK, 1982; Volume 7. [Google Scholar]
- Cam, M.E.; Hazar-Yavuz, A.N.; Yildiz, S.; Ertas, B.; Ayaz Adakul, B.; Taskin, T.; Alan, S.; Kabasakal, L. The methanolic extract of Thymus praecox subsp. skorpilii var. skorpilii restores glucose homeostasis, ameliorates insulin resistance and improves pancreatic β-cell function on streptozotocin/nicotinamide-induced type 2 diabetic rats. J. Ethnopharmacol. 2019, 231, 29–38. [Google Scholar] [CrossRef]
- Tuzlacı, E. Türkiye Bitkileri Sözlüğü “A Dictionary of Turkish Plants”; Alfa Yayınları: Istanbul, Turkey, 2011. [Google Scholar]
- Sarıkaya, A.G.; Tığlı Kaytanlıoğlu, E.H.; Fakir, H. İki Farklı Yörede Doğal Yayılış Gösteren Aş kekiği (Thymus longicaulis subsp. longicaulis)’nin Uçucu Bileşenlerinin Belirlenmesi. EJOSAT Eur. J. Sci. Technol. 2022, 35, 76–81. [Google Scholar] [CrossRef]
- Gunbatan, T.G.İ.; Ozkan, A.M. The current status of ethnopharmacobotanical knowledge in Çamlıdere (Ankara, Turkey). Turk. J. Bot. 2016, 40, 241–249. [Google Scholar] [CrossRef]
- Tuzlacı, E. Türkiye Bitkileri Geleneksel İlaç Rehberi; İstanbul Tıp Kitabevleri: Istanbul, Turkey, 2016. [Google Scholar]
- Sarikurkcu, C.; Sabih Ozer, M.; Eskici, M.; Tepe, B.; Can, Ş.; Mete, E. Essential oil composition and antioxidant activity of Thymus longicaulis C. Presl subsp. longicaulis var. longicaulis. Food Chem. Toxicol. 2010, 48, 1801–1805. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Li, L.; Li, Y.; Yu, M.; Zhou, Y.; Lv, X.; Arai, H.; Xu, Y. Acute and sub-chronic oral toxicity profiles of the aqueous extract of Cortex Dictamni in mice and rats. J. Ethnopharmacol. 2014, 158, 207–215. [Google Scholar] [CrossRef]
- Moreira, D.d.L.; Teixeira, S.S.; Monteiro, M.H.D.; De-Oliveira, A.C.A.X.; Paumgartten, F.J.R. Traditional use and safety of herbal medicines. Rev. Bras. Farmacogn. 2014, 24, 248–257. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for the Testing of Chemicals; OECD: Paris, France, 2002.
- El Midaoui, A.; Khallouki, F.; Couture, R.; Moldovan, F.; Ismael, M.A.; Ongali, B.; Akoume, M.Y.; Alem, C.; Ait Boughrous, A.; Zennouhi, W.; et al. Thymus atlanticus: A Source of Nutrients with Numerous Health Benefits and Important Therapeutic Potential for Age-Related Diseases. Nutrients 2023, 15, 4077. [Google Scholar] [CrossRef] [PubMed]
- Sevindik, H.G.; Ozgen, U.; Atila, A.; Ozturk Er, H.; Kazaz, C.; Duman, H. Phtytochemical studies and quantitative hplc analysis of rosmarinic acid and luteolin 5-O-β-D-glucopyranoside on Thymus praecox subsp. grossheimii var. grossheimii. Chem. Pharm. Bull. 2015, 63, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.G.; Hwang, K.A.; Choi, K.C. Rosmarinic acid, a component of rosemary tea, induced the cell cycle arrest and apoptosis through modulation of HDAC2 expression in prostate cancer cell lines. Nutrients 2018, 10, 1784. [Google Scholar] [CrossRef]
- Han, Y.H.; Kee, J.Y.; Hong, S.H. Rosmarinic acid activates AMPK to inhibit metastasis of colorectal cancer. Front. Pharmacol. 2018, 9, 68. [Google Scholar] [CrossRef]
- Sarfaraz, D.; Rahimmalek, M.; Saeidi, G. Polyphenolic and molecular variation in Thymus species using HPLC and SRAP analyses. Sci. Rep. 2021, 11, 5019. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Cardoso, S.M. Health-promoting effects of Thymus phenolic-rich extracts: Antioxidant, anti-inflammatory and antitumoral properties. Antioxidants 2020, 9, 814. [Google Scholar] [CrossRef]
- Barros, L.; Ferreira, M.J.; Queirós, B.; Ferreira, I.C.F.R.; Baptista, P. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 2007, 103, 413–419. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Tang, H.; Pan, Y.; Hu, B.; Huang, G. Rosmarinic acid inhibits cell proliferation, migration, and invasion and induces apoptosis in human glioma cells. Int. J. Mol. Med. 2021, 47, 67. [Google Scholar] [CrossRef]
- Hu, J.; Webster, D.; Cao, J.; Shao, A. The safety of green tea and green tea extract consumption in adults—Results of a systematic review. Regul. Toxicol. Pharmacol. 2018, 95, 412–433. [Google Scholar] [CrossRef]
- Oliveira, J.R.d.; de Jesus Viegas, D.; Martins, A.P.R.; Carvalho, C.A.T.; Soares, C.P.; Camargo, S.E.A.; Jorge, A.O.C.; de Oliveira, L.D. Thymus vulgaris L. extract has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and genotoxicity. Arch. Oral Biol. 2017, 82, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Calò, R.; Visone, C.M.; Marabini, L. Thymol and Thymus vulgaris L. activity against UVA- and UVB-induced damage in NCTC 2544 cell line. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015, 791, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Rangel, E.; Lima, J.; Silva, R.; Lopes, L.; Noldin, V.; Monache, F.D.; Martins, D. Toxicological and phytochemical studies of Aspidosperma subincanum Mart. stem bark (Guatambu). Int. J. Pharm. Sci. 2009, 64, 836–839. [Google Scholar]
- Gigon, L.; Fettrelet, T.; Yousefi, S.; Simon, D.; Simon, H.U. Eosinophils from A to Z. Allergy 2023, 78, 1810–1846. [Google Scholar] [CrossRef]
- Gazzinelli-Guimaraes, P.H.; Jones, S.M.; Voehringer, D.; Mayer-Barber, K.D.; Samarasinghe, A.E. Eosinophils as modulators of host defense during parasitic, fungal, bacterial, and viral infections. J. Leukoc. Biol. 2024, 116, 1301–1323. [Google Scholar] [CrossRef]
- Dunkel, B. Chapter 15—Disorders of the Hematopoietic System. In Equine Internal Medicine, 4th ed.; Reed, S.M., Bayly, W.M., Sellon, D.C., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2018; pp. 991–1028. [Google Scholar]
- Gleich, G.J.; Klion, A.D.; Lee, J.J.; Weller, P.F. The consequences of not having eosinophils. Allergy 2013, 68, 829–835. [Google Scholar] [CrossRef]
- Kaushansky, K. Thrombopoietin: The primary regulator of megakaryocyte and platelet production. Thromb. Haemost. 1995, 74, 521–525. [Google Scholar] [CrossRef]
- Patrick-Iwuanyanwu, K.C.; Amadi, U.; Charles, I.A.; Ayalogu, E.O. Evaluation of acute and sub-chronic oral toxicity study of Baker Cleansers Bitters—A polyherbal drug on experimental rats. Excli J. 2012, 11, 632–640. [Google Scholar]
- Olaleye, S.; John, A.; Salami, H.A.; Felix, M.; Ameh, J.A. Preliminary study on the toxicity and antimicrobial effects of extract of Securidaca longipedunculata. Afr. J. Biomed. Res. 1998, 1, 39–44. [Google Scholar]
- Azimi, M.; Mehrzad, J.; Ahmadi, E.; Orafei, M.; Aghaie, F.; Ahmadi, A.; Rahimi, M.; Ranjbary, A.G. The effect of Thymus vulgaris on hepatic enzymes activity and apoptosis-related gene expression in streptozotocin-induced diabetic rats. Evid. Based Complement. Altern. Med. 2022, 23, 2948966. [Google Scholar] [CrossRef]
- El-Newary, S.A.; Shaffie, N.M.; Omer, E.A. The protection of Thymus vulgaris leaves alcoholic extract against hepatotoxicity of alcohol in rats. Asian Pac. J. Trop. Med. 2017, 10, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Al-Amoudi, W.M. Protective effects of fennel oil extract against sodium valproate-induced hepatorenal damage in albino rats. Saudi J. Biol. Sci. 2017, 24, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Janbaz, K.H.; Saeed, S.A.; Gilani, A.H. Studies on the protective effects of caffeic acid and quercetin on chemical-induced hepatotoxicity in rodents. Phytomedicine 2004, 11, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef]
- Matsuura, H.; Chiji, H.; Asakawa, C.; Amano, M.; Yoshihara, T.; Mizutani, J. DPPH radical scavengers from dried leaves of oregano (Origanum vulgare). Biosci. Biotechnol. Biochem. 2003, 67, 2311–2316. [Google Scholar] [CrossRef]
- Edelstein, C.L. Biomarkers of acute kidney injury. Adv. Chronic Kidney Dis. 2008, 15, 222–234. [Google Scholar] [CrossRef]
- Chebaibi, M.; Bousta, D.; Chbani, L.; Ez zoubi, Y.; Touiti, N.; Achour, S. Acute toxicity of plants mixture used in traditional treatment of edema and colic renal in Morocco. Sci. Afr. 2019, 6, e00152. [Google Scholar] [CrossRef]
- Nassir, F.; Rector, R.S.; Hammoud, G.M.; Ibdah, J.A. Pathogenesis and prevention of hepatic steatosis. Gastroenterol. Hepatol. 2015, 11, 167–175. [Google Scholar]
- WFO. World Flora Online. 2025. Available online: https://www.worldfloraonline.org/ (accessed on 3 April 2025).
- Ertas, B.; Hazar-Yavuz, A.N.; Topal, F.; Keles-Kaya, R.; Karakus, Ö.; Ozcan, G.S.; Taskin, T.; Cam, M.E. Rosa canina L. improves learning and memory-associated cognitive impairment by regulating glucose levels and reducing hippocampal insulin resistance in high-fat diet/streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2023, 313, 116541. [Google Scholar] [CrossRef]
- Beekman, A.C.; Barentsen, A.R.; Woerdenbag, H.J.; Van Uden, W.; Pras, N.; Konings, A.W.; el-Feraly, F.S.; Galal, A.M.; Wikström, H.V. Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J. Nat. Prod. 1997, 60, 325–330. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Beceren, A.; Duran, H.; Dogan, A. The cytotoxic and genotoxic potential of Euphorbia macroclada boiss. extract on colon cancer cells. Pharmed. J. 2024, 1, 85–93. [Google Scholar] [CrossRef]
- Fenech, M. The in vitro micronucleus technique. Mutat. Res. 2000, 455, 81–95. [Google Scholar] [CrossRef]
- Fenech, M. Cytokinesis-Block micronucleus cytome assay evolution into a more comprehensive method to measure chromosomal instability. Genes 2020, 11, 1203. [Google Scholar] [CrossRef]
- Ventura, C.; Marques, C.; Cadete, J.; Vilar, M.; Pedrosa, J.F.S.; Pinto, F.; Fernandes, S.N.; da Rosa, R.R.; Godinho, M.H.; Ferreira, P.J.T.; et al. Genotoxicity of three micro/nanocelluloses with different physicochemical characteristics in MG-63 and V79 Cells. J. Xenobiot. 2022, 12, 91–108. [Google Scholar] [CrossRef]
- Satria, D.; Sitorus, P.; Dalimunthe, A.; Waruwu, S.B.; Asfianti, V. Oral acute toxicity study of ethanol extract of Mobe leaves (Artocarpus lacucha Buch-Ham) in Wistar rats. Pharmacia 2024, 71, 1–8. [Google Scholar] [CrossRef]
- Sohn, E.; Kim, Y.J.; Lim, H.-S.; Jeong, S.-J. Single acute and repeated subacute toxicity evaluations of Annona atemoya leaf extract with in vitro anti-inflammatory potential. Drug Chem. Toxicol. 2024, 1–12. [Google Scholar] [CrossRef]
- Amssayef, A.; Soulaimani, B.; Qabouche, A.; Abbad, A.; Eddouks, M. Origanum Compactum essential oil ameliorates Triton WR-1339-induced hyperlipidemia in rats: Chemical composition and acute toxicity. J. Herbs Spices Med. Plants 2024, 30, 132–144. [Google Scholar] [CrossRef]
- Dos Santos, P.É.M.; de Barros, M.C.; de Barros, A.V.; Araújo, R.M.; de Oliveira Marinho, A.; da Silva, A.A.; de Oliveira, M.B.M.; dos Santos Souza, T.G.; Chagas, C.A.; de Albuquerque Lima, T. Acute oral toxicity and genotoxicity assessment of the essential oil from Croton pulegiodorus Baill (Euphorbiaceae) leaves in mice. Toxicon 2024, 251, 108147. [Google Scholar] [CrossRef]
- Dutta, D.; Singh, N.S.; Verma, A.K. Genotoxicity, acute and sub-acute toxicity profiles of methanolic Cordyceps militaris (L.) Fr. extract in Swiss Albino Mice. J. Ethnopharmacol. 2024, 335, 118603. [Google Scholar] [CrossRef]
- Özdemir-Kumral, Z.N.; Koyuncuoğlu, T.; Arabacı-Tamer, S.; Çilingir-Kaya, Ö.T.; Köroğlu, A.K.; Yüksel, M.; Yeğen, B. High-fat diet enhances gastric contractility, but abolishes nesfatin-1-induced inhibition of gastric emptying. J. Neurogastroenterol. Motil. 2021, 27, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Eken, M.K.; Ersoy, G.S.; Kaygusuz, E.I.; Devranoğlu, B.; Takır, M.; Çilingir, Ö.T.; Çevik, Ö. Etanercept protects ovarian reserve against ischemia/reperfusion injury in a rat model. Arch. Med. Sci. 2019, 15, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Tezcan, N.; Özdemir-Kumral, Z.N.; Özkan Yenal, N.; Çilingir-Kaya, Ö.T.; Virlan, A.T.; Özbeyli, D.; Çetinel, Ş.; Yeğen, B.; Koç, M. Nesfatin-1 treatment preserves antioxidant status and attenuates renal fibrosis in rats with unilateral ureteral obstruction. Nephrol. Dial. Transpl. 2022, 37, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- Terada, C.I.; Onoue, K.; Fujii, T.; Itami, H.; Morita, K.; Uchiyama, T.; Takeda, M.; Nakagawa, H.; Nakano, T.; Baba, Y.; et al. Histopathological and epigenetic changes in myocardium associated with cancer therapy-related cardiac dysfunction. ESC Heart Fail. 2022, 9, 3031–3043. [Google Scholar] [CrossRef]
- Raghavendran, K.; Davidson, B.A.; Helinski, J.D.; Marschke, C.J.; Manderscheid, P.; Woytash, J.A.; Notter, R.H.; Knight, P.R. A rat model for isolated bilateral lung contusion from blunt chest trauma. Anesth. Analg. 2005, 101, 1482–1489. [Google Scholar] [CrossRef]
- Sahin, O.; Sulak, O.; Yavuz, Y.; Uz, E.; Eren, I.; Ramazan Yilmaz, H.; Malas, M.A.; Altuntas, I.; Songur, A. Lithium-induced lung toxicity in rats: The effect of caffeic acid phenethyl ester (CAPE). Pathology 2006, 38, 58–62. [Google Scholar] [CrossRef]
- Ibrahim, K.E.; Al-Mutary, M.G.; Bakhiet, A.O.; Khan, H.A. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules 2018, 23, 1848. [Google Scholar] [CrossRef]
- Bae, E.-K.; Jung, K.-H.; Chu, K.; Lee, S.-T.; Kim, J.-H.; Park, K.-I.; Kim, M.; Chung, C.-K.; Lee, S.K.; Roh, J.-K. Neuropathologic and clinical features of human medial temporal lobe epilepsy. J. Clin. Neurol. 2010, 6, 73–80. [Google Scholar] [CrossRef]
- Mitchell, S.O.; Baxter, E.J.; Holland, C.; Rodger, H.D. Development of a novel histopathological gill scoring protocol for assessment of gill health during a longitudinal study in marine-farmed Atlantic salmon (Salmo salar). Aquac. Int. 2012, 20, 813–825. [Google Scholar] [CrossRef]
Component | Average (µg/mg of the Extract) |
---|---|
Caffeic acid | 31.22 ± 1.92 |
Rosmarinic acid | 87.37 ± 5.39 |
Apigenin | 1.12 ± 0.18 |
DNAT (%) | ||
---|---|---|
Control | 20.46 ± 0.40 | |
Positive Control (H2O2) | 66.30 ± 0.92 *** | |
Thymus longicaulis subsp. chaubardii | 50 µg/mL | 21.87 ± 0.70 ### |
100 µg/mL | 26.54 ± 0.83 ***,### | |
200 µg/mL | 27.28 ± 0.78 ***,### |
BN | Total Number of MNi | MN/Cell ± SE | CBPI ± SE | |||
---|---|---|---|---|---|---|
(1) | (2) | |||||
Control | 3000 | 6 | - | 0.002 ± 0.0001 ### | 1.65 ± 0.01 # | |
Thymus longicaulis subsp. chaubardii | 50 µg/mL | 3000 | 17 | 1 | 0.0063 ± 0.00006 ### | 1.63 ± 0.01 |
100 µg/mL | 3000 | 28 | 4 | 0.012 ± 0.0002 **,### | 1.60 ± 0.005 | |
200 µg/mL | 3000 | 39 | 4 | 0.0156 ± 0.0002 ***,### | 1.59 ± 0.01 | |
Mitomycin C | 3000 | 180 | 16 | 0.0706 ± 0.0004 *** | 1.33 ± 0.006 |
Groups | Body Weight (g) | Food Consumption (g) | Water Intake (mL) | ||||||
---|---|---|---|---|---|---|---|---|---|
Day 1 | Day 7 | Day 14 | Day 1 | Day 7 | Day 14 | Day 1 | Day 7 | Day 14 | |
Control | 225.03 ± 6.45 | 240.72 ± 5.35 | 248.90 ± 6.48 | 25.40 ± 1.08 | 26.01 ± 0.17 | 25.84 ± 2.10 | 14.40 ± 1.20 | 15.80 ± 0.83 | 15.74 ± 1.43 |
TL I | 238.86 ± 5.87 | 250.94 ± 7.45 | 250.24 ± 10.35 | 24.70 ± 2.58 | 25.90 ± 1.39 | 23.74 ± 3.39 | 16.35 ± 2.49 | 15.47 ± 1.59 | 14.87 ± 2.69 |
TL II | 220.48 ± 9.34 | 230.38 ± 8.43 | 233.56 ± 9.45 | 26.53 ± 0.98 | 25.76 ± 1.32 | 27.45 ± 1.15 | 16.76 ± 3.56 | 17.54 ± 2.54 | 14.65 ± 2.54 |
Parameters | Control | TL I | TL II |
---|---|---|---|
WBC (103/µL) | 5.20 ± 1.88 | 8.03 ± 3.31 | 7.58 ± 2.19 |
NEU (103/µL) | 0.91 ± 0.15 | 1.36 ± 0.63 | 1.97 ± 0.59 |
LYM (103/µL) | 3.74 ± 1.65 | 6.13 ± 2.48 | 5.03 ± 1.38 |
MON (103/µL) | 0.20 ± 0.05 | 0.36 ± 0.17 | 0.45 ± 0.19 |
EOS (103/µL) | 0.34 ± 0.10 | 0.18 ± 0.10 ** | 0.12 ± 0.03 *** |
BAS (103/µL) | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.003 ± 0.004 |
IMG (103/µL) | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.56 ± 0.36 |
NEU% | 18.58 ± 3.62 | 16.90 ± 3.50 | 25.86 ± 0.43 |
LYM% | 70.35 ± 6.04 | 76.53 ± 3.91 | 67.06 ± 1.63 |
MON% | 3.95 ± 0.77 | 4.45 ± 0.59 | 5.43 ± 1.20 |
EOS% | 6.95 ± 2.35 | 2.05 ± 0.39 *** | 1.57 ± 0.04 *** |
BAS% | 0.22 ± 0.03 | 0.09 ± 0.01 | 0.06 ± 0.04 |
IMG% | 0.43 ± 0.11 | 0.20 ± 0.07 | 0.56 ± 0.36 |
RBC (106/µL) | 7.69 ± 0.45 | 8.22 ± 0.32 * | 7.38 ± 0.07 |
HGB (g/dL) | 14.13 ± 0.44 | 14.58 ± 0.44 | 12.98 ± 0.27 ** |
HCT (%) | 41.60 ± 2.73 | 41.95 ± 1.52 | 39.22 ± 0.50 |
MCV (fL/cell) | 54.10 ± 0.66 | 51.07 ± 1.58 | 53.06 ± 1.06 |
MCH (pg/cell) | 18.42 ± 0.60 | 17.75 ± 0.46 | 17.60 ± 0.50 |
MCHC (g/dL) | 34.08 ± 1.27 | 34.73 ± 0.41 | 33.16 ± 0.27 |
RDW-CV (%) | 12.38 ± 0.20 | 12.70 ± 0.58 | 14.03 ± 0.11 |
RDW-SD (fL) | 26.80 ± 0.76 | 25.98 ± 0.73 | 29.78 ± 0.75 |
PLT (103/µL) | 304.8 ± 220.6 | 743.8 ± 83.78 *** | 896.3 ± 14.51 *** |
MPV (fL) | 8.88 ± 0.70 | 8.00 ± 0.25 | 7.63 ± 0.20 ** |
PDW (fL) | 15.98 ± 0.53 | 15.45 ± 0.05 | 15.23 ± 0.04 |
PCT (ng/mL) | 0.25 ± 0.16 | 0.59 ± 0.07 | 273.3 ± 373.3 |
P-LCC (109/L) | 50.50 ± 17.36 | 105.5 ± 16.41 ** | 102.3 ± 10.16 ** |
P-LCR (%) | 21.15 ± 6.51 | 14.23 ± 1.72 ** | 11.43 ± 1.00 *** |
Parameters | Control | TL I | TL II |
---|---|---|---|
Liver profile | |||
ALT (U/L) | 143.2 ± 91.13 | 48.20 ± 6.18 ** | 54.20 ± 2.05 ** |
AST (U/L) | 342.6 ± 223.0 | 158.2 ± 37.08 * | 145.0 ± 32.46 * |
ALP (U/L) | 85.80 ± 34.76 | 128.6 ± 14.45 * | 81.80 ± 21.65 |
Total protein (g/L) | 73.40 ± 29.48 | 73.70 ± 1.75 | 69.08 ± 1.21 |
Albumin (g/L) | 49.60 ± 2.91 | 51.72 ± 1.42 | 46.38 ± 1.29 |
Renal profile | |||
Urea (mg/dL) | 44.74 ± 3.12 | 48.60 ± 1.98 | 42.56 ± 3.65 |
BUN (mg/dL) | 20.91 ± 1.46 | 22.54 ± 1.01 | 19.64 ± 1.78 |
Creatine (mg/dL) | 0.41 ± 0.04 | 0.37 ± 0.03 | 0.37 ± 0.01 |
UA (mg/dL) | 2.12 ± 0.99 | 1.15 ± 0.25 * | 1.40 ± 0.12 |
Mg | 2.76 ± 0.27 | 2.54 ± 0.04 | 2.35 ± 0.08 |
Phosphate | 5.68 ± 1.01 | 3.98 ± 0.23 ** | 4.63 ± 0.21 |
Ca (mg/dL) | 11.01 ± 0.67 | 10.84 ± 0.24 | 10.99 ± 0.19 |
Na | 145.2 ± 3.70 | 143.5 ± 2.60 | 144.0 ± 0.00 |
K | 6.72 ± 1.58 | 5.29 ± 0.17 * | 4.80 ± 0.04 ** |
Cl | 105.3 ± 2.13 | 103.6 ± 0.74 | 104.4 ± 0.46 |
Cardiac profile | |||
LDH (U/L) | 2156 ± 921.9 | 1200 ± 203.8 * | 1120 ± 376.4 * |
CK (U/L) | 1016 ± 109.29 | 1104 ± 283.3 | 629.8 ± 183.5 * |
CO2 | 12.42 ± 4.16 | 15.26 ± 1.35 | 15.24 ± 1.37 |
NH3 | 318.4 ± 139.8 | 197.3 ± 20.60 * | 183.5 ± 8.77 * |
Lipase | 8.40 ± 52.41 | 8.40 ± 0.07 | 8.77 ± 0.65 |
Amylase | 2266 ± 275.0 | 2271 ± 146.2 | 1842 ± 177.8 |
Lipid profile | |||
Total cholesterol (mmol/L) | 72.38 ± 6.624 | 86.76 ± 7.36 * | 78.18 ± 4.79 |
Glucose (mmol/L) | 157.2 ± 30.28 | 141.0 ± 10.32 | 146.0 ± 6.16 |
Triglyceride (mmol/L) | 303.4 ± 41.08 | 208.4 ± 101.9 | 132.4 ± 15.75 *** |
Control | TL I | TL II | |
---|---|---|---|
Lung | 0.57 ± 0.14 | 0.53 ± 0.18 | 0.55 ± 0.14 |
Liver | 4.15 ± 1.26 | 3.99 ± 0.98 | 4.08 ± 1.26 |
Heart | 0.47 ± 0.06 | 0.46 ± 0.04 | 0.51 ± 0.06 |
Spleen | 0.24 ± 0.05 | 0.25 ± 0.13 | 0.26 ± 0.15 |
Kidney Left | 0.40 ± 0.05 | 0.39 ± 0.04 | 0.40 ± 0.25 |
Kidney Right | 0.39 ± 0.04 | 0.39 ± 0.25 | 0.38 ± 0.64 |
Ovary Left | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 |
Ovary Right | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 |
Control (Mean ± SD) | TL Extract (300 mg/kg BW) (Mean ± SD) | TL Extract (2000 mg/kg BW) (Mean ± SD) | |
---|---|---|---|
Lung | 0.5 ± 0.41 | 0.75 ± 0.50 | 1.0 ± 0.63 |
Liver | 0.4 ± 0.52 | 1.2 ± 0.41 | 1.0 ± 0.63 |
Heart | 0.2 ± 0.41 | 0.5 ± 0.55 | 1.2 ± 0.41 |
Kidney | 1.0 ± 0.63 | 1.5 ± 0.55 | 2.0 ± 0.63 |
Spleen | 0.0 ± 0.00 | 0.7 ± 0.52 | 1.0 ± 0.63 |
Ovary | 0.7 ± 0.52 | 1.0 ± 0.63 | 1.5 ± 0.55 |
Cerebrum | 0.5 ± 0.55 | 2.0 ± 0.63 | 1.0 ± 0.63 |
Eye | 0.5 ± 0.55 | 1.0 ± 0.63 | 1.5 ± 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beceren, A.; Hazar-Yavuz, A.N.; Bingol Ozakpinar, O.; Taskin, D.; Senkardes, I.; Taskin, T.; Cilingir-Kaya, O.T.; Kado, A.; Caliskan Salihi, E.; Elcioglu, H.K. Evaluation of the Cytotoxicity, Genotoxicity and Acute Oral Toxicity of Thymus longicaulis subsp. chaubardii (Rchb.f.) Jalas. Pharmaceuticals 2025, 18, 1037. https://doi.org/10.3390/ph18071037
Beceren A, Hazar-Yavuz AN, Bingol Ozakpinar O, Taskin D, Senkardes I, Taskin T, Cilingir-Kaya OT, Kado A, Caliskan Salihi E, Elcioglu HK. Evaluation of the Cytotoxicity, Genotoxicity and Acute Oral Toxicity of Thymus longicaulis subsp. chaubardii (Rchb.f.) Jalas. Pharmaceuticals. 2025; 18(7):1037. https://doi.org/10.3390/ph18071037
Chicago/Turabian StyleBeceren, Ayfer, Ayse Nur Hazar-Yavuz, Ozlem Bingol Ozakpinar, Duygu Taskin, Ismail Senkardes, Turgut Taskin, Ozlem Tugçe Cilingir-Kaya, Ahmad Kado, Elif Caliskan Salihi, and Hatice Kubra Elcioglu. 2025. "Evaluation of the Cytotoxicity, Genotoxicity and Acute Oral Toxicity of Thymus longicaulis subsp. chaubardii (Rchb.f.) Jalas" Pharmaceuticals 18, no. 7: 1037. https://doi.org/10.3390/ph18071037
APA StyleBeceren, A., Hazar-Yavuz, A. N., Bingol Ozakpinar, O., Taskin, D., Senkardes, I., Taskin, T., Cilingir-Kaya, O. T., Kado, A., Caliskan Salihi, E., & Elcioglu, H. K. (2025). Evaluation of the Cytotoxicity, Genotoxicity and Acute Oral Toxicity of Thymus longicaulis subsp. chaubardii (Rchb.f.) Jalas. Pharmaceuticals, 18(7), 1037. https://doi.org/10.3390/ph18071037